EP1308415B1 - Hydraulische Hubvorrichtung insbesondere für batteriegetriebene Flurförderzeuge und Verfahren zu deren Steuerung - Google Patents

Hydraulische Hubvorrichtung insbesondere für batteriegetriebene Flurförderzeuge und Verfahren zu deren Steuerung Download PDF

Info

Publication number
EP1308415B1
EP1308415B1 EP20020024330 EP02024330A EP1308415B1 EP 1308415 B1 EP1308415 B1 EP 1308415B1 EP 20020024330 EP20020024330 EP 20020024330 EP 02024330 A EP02024330 A EP 02024330A EP 1308415 B1 EP1308415 B1 EP 1308415B1
Authority
EP
European Patent Office
Prior art keywords
pump
pressure
hydraulic
lifting cylinder
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP20020024330
Other languages
English (en)
French (fr)
Other versions
EP1308415A3 (de
EP1308415A2 (de
Inventor
Octavian Mare
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dambach Lagersysteme & Co KG GmbH
Original Assignee
Dambach Lagersysteme & Co KG GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dambach Lagersysteme & Co KG GmbH filed Critical Dambach Lagersysteme & Co KG GmbH
Publication of EP1308415A2 publication Critical patent/EP1308415A2/de
Publication of EP1308415A3 publication Critical patent/EP1308415A3/de
Application granted granted Critical
Publication of EP1308415B1 publication Critical patent/EP1308415B1/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/044Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the return line, i.e. "meter out"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/20Means for actuating or controlling masts, platforms, or forks
    • B66F9/22Hydraulic devices or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/14Energy-recuperation means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20538Type of pump constant capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30505Non-return valves, i.e. check valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/30565Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
    • F15B2211/3057Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve having two valves, one for each port of a double-acting output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40507Flow control characterised by the type of flow control means or valve with constant throttles or orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40515Flow control characterised by the type of flow control means or valve with variable throttles or orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/41Flow control characterised by the positions of the valve element
    • F15B2211/411Flow control characterised by the positions of the valve element the positions being discrete
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/42Flow control characterised by the type of actuation
    • F15B2211/426Flow control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/46Control of flow in the return line, i.e. meter-out control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50509Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means
    • F15B2211/50518Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50509Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means
    • F15B2211/50536Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using unloading valves controlling the supply pressure by diverting fluid to the return line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/515Pressure control characterised by the connections of the pressure control means in the circuit
    • F15B2211/5151Pressure control characterised by the connections of the pressure control means in the circuit being connected to a pressure source and a directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/52Pressure control characterised by the type of actuation
    • F15B2211/526Pressure control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/52Pressure control characterised by the type of actuation
    • F15B2211/528Pressure control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/55Pressure control for limiting a pressure up to a maximum pressure, e.g. by using a pressure relief valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7052Single-acting output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7114Multiple output members, e.g. multiple hydraulic motors or cylinders with direct connection between the chambers of different actuators
    • F15B2211/7128Multiple output members, e.g. multiple hydraulic motors or cylinders with direct connection between the chambers of different actuators the chambers being connected in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/75Control of speed of the output member

Definitions

  • the invention relates to a method for controlling a hydraulic lifting device, in particular for battery-powered trucks, which has a driven by an electric motor pump, by means of the at least one hydraulic lifting cylinder hydraulic oil is supplied from a reservoir via a feed line in the lifting operation, wherein the hydraulic oil in the load lowering operation of the lifting cylinder is fed back into the reservoir via a return flow line while flowing through the pump driving the electric motor acting as a generator.
  • the invention relates to a hydraulic lifting device, in particular for carrying out the method, with a drivable by an electric motor pump, by means of the at least one hydraulic lifting cylinder hydraulic oil can be supplied from a reservoir via a supply line in the lifting operation, the hydraulic oil in Lastsenk ceremoniess of the lifting cylinder via a Return flow under the flow of the working as a generator electric motor driving pump is fed back into the reservoir.
  • Such a hydraulic lifting device is often used in electrically driven industrial trucks or forklifts in which the operability or duration is substantially dependent on the capacity of the battery.
  • it is known to partially re-feed the potential energy in the system when the load is raised via an electric motor also operating as a generator into the battery.
