EP1309784B1 - Procede et dispositif pour reguler une grandeur de fonctionnement d'un moteur a combustion interne - Google Patents

Procede et dispositif pour reguler une grandeur de fonctionnement d'un moteur a combustion interne Download PDF

Info

Publication number
EP1309784B1
EP1309784B1 EP01956349A EP01956349A EP1309784B1 EP 1309784 B1 EP1309784 B1 EP 1309784B1 EP 01956349 A EP01956349 A EP 01956349A EP 01956349 A EP01956349 A EP 01956349A EP 1309784 B1 EP1309784 B1 EP 1309784B1
Authority
EP
European Patent Office
Prior art keywords
operating mode
operating
internal combustion
combustion engine
regulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01956349A
Other languages
German (de)
English (en)
Other versions
EP1309784A1 (fr
Inventor
Mario Kustosch
Christian Koehler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1309784A1 publication Critical patent/EP1309784A1/fr
Application granted granted Critical
Publication of EP1309784B1 publication Critical patent/EP1309784B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/16Introducing closed-loop corrections for idling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1409Introducing closed-loop corrections characterised by the control or regulation method using at least a proportional, integral or derivative controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1422Variable gain or coefficients
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • F02D31/002Electric control of rotation speed controlling air supply
    • F02D31/003Electric control of rotation speed controlling air supply for idle speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1508Digital data processing using one central computing unit with particular means during idling