  • a hydraulic lifting device with a corresponding energy recovery is shown, for example, in DE 199 21 629 A1, which has an electric motor which drives a pump which sucks hydraulic oil from a reservoir via a suction valve in the lifting operation and conveys it to the hydraulic lifting cylinder.
  • the hydraulic oil is directed by the hydraulic lifting cylinder through the pump operating in this state as a hydraulic motor, which drives a generator or the electric motor operating as a generator in this state, from which by means of a suitable, known per se electric circuit for energy recovery Battery is charged.
  • the speed of the electric motor for controlling the lifting or lowering speed of the hydraulic lifting cylinder is only used when the lifting cylinder is adjusted sufficiently quickly or recorded by a sensor device stroke speed a predetermined first limit or the lowering speed over a predetermined second limit.
  • the feed line has a branch line, via which hydraulic oil can be branched off from the feed line in the load lifting operation.
  • the branch line opens in the suction-side portion of the supply line downstream of the Nachsaugventils, so that the branched-off amount of hydraulic oil is supplied to the pump again.
  • the invention has for its object to provide a hydraulic lifting device of the type mentioned and a method for their control, in which or an excessive Wear of the pump and its internal leakage are largely avoided.
  • This object is achieved in terms of the method for controlling a hydraulic lifting device in that at the beginning of the load lowering operation located both in the upstream of the pump section of the return line and in the downstream of the pump section of the return line substantially prevailing in the lifting cylinder hydraulic pressure, wherein the pump is operated at an actual speed that is below a speed limit, and that a arranged in the return line downstream of the pump proportional pressure relief valve is only fully opened by a ramp function substantially when the actual speed of the pump above the Speed limit is, the electric motor then works as a generator.
  • the invention is based on the idea of minimizing the internal leakage of the pump by bringing the same hydraulic pressure into effect at both outlets of the pump, whereby the internal leakage is excluded even when the pump is at zero speed and consequently the internal leakage Cavitation wear is avoided.
  • the fine control or regulation of small lowering speeds of the load can be achieved by a corresponding low speed of the pump, which then works like a purely volumetric dosing. Since the pressure difference ⁇ p at the pump and its flow Q are minimal in this state, only a very low energy consumption arises.
  • the energy recovery operation is activated, in which the proportional pressure relief valve, which is arranged downstream of the pump in the return line, is fully open and the electric motor operates as a generator, which is driven by the working as a hydraulic motor pump.
  • the invention provides that the pressure in the return line at the beginning of Lastsenk memories means of a proportional pressure control valve, which is arranged upstream of the pump, via a ramp function on the pressure prevailing in the lifting cylinder hydraulic pressure is brought.
  • the pump is preferably never operated at a predetermined minimum speed during lifting operation.
  • the pump starts in the lifting operation via a pressure-free start. This is inventively achieved in that the pump at the beginning of lifting operation, the hydraulic oil as long as via a branch line returns to the reservoir, as the actual speed of the pump is below the speed limit, and that the branch line is closed by a valve, as soon as the actual speed of the pump is above the speed limit.
  • the speed limit value is preferably the predetermined minimum speed of the pump.
  • a hydraulic lifting device 10 shown schematically in FIG. 1 comprises a reservoir 11 for hydraulic oil, which is connected to two hydraulic lifting cylinders 12 via a feed line L1 consisting of several sections and subsequent connecting lines L4.1 and L4.2.
  • the indications "upstream” and “downstream” used refer to an oil flow from the reservoir 11 to the lifting cylinders 12, i. in the feeding direction for the lifting operation.
  • the supply line L1 is made up of a plurality of line sections.
  • a first section L1.1 leads from the reservoir 11 to a hydraulic pump P which is drivable by means of an electric motor M, in a manner not shown via a motor control unit draws energy from a battery.
  • a leakage line L7 (shown in dashed lines) can lead back into the storage container 11.
  • the first section L1.1 of the supply line L1 which represents the suction-side portion of the pump P, designed as a check valve Nachsaugventil NSV is arranged, which allows an oil flow in the feed direction, ie from the reservoir 11 to the pump P and prevents backflow.
  • a second section L1.2 of the supply line L1 connects, which leads to a first seat valve SV1, which is adjustable between an open position in which a flow in both directions is possible, and a blocking position in which an oil flow in the feeding direction, ie is suppressed to the lifting cylinders 12.
  • the first seat valve SV1 is biased by a spring into the blocking position, which it automatically assumes in the event of a power failure.
  • a first check valve RV1 is arranged, which only supplies an oil flow in the feed direction, i. to the lifting cylinders 12 permits and prevents backflow.
  • a pressure line L DA4 branches off between the pump P and the first seat valve SV1, which leads to a fourth pressure sensor DA4, by means of which the pressure prevailing in the second section L1.2 of the supply line L1 is detected can.
  • the first seat valve SV1 is adjoined by a third section L1.3 of the supply line L1, which branches off at its downstream end into the two connecting lines L4.1 and L4.2, which each lead to one of the hydraulic lifting cylinders 12. From the connecting line L4.2 another pressure line L DA1 branches off, which leads to a first pressure sensor DA1, by means of which the pressure prevailing in the connecting line L4.2 and thus the load pressure can be detected.
  • a return line L2 which also consists of several sections L2.1, L2.2 and L2.3.
  • a first section L2.1 of the return line L2 leads from the third section L1.3 of the supply line L1 to a second seat valve SV2, which is adjustable between an open position in which a flow in both directions is possible and a blocking position Oil flow is blocked in both directions.
  • the second seat valve SV2 is biased by a spring in the blocking position.
  • a second section L2.2 of the return line L2 extends from the second seat valve SV2 to a proportional pressure control valve PDRV. From the second section L2.2 of the return line L2 branches off upstream of the proportional pressure control valve PDRV another pressure line L DA3 , which leads to a third pressure transducer DA3, by means of which in the second section L2.2 of the return line L2 prevailing pressure can be detected. From the proportional pressure control valve PDRV, a bypass line L5 leads to the second section L1.2 of the supply line L1. The bypass line L5 opens into the second section L1.2 of the supply line L1 between the pressure line L DA4 and the first seat valve SV1.
  • a third section L2.3 of the return line L2 leads from the proportional pressure control valve PDRV to the suction-side first section L1.1 of the supply line L1 and flows thereinto between the suction valve NSV and the pump P.
  • the return line L2 into the first section L1.1 of the supply line L1 branches off from the third section L2.3 of the return line L2 another pressure line L DA2 , which leads to a second pressure sensor DA2, by means of which in the vicinity of the input of the pump P prevailing pressure can be detected.
  • a bypass line L3 Parallel to the first sections of the return line L2 runs a bypass line L3, which at its one end together with the first section L2.1 of the return line L2 in the third section L1.3 of the feed line L1 and with its other end in the third section L2. 3 of the return line L2 opens.
  • a third seat valve SV3 is arranged, which is adjustable between an open position in which a flow in both directions is possible, and a blocking position in which an oil flow in the return direction, i. from the third section L1.3 of the supply line L1 to the third section L2.3 of the return line L2 is prevented.
  • the third seat valve SV3 is biased by a spring in the blocking position.
  • a second check valve RV2 is arranged, which has a flow in the return direction, i. from the third section L1.3 of the supply line L1 to the third section L2.3 of the return line L2 permits and prevents flow in the opposite direction.
  • the hydraulic oil can from the lifting cylinders 12 via a designated in its entirety as a return flow path in the reservoir 11 flow back.
  • the return line comprises the connection lines L4.1 and L4.2, a part of the third section L1.3 of the supply line L1, the return line L2, the bypass line L3, parts of the first and second sections L1.1 and L1.2 of the supply line L1 including the flow through the pump P and the branch line L6.
  • the hydraulic oil In the lifting operation, i. for lifting the lifting cylinder 12, the hydraulic oil must be conveyed from the reservoir 11 through the supply line L1 into the corresponding chambers of the lifting cylinder 12.
  • the proportional pressure relief valve PDBV in the branch line L6 and the first seat valve SV1 in the supply line L1 are opened while the second seat valve SV2 and the third seat valve SV3 are closed.
  • the electric motor M is brought to a minimum speed with the pump P via an adjustable ramp function.
  • the hydraulic oil sucked by the pump P from the reservoir 11 through the sucking valve NSV and the first portion L1.1 of the supply line L1 and conveyed via the continuing second portion L1.2 occurs in this state, i. usually for a few fractions of a second, due to the fully open proportional pressure relief valve PDBV completely in the branch line L6 and is discharged without pressure into the reservoir 11.