Definitions

  • the invention relates to a method and a device for controlling an operating variable of an internal combustion engine.
  • control systems In modern control systems for internal combustion engines of vehicles control systems are widely used, which a Operating size of the internal combustion engine and / or the vehicle regulate to a predetermined setpoint.
  • An example for such control systems are idle speed controllers, by which indicates the engine idle speed a predetermined setpoint is regulated.
  • Other examples are control systems for regulating the air flow through the Internal combustion engine, the exhaust gas composition, the torque, etc.
  • DE 30 39 435 A1 US patent 4,441,471
  • an idle speed control system in which to improve the control properties is provided, at least to design a variable parameter of the controller.
  • the proportional portion of the Controller adjusted depending on the size of the control deviation.
  • the prior art discloses a switchover from the acceleration mode to cruise control; (DE-C 44 43 219) with a P or PDT1 controller at least partially fixed controller parameters or between operating modes, characterized by the use of various speed controls (EP-A-0936354) with variable controller parameters in each controller type, whereby in the different operating modes different controller parameters for the operation of one Internal combustion engine can be used.
  • an internal combustion engine is used for each operating mode Direct gasoline injection each on this operating mode adjusted optimal control quality in terms of speed and Control stability achieved.
  • Figure 1 is an overview circuit diagram of a controller for an operating variable an internal combustion engine using the example of an idle speed controller
  • Figure 2 is a flow chart is shown, which is a preferred embodiment represents a controller in which at least one parameter is changed depending on the current operating mode.
  • Figure 1 shows an electronic control unit 10 for control an internal combustion engine, the one not shown Computer unit, in which a regulation at least a company size is implemented.
  • the regulation is a Idle speed control.
  • the regulation can it be an air flow control, a load control, torque regulation, regulation of the exhaust gas composition, the driving speed, etc. act where the corresponding target and actual values as well as control signals are to be used.
  • a setpoint value image 12 is shown in FIG. 1, which depending on at least one over the input lines 14 to 18 fed to the control unit 10 Operating variable a setpoint SHOULD for the to be controlled Company size forms.
  • an idle speed controller is for Setpoint formation using the variables around motor temperature, the operating status of secondary consumers such as an air conditioning system, etc.
  • control unit 10 A signal is fed via the input line 20, which represents the actual size of the farm size to be controlled. Should- and actual size are compared in the comparator 22.
  • the deviation between target and actual size is called Control deviation ⁇ supplied to controllers 24 and 25.
  • At least one this controller 24 and 25 has at least one variable Parameters. In the preferred embodiment there is at least one of these controllers from proportional, differential and integral part, depending on the embodiment each of the shares or only one or more shares are variable, both depending on company sizes as well as in terms of switching depending on the operating mode the internal combustion engine.
  • the Controller 24 as a function of the control deviation ⁇ at least an output signal ⁇ 1, which at least one of the control variables the internal combustion engine influenced by one cause rapid torque change of the internal combustion engine.
  • These manipulated variables are the ignition angle and / or fuel supply, whereby in homogeneous operation an ignition angle influence, outside of which a fuel quantity control was carried out becomes.
  • the second controller 25 also forms depending the control deviation ⁇ in accordance with the implemented control strategy (preferably PD structure) at least one more Output signal ⁇ 2, which is at least one control variable influenced, which leads to a comparatively slow adjustment of the torque leads.
  • control variable represents the air supply, so that the control signal ⁇ 2 an actuator, for example a throttle valve, to influence the air supply to the internal combustion engine controls.
  • each part forms controller 24 or controller 25 a controller output signal, which merges (e.g. adds) the output signal Form ⁇ 1 or ⁇ 2.
  • the different proportions of the controller 24 and / or the Regulator 25 have parameters, for example gain factors, depending on the version, the value of which may be is changeable, d. H. between at least two values or Characteristic curves can be switched.
  • an idle control is usually a controller with proportional, integral and differential component used.
  • a controller is used to adjust the ignition angle, another to adjust the filling (air supply).
  • stratified charging or in homogeneous Lean operation is an adjustment of the engine torque only about the amount of fuel, not about the amount of air possible. It differs in these operating modes hence the dynamic behavior of the internal combustion engine from that in homogeneous operation.
  • the time of the torque determining Intervention in relation to the top dead center of the cylinder is different in these operating modes. This gives another dead time of the controlled system. Also lets a large change in torque by changing the amount of fuel Realize much faster than in homogeneous operation.
  • At least one parameter of controller 24 and / or 25 is shown in Dependence on one mode signal between different Values (individual values or characteristic curves) switched. This is generated in 30 depending on the current operating mode and via line 32 or 34 to the respective controller Switching fed. Take the parameter values into account the optimal adaptation of the controller to the changing System dynamics. In this respect, the idle controller is under Use of operating mode dependent parameter sets better adapted to the route dynamics. In addition to switching the parameter values depending on the operating mode In one embodiment, all parameter values are additional Functions of the control deviation.
  • the controller 25 which represents the air fraction, switched off, for example by its controller output signal or its parameter values set to 0 becomes.
  • the controller parameter values are determined by the switching signal of the controller 24, there in the preferred embodiment of the proportional, integral and differential components, matched to those for the new operating mode Values set. The following must be considered as the operating mode all shift operation and homogeneous lean operation. Corresponding is used when switching between shift operation and homogeneous lean operation method. Here too there is a parameter value switchover made in controller 24. The controller 25 for the slow intervention remains switched off.
  • FIG. 2 is a program of the computer unit of the control unit 10.
  • the flowchart shows special ones Refinements of the controllers 24 and 25.
  • the control deviation ⁇ is fed to the controllers as a deviation between actual and target value (actual and target speed).
  • controller 24 is an integrator 100, an amplifier stage 102 and a differential stage 104 provided while in the preferred embodiment an amplifier stage 106 in the controller 25 for the slow path and a differential stage 108 are provided.
  • controller 24 is an integrator 100, an amplifier stage 102 and a differential stage 104 provided while in the preferred embodiment an amplifier stage 106 in the controller 25 for the slow path and a differential stage 108 are provided.
  • the control strategy shown each represents only a preferred embodiment.
  • the described procedure for switching parameter values depending on the operating mode of the internal combustion engine is also used for other controller structures with the corresponding Advantages used.
  • the idle controller shown in Figure 2 is used of mode-dependent parameter sets better adapted to the route dynamics.
  • the control deviation ⁇ becomes preferably by subtracting the target speed from the Actual engine speed IS calculated.
  • the output signal DMLLRI of the integral part 100 is obtained by integrating the control deviation ⁇ over time in integrator 100 and subsequent Gain (multiplication) in amplifier stage 110 educated.
  • the integrator output signal multiplied by a parameter KI, which each assumes different values depending on the current operating mode.
  • a switching means 112 is provided for selecting the parameter values, which depending on the supplied via line 32 Operating mode signal BDEMOD is switched.
  • the Signal BDEMOD contains information about the current operating mode the internal combustion engine.
  • a proportional share exists. Its output signal DMLLRP is implemented in amplifier stage 102 by linking (Multiplication) of the control deviation ⁇ by a proportional gain factor KP formed. This factor too has different values depending on the operating mode. This Selection takes place by means of a switching means 114 as specified of the operating mode signal BDEMOD. Here too Shift operation one or more first parameter values KPSCH, in homogeneous lean operation one or more second values KPHMM and selected third values KPHOM in homogeneous operation.
  • the differential portion of the controller 24 is formed by temporal differentiation of the control deviation ⁇ in the differentiator 104 and subsequent linking (multiplication) the result of the differentiation in the amplifier stage 116.
  • This is where the result of the differentiation level is linked 104 with a predetermined parameter KD instead, which differs depending on the current operating mode Assumes values.
  • the selection is made using a Switching means 118 as a function of the above-mentioned operating mode signal BDemod. So in shift operation it becomes a parameter value KDSCH fed to multiplication, in homogeneous lean operation a value KDHMM and a value in homogeneous operation KDHOM.
  • the output signal DMLLRD is in an addition point 120 with the output signal DMLLRP of the proportional portion linked to the controller output signal DMLLR.
  • Addition point 122 becomes this controller output signal the output signal DMLLRI of the integral component is applied.
  • the output signal of stage 122 forms the drive signal ⁇ 1, through which an adjustment in homogeneous operation the ignition angle and in the shift mode and homogeneous lean operation an adjustment of the injected Fuel mass takes place.
  • the control signal ⁇ 1 acts on the so-called fast path, since with the represented Intervention options a quick change of Torque of the internal combustion engine is made possible.
  • the controller 25 operates the slow one as shown above Path, the intervention on the amount of air supplied.
  • This path is only used in homogeneous operation to set the torque used while in lean modes like Shift operation or homogeneous lean operation from the consumption advantage benefits from dethrottling the internal combustion engine. Therefore, a switching element 124 is provided, which of the shown position switches to its second position and so that the controller 25 switches to the outside when the The homogeneous mode is set.
  • a corresponding one Switching signal is supplied via line 34. In all other operating modes, the switching element 124 takes shown position, so that as the output signal ⁇ 2 of Regulator 25 has the value 0.
  • the formation of the controller output signal DMLLRL or ⁇ 2 of the controller 25 takes place in the Amplifier stage 106 by multiplying the system deviation ⁇ with a factor KPLHOM for homogeneous operation. Corresponding becomes the control deviation ⁇ in the differentiation stage 108 differentiated and then in the multiplication level 126 multiplied by the factor KDLHOM.
  • the output signals of the proportional and differential parts are in the link 128 to the controller output signal DMLLRL merged, which in the addition point 130 with the Output signal DMLLRI of the integral component 100, 110 is applied becomes.
  • the output of node 130 forms the output signal ⁇ 2 of the controller 25, which like said above only in the operating mode homogeneous operation to the outside acts.
  • the individual parameter values for the individual operating modes are tailored to the specific requirements of the respective controlled system customized. Experience has shown that in many In shifts, smaller values must be specified than in the other modes.
  • controller becomes a in other embodiments other control strategy used, e.g. can depending on the embodiment the differential parts are dispensed with.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Abstract