  • the proportional pressure relief valve PDBV and the proportional pressure control valve PDRV are closed, whereby the pressure in the supply line L1 increases. If by means of the pressure transducer DA4 is detected that the pressure in the supply line L1 has reached the load floating pressure, which is detected by the pressure transducer DA1, the speed control of the pump P is released and the oil is supplied through the supply line L1 and the connecting lines L4.1 and L4.2 promoted to the lifting cylinders 12 so that they are raised. The speed thus determined, at which the speed control is released, is stored each time and allowed as minimum speed N min for braking the stroke.
  • the pump P continues to operate at a predetermined minimum speed N v (> N min ), the seat valve SV 2 of the return line L2 open and determines the lifting or lowering movement via the proportional pressure control valve PDRV. If the order is given to the proportional pressure control valve PDRV via the energization, to generate a greater pressure than the floating pressure, the load is raised.
  • the oil supply from the pump P to the lift cylinders 12 via the bypass line L5 and the proportional pressure control valve PDRV is opened and the discharge of the oil from the lift cylinder 12 in the third section L2.3 of the return line L2 and thus to the suction side of the pump P is closed at the proportional pressure control valve PDRV.
  • the load is held in position. Since one passes through the state of positional posture at the transition from lifting to lowering and vice versa, this movement can also be compared to a levitation method. It should be noted that the pressure relief or pressure control valves can not regulate any volume and the maximum lifting or lowering speed of the lifting cylinder 12 is limited solely by the pump speed.
  • the proportional pressure relief valve PDBV and the proportional pressure control valve PDRV are slightly adjusted below the load floating pressure detected by the pressure sensor DA1, ie p (DA4) ⁇ p (DA1) or p (DA3) ⁇ p (DA1).
  • the pressure set on the proportional pressure relief valve PDBV is slightly above the load floating pressure.
  • the electric motor M is kept regulated to zero speed and the seat valve SV2 is opened. Subsequently, the current supply of the proportional pressure control valve PDRV is reduced via an adjustable ramp.
  • the pressure at the proportional pressure relief valve PDBV is reduced to its minimum via an adjustable ramp function and the electric motor M starts operating in generator mode in which it is driven by the pump.
  • the braking or stopping the lowering movement takes place in accordance with the reverse order.
  • a pressure control via the pressure control valve PDRV can be used for the levitation method, a speed control using a fine proportional flow controller for small amounts of oil and high resolution in Differenz penflußclar.
  • the fine proportional flow regulator can open with its one connection between the second seat valve SV2 and the proportional pressure control valve PDRV in the second section L2.2 of the return line L2 and with the other terminal to the lying behind the second check valve RV2 and thus the pump P facing portion of the bypass line L3 be connected.
  • the lifting, lowering or floating of the load can be determined by the difference between the pump delivery Q P and the discharge amount Q of PSR over the fine proportional current regulator.
  • the load When the pump delivery amount Q P is greater than the discharge amount Q PSR of the fine proportional flow controller, the load is raised. When the pump delivery amount Q P is smaller than the discharge amount Q PSR of the fine proportional flow controller, the load is slowly lowered. If the two sets Q P and Q PSR are equal, the load is held in position.
  • the amount of oil can be regulated either via the fine proportional flow controller or vary accordingly over the pump speed.
  • the nozzle D1 In the load-lowering mode, the nozzle D1 allows the pressure build-up in the return line L2 at the start of the normal lowering movement.
  • the seat valve SV2 is energized and opened, so that in the return line L2 and also on the input side of the pump P, a pressure increase takes place.
  • the second pressure sensor DA2 detects the predetermined value of the pressure increase, the seat valve SV3 is opened and the speed control of the pump is released.
  • the further course of the lowering operation corresponds to that of the embodiment according to FIG.
  • the target position is approached in the so-called floating state.
  • the pump P is kept in operation at the minimum speed covering the leakage, wherein in the line section L1.2 downstream of the pump P, a pressure must be present, which is determined by the fourth pressure transducer DA4.
  • the first seat valve SV1 and the second seat valve SV2 remain energized open.
  • the volume flow controller SR1 is opened, so that hydraulic fluid over the first section L2.1 and the second section L2.2 of the return line L2 and the pressure line L DA3 , the connecting line L8 and the branch line L6 can flow back into the reservoir 11.
  • the volume flow controller SR1 is opened until the desired lowering speed is reached.
  • the difference dQ between the hydraulic oil amount delivered by the pump P and the amount of hydraulic oil discharged from the volumetric flow controller SR1 determines the direction of movement of the lift cylinders 12. If the difference dQ is positive (dQ> 0), ie, the pump P delivers more hydraulic oil than via the volumetric flow controller SR1 is discharged, the lifting cylinders 12 are raised. Accordingly, the lifting cylinders 12 are lowered when the difference amount is negative, that is, the pump P promotes less hydraulic oil than is discharged through the volumetric flow controller SR1.
  • the position of the lift cylinders is maintained.
  • the individual amounts of hydraulic oil and correspondingly said difference between the delivered and the discharged hydraulic oil quantity can be influenced by a change in the rotational speed of the pump and / or by the current supply and thus the degree of opening of the volumetric flow regulator SR1.
  • the third seat valve SV3 is closed and the pressure at the proportional pressure relief valve PDBV on the prevailing load pressure, which is detected by means of the first pressure transducer DA1, set. Subsequently, the first seat valve SV1 and the second seat valve SV2 opened and the speed of the pump P increased until the desired lifting speed of the lifting cylinder 12 is reached. From then on, the suspension process can be continued in the above-mentioned manner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Civil Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Fluid-Pressure Circuits (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Steuerung einer hydraulischen Hubvorrichtung insbesondere für batteriegetriebene Flurförderzeuge, die eine von einem Elektromotor antreibbare Pumpe aufweist, mittels der im Lasthebebetrieb zumindest einem hydraulischen Hubzylinder Hydrauliköl aus einem Vorratsbehälter über eine Zuführleitung zugeführt wird, wobei das Hydrauliköl im Lastsenkbetrieb von dem Hubzylinder über eine Rückströmleitung unter Durchströmen der den als Generator arbeitenden Elektromotor antreibenden Pumpe in den Vorratsbehälter zurückgeführt wird. Darüber hinaus betrifft die Erfindung eine hydraulische Hubvorrichtung insbesondere zur Durchführung des Verfahrens, mit einer von einem Elektromotor antreibbaren Pumpe, mittels der im Lasthebebetrieb zumindest einem hydraulischen Hubzylinder Hydrauliköl aus einem Vorratsbehälter über eine Zuführleitung zuführbar ist, wobei das Hydrauliköl im Lastsenkbetriebs von dem Hubzylinder über eine Rückströmleitung unter Durchströmen der den als Generator arbeitenden Elektromotor antreibenden Pumpe in den Vorratsbehälter zurückführbar ist.
  • Eine derartige hydraulische Hubvorrichtung findet häufig bei elektrisch angetriebenen Flurförderzeugen oder Gabelstaplern Verwendung, bei denen die Betriebsfähigkeit bzw. -dauer im wesentlichen von der Kapazität der Batterie abhängig ist. Um die Betriebsdauer der Batterie bis zu ihrem nächsten notwendigen Aufladen zu verlängern, ist es bekannt, die bei angehobener Last im System befindliche potentielle Energie über einen auch als Generator arbeitenden Elektromotor in die Batterie teilweise wieder einzuspeisen. Eine hydraulische Hubvorrichtung mit einer entsprechenden Energierückspeisung ist beispielsweise in der DE 199 21 629 A1 gezeigt, die einen Elektromotor aufweist, der eine Pumpe treibt, die im Lasthebebetrieb Hydrauliköl aus einem Vorratsbehälter über ein Nachsaugventil ansaugt und zu dem hydraulischen Hubzylinder fördert. Im Lastsenkbetrieb wird das Hydrauliköl von dem hydraulischen Hubzylinder durch die in diesem Zustand als Hydromotor arbeitende Pumpe geleitet, die einen Generator oder den in diesem Zustand als Generator arbeitenden Elektromotor antreibt, von dem aus mittels einer geeigneten, an sich bekannten elektrischen Schaltung zur Energierückspeisung die zugehörige Batterie aufgeladen wird. Dabei wird die Drehzahl des Elektromotors zur Regelung der Hub- bzw. Senkgeschwindigkeit des hydraulischen Hubzylinders nur dann verwendet, wenn der Hubzylinder ausreichend schnell verstellt wird bzw. die mittels einer Sensorvorrichtung erfaßte Hubgeschwindigkeit einen vorbestimmten ersten Grenzwert bzw. die Senkgeschwindigkeit einen vorbestimmten zweiten Grenzwert überschreiben. Wenn der Hubzylinder mit einer relativ geringen Geschwindigkeit unterhalb der genannten Grenzwerte verstellt wird, wie es beispielsweise beim Anfahren aus der Ruhestellung infolge der Trägheit und auch bei einer gewählten Schleichgeschwindigkeit der Fall ist, wird die Geschwindigkeit des Hubzylinders nicht über die Drehzahl des Elektromotors und somit der Pumpe, sondern über den Volumen- bzw. Massenstrom des in der Zuführ- bzw. Rückführleitung strömenden Hydrauliköls verändert. Zu diesem Zweck weist die Zuführleitung eine Zweigleitung auf, über die im Lasthebebetrieb Hydrauliköl aus der Zuführleitung abzweigbar ist. Die Zweigleitung mündet in dem saugseitigen Abschnitt der Zuführleitung stromab des Nachsaugventils, so daß die abgezweigte Menge an Hydrauliköl der Pumpe wieder zugeführt wird.