L'invention concerne un procédé et un dispositif pour réguler une grandeur de fonctionnement d'un moteur à combustion interne. Un régulateur génère un signal de sortie pour réguler la grandeur de fonctionnement, en fonction du déréglage existant par rapport à la détermination d'au moins un paramètre variable. Selon le mode de fonctionnement (mode stratifié, mode homogène, mode homogène à mélange pauvre), la valeur de ce paramètre est changée en des valeurs spécialement adaptées à l'itinéraire et au mode de fonctionnement choisis.

Claims (9)

  1. Procédé de réglage d'une grandeur de fonctionnement d'un moteur à combustion interne dont le fonctionnement est commuté entre au moins deux modes de fonctionnement, au moins un signal de sortie du régulateur étant formé en fonction d'un changement d'au moins un paramètre du régulateur dépendant de l'écart entre une valeur de consigne et une valeur réelle pour la grandeur de fonctionnement, la grandeur de fonctionnement à régler étant influencée par ce signal et un changement de la valeur de l'au moins un paramètre étant appliqué lorsque le mode de fonctionnement du moteur à combustion interne a changé,
    caractérisé en ce que
    le moteur à combustion interne est un moteur à combustion interne avec injection d'essence indirecte qui permute entre les modes de fonctionnement stratifié, de fonctionnement homogène pauvre et de fonctionnement homogène avec étranglement.
  2. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    le signal de sortie du régulateur influence l'angle d'amorçage dans le mode de fonctionnement homogène, et l'amenée de carburant dans les modes de fonctionnement sans étranglement.
  3. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    le régulateur comprend une fonction intégrale et/ou proportionnelle et/ou dérivée.
  4. Procédé selon la revendication 3,
    caractérisé en ce que
    en fonction d'un signal qui représente le mode de fonctionnement actuel, la valeur de l'au moins un paramètre est commutée sur des valeurs adaptées au comportement du trajet dans le mode de fonctionnement spécifique.
  5. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    le signal de sortie influence l'arrivée d'air dans le moteur à combustion interne en mode de fonctionnement avec étranglement, le signal de sortie étant modifié de manière neutre en dehors du fonctionnement avec étranglement du moteur à combustion interne.
  6. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    l'au moins un paramètre est en outre dépendant de l'écart dans le régulateur.
  7. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    les valeurs de l'au moins un paramètre sont des valeurs fixes dépendantes du mode de fonctionnement ou sont des valeurs dépendantes des grandeurs de fonctionnement formées à partir de caractéristiques choisies en fonction du mode de fonctionnement.
  8. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    le régulateur est un régulateur de régime du ralenti ou un régulateur de vitesse de marche.
  9. Dispositif de réglage d'une grandeur de fonctionnement d'un moteur à combustion interne, dont le fonctionnement est commuté entre au moins deux modes de fonctionnement, comprenant un régulateur qui forme au moins un signal de sortie du régulateur en fonction d'un changement d'au moins un paramètre du régulateur dépendant de l'écart entre une valeur de consigne et une valeur réelle pour la grandeur de fonctionnement, le signal de sortie influençant la grandeur de fonctionnement, et le régulateur recevant en outre un signal caractérisant le mode de fonctionnement actuel, un changement de la valeur de l'au moins un paramètre étant appliqué en fonction de ce signal,
    caractérisé en ce que
    le moteur à combustion interne est un moteur à combustion interne avec injection d'essence indirecte qui permute entre les modes de fonctionnement stratifié, de fonctionnement homogène pauvre et de fonctionnement homogène avec étranglement.
EP01956349A 2000-08-10 2001-07-20 Procede et dispositif pour reguler une grandeur de fonctionnement d'un moteur a combustion interne Expired - Lifetime EP1309784B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10038991A DE10038991A1 (de) 2000-08-10 2000-08-10 Verfahren und Vorrichtung zur Regelung einer Betriebsgröße einer Brennkraftmaschine
DE10038991 2000-08-10
PCT/DE2001/002745 WO2002012700A1 (fr) 2000-08-10 2001-07-20 Procede et dispositif pour reguler une grandeur de fonctionnement d'un moteur a combustion interne

Publications (2)

Publication Number Publication Date
EP1309784A1 EP1309784A1 (fr) 2003-05-14
EP1309784B1 true EP1309784B1 (fr) 2004-12-08

Family

ID=7651929

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01956349A Expired - Lifetime EP1309784B1 (fr) 2000-08-10 2001-07-20 Procede et dispositif pour reguler une grandeur de fonctionnement d'un moteur a combustion interne

Country Status (7)

Country Link
US (1) US20030168036A1 (fr)
EP (1) EP1309784B1 (fr)
JP (1) JP2004506122A (fr)
KR (1) KR20030036680A (fr)
CN (1) CN1436280A (fr)
DE (2) DE10038991A1 (fr)
WO (1) WO2002012700A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005046751B4 (de) * 2005-09-29 2009-04-16 Continental Automotive Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
JP4496162B2 (ja) * 2005-12-19 2010-07-07 日立オートモティブシステムズ株式会社 内燃機関の点火時期制御装置および方法
DE102007011812B4 (de) * 2007-03-12 2011-04-14 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben eines Antriebssystems
US20100288225A1 (en) * 2009-05-14 2010-11-18 Pfefferle William C Clean air reciprocating internal combustion engine
WO2018216151A1 (fr) * 2017-05-24 2018-11-29 日産自動車株式会社 Procédé et dispositif permettant de commander un moteur à combustion interne