  • Um die Positionierzeiten einer hydraulischen Hubvorrichtung eines batteriegetriebenen Flurförderzeuges zu verkürzen bzw. die Reaktionszeiten innerhalb der Positionssuche zu verringern, ist es sinnvoll, die Pumpe beim Richtungswechsel der Lastbewegung laufen zu lassen und nicht wie üblich auszuschalten. Dabei stellt sich jedoch das Problem, daß die Pumpe bei relativ niedrigen Drehzahlen einem erhöhtem Kavitationsverschleiß unterliegt. Wenn die Pumpe eine Pumpe mit konstantem Verdrängungsvolumen, beispielsweise eine Flügelzellenpumpe, eine Spindelpumpe oder eine Innenzahnradpumpe ist, tritt das weitere Problem einer nicht zu vernachlässigenden inneren Leckage auf. Infolge der inneren Leckage ist eine sichere Lasthaltung bzw. eine geringe Senkgeschwindigkeit nicht zu erreichen. Wenn man darüber hinaus noch berücksichtigt, daß die Pumpe zur Vermeidung von übermäßigen Beschädigungen mit einer Mindestdrehzahl betrieben werden muß, führt dies zusammen mit der inneren Leckage zu einem undefinierten Absinken der Last. Die Betriebsbedingungen ändern sich desweiteren in Abhängigkeit von der Temperatur und dem sich im Laufe der Zeit einstellende Verschleiß der Pumpe.
  • Der Erfindung liegt die Aufgabe zugrunde, eine hydraulische Hubvorrichtung der genannten Art und ein Verfahren zu deren Steuerung zu schaffen, bei der bzw. dem ein übermäßiger Verschleiß der Pumpe und deren innere Leckage weitestgehend vermieden sind.
  • Diese Aufgabe wird hinsichtlich des Verfahrens zur Steuerung einer hydraulischen Hubvorrichtung dadurch gelöst, daß zu Beginn des Lastsenkbetriebes sowohl im stromauf der Pumpe gelegenen Abschnitt der Rückströmleitung als auch im stromab der Pumpe gelegenen Abschnitt der Rückströmleitung im wesentlichen der im Hubzylinder herrschende hydraulische Druck aufgebaut wird, wobei die Pumpe mit einer IST-Drehzahl betrieben wird, die unterhalb eines Drehzahl-Grenzwertes liegt, und daß ein in der Rückströmleitung stromab der Pumpe angeordnetes proportionales Druckbegrenzungsventil über eine Rampenfunktion erst dann im wesentlichen vollständig geöffnet wird, wenn die IST-Drehzahl der Pumpe oberhalb des Drehzahl-Grenzwertes liegt, wobei der Elektromotor dann als Generator arbeitet.
  • Die Erfindung geht von dem Grundgedanken aus, die innere Leckage der Pumpe zu minimieren, indem an beiden Ausgängen der Pumpe der gleiche hydraulische Druck zur Wirkung gebracht wird, wodurch auch bei Stillstand der Pumpe (Null-Drehzahl) die innere Leckage ausgeschlossen und dementsprechend der innere Kavitationsverschleiß vermieden ist. Die Feinsteuerung bzw. Regelung von kleinen Senkgeschwindigkeiten der Last kann dabei durch eine entsprechende geringe Drehzahl der Pumpe erreicht werden, die dann wie eine rein volumetrische Dosieranlage arbeitet. Da die Druckdifferenz Δp an der Pumpe und deren Durchfluß Q in diesem Zustand minimal sind, entsteht auch nur ein sehr geringer Energieverbrauch. Wenn die IST-Drehzahl der Pumpe beim Lastsenkbetrieb den Drehzahl-Grenzwert übersteigt, wird der Energie-Rückgewinnungsbetrieb aktiviert, bei dem das proportionale Druckbegrenzungsventil, das stromab der Pumpe in der Rückströmleitung angeordnet ist, vollständig geöffnet ist und der Elektromotor als Generator arbeitet, der von der als Hydromotor arbeitende Pumpe angetrieben wird.
  • Um beim Starten des Senkvorganges einen sanften Bewegungsanlauf zu erreichen, ist in Weiterbildung der Erfindung vorgesehen, daß der Druck in der Rückströmleitung zu Beginn des Lastsenkbetriebes mittels eines proportionalen Druckregelventils, das stromauf der Pumpe angeordnet ist, über eine Rampenfunktion auf den im Hubzylinder herrschenden hydraulischen Druck gebracht wird.
  • Um einen übermäßigen Verschleiß der Pumpe zu verhindern, wird diese beim Lasthebebetrieb vorzugsweise nie unter einer vorgegebenen Mindestdrehzahl betrieben. Zusätzlich wird dafür gesorgt, daß die Pumpe im Lasthebebetrieb über einen drucklosen Anlauf startet. Dies wird erfindungsgemäß dadurch erreicht, daß die Pumpe zu Beginn des Lasthebebetriebs das Hydrauliköl solange über eine Zweigleitung drucklos in den Vorratsbehälter zurückleitet, wie die IST-Drehzahl der Pumpe unterhalb des Drehzahl-Grenzwertes liegt, und daß die Zweigleitung mittels eines Ventils geschlossen wird, sobald die IST-Drehzahl der Pumpe oberhalb des Drehzahl-Grenzwertes liegt. Bei dem Drehzahl-Grenzwert handelt es sich vorzugsweise um die vorgegebene Mindestdrehzahl der Pumpe.
  • Hinsichtlich der hydraulischen Hubvorrichtung wird die oben genannte Aufgabe durch die Merkmale des Anspruchs 5 oder 6 gelöst.
  • Weitere Einzelheiten und Merkmale der Erfindung und insbesondere der hydraulischen Hubvorrichtung sind aus der folgenden Beschreibung eines Ausführungsbeispiels unter Bezugnahme auf die Zeichnung ersichtlich. Es zeigen:
  • Figur 1
    ein schematisches Schaltbild einer erfindungsgemäßen hydraulischen Hubvorrichtung, und
    Figur 2
    eine Abwandlung des Schaltbildes gemäß Fig. 1.
  • Eine in der Figur 1 schematisch dargestellte hydraulische Hubvorrichtung 10 umfaßt einen Vorratsbehälter 11 für Hydrauliköl, der über eine aus mehreren Abschnitten bestehenden Zuführleitung L1 und nachfolgende Verbindungsleitungen L4.1 und L4.2 mit zwei hydraulischen Hubzylindern 12 verbunden ist. Die im folgenden verwendeten Angaben "stromauf" und "stromab" beziehen sich auf eine Ölströmung vom Vorratsbehälter 11 zu den Hubzylindern 12, d.h. in Zuführrichtung für den Lasthebebetrieb.
  • Die Zuführleitung L1 ist aus mehreren Leitungsabschnitten aufgebaut. Ein erster Abschnitt L1.1 führt vom Vorratsbehälter 11 zu einer Hydropumpe P, die mittels eines Elektromotors M antreibbar ist, der in nicht dargestellter Weise über eine Motor-Steuereinheit Energie von einer Batterie bezieht. Von der Pumpe P kann eine (gestrichelt dargestellte) Leckageleitung L7 zurück in den Vorratsbehälter 11 führen. In dem ersten Abschnitt L1.1 der Zuführleitung L1, der den saugseitigen Abschnitt