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3152106B2 (ja) * 1995-05-16 2001-04-03 三菱自動車工業株式会社 筒内噴射型火花点火式内燃エンジンの制御装置
JP3211677B2 (ja) * 1996-08-28 2001-09-25 三菱自動車工業株式会社 筒内噴射式内燃機関の点火時期制御装置
JP3500021B2 (ja) * 1996-12-12 2004-02-23 トヨタ自動車株式会社 成層燃焼内燃機関のアイドル回転数制御装置
EP1380744B1 (fr) * 1997-06-03 2009-07-29 Nissan Motor Company, Limited Moteur avec commande de couple
DE19727385C2 (de) * 1997-06-27 2002-10-10 Bosch Gmbh Robert System zum Betreiben einer Brennkraftmaschine mit Direkteinspritzung insbesondere eines Kraftfahrzeugs
US6161530A (en) * 1997-07-04 2000-12-19 Nissan Motor Co., Ltd. Control system for internal combustion engine
US5975048A (en) * 1997-10-16 1999-11-02 Ford Global Technologies, Inc. Idle speed control system for direct injection spark ignition engines
JP3971004B2 (ja) * 1997-12-19 2007-09-05 株式会社日立製作所 内燃機関の燃焼切換制御装置
DE19851974B4 (de) * 1998-11-03 2011-04-28 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung von Betriebsabläufen in einem Fahrzeug
JP2000220504A (ja) * 1999-01-27 2000-08-08 Mazda Motor Corp 筒内噴射式エンジンのアイドル回転数制御装置
DE19931826B4 (de) * 1999-07-08 2004-09-02 Robert Bosch Gmbh Verfahren zum Steuern einer Brennkraftmaschine
US6321714B1 (en) * 2000-01-13 2001-11-27 Ford Global Technologies, Inc. Hybrid operating mode for DISI engines

Also Published As

Publication number Publication date
JP2004506122A (ja) 2004-02-26
EP1309784A1 (fr) 2003-05-14
DE50104772D1 (de) 2005-01-13
KR20030036680A (ko) 2003-05-09
DE10038991A1 (de) 2002-02-21
CN1436280A (zh) 2003-08-13
US20030168036A1 (en) 2003-09-11
WO2002012700A1 (fr) 2002-02-14

Similar Documents

Publication Publication Date Title
DE3333392C2 (fr)
EP0191923B1 (fr) Procédé et dispositif de commande et procédé de régulation des grandeurs de fonctionnement d'un moteur à combustion
DE3416369C2 (de) Vorrichtung zur Regelung der Geschwindigkeit eines Fahrzeugs
EP0853723B1 (fr) Procede et dispositif pour la commande d'un moteur a combustion interne
EP0760056B1 (fr) Procede et dispositif de commande d'un moteur a combustion interne
DE19622637B4 (de) Verfahren und Regelungssystem für eine Motordrehzahl mit veränderlicher Regelabweichung
DE19756053B4 (de) Drosselklappensteuervorrichtung
DE10313503B4 (de) Verfahren und Vorrichtung zur Abgasrückführungssteuerung in Brennkraftmaschinen
DE10329763A1 (de) Koordinierte Regelung einer elektronischen Drosselklappe und eines Turboladers mit variabler Geometrie in ladedruckverstärkten und stöchiometrisch betriebenen Ottomotoren
DE19619320A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE10129314B4 (de) Motordrehzahlregelung
EP0629775A1 (fr) Procédé et dispositif pour commander la stabilité de marche d'un moteur à combustion interne
EP1309784B1 (fr) Procede et dispositif pour reguler une grandeur de fonctionnement d'un moteur a combustion interne
EP1478986B1 (fr) Procede et dispositif pour la regulation du regime d'un moteur a combustion interne
WO1989008777A1 (fr) Procede et systeme pour le reglage de la valeur lambda
DE19920498A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE19924862C1 (de) Verfahren zur Einstellung einer vorgebbaren Zielgeschwindigkeit in einem Fahrzeug
DE4322270B4 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
EP1003960B1 (fr) Procede de fonctionnement d'un moteur a combustion interne
DE19736522A1 (de) Verfahren zur Steuerung der Abgasrückführung bei einer Brennkraftmaschine
EP1309780B1 (fr) Procede et dispositif pour reguler une grandeur de fonctionnement d'une unite d'entrainement
DE102007007945A1 (de) Verfahren zum Einstellen einer Abgasrückführrate einer Brennkraftmaschine
EP0415048A1 (fr) Procédé de régulation d'un ensemble moteur/transmission
EP1269011A2 (fr) Procede et dispositif de commande du fonctionnement au ralenti d'une unite d'entrainement
DE19740186A1 (de) Verfahren und Vorrichtung zur Regelung einer Betriebsgröße eines Fahrzeugs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030310

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KOEHLER, CHRISTIAN

Inventor name: KUSTOSCH, MARIO

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RBV Designated contracting states (corrected)

Designated state(s): DE FR IT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50104772

Country of ref document: DE

Date of ref document: 20050113

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050909

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140724

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140724

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150720

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160927

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50104772

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180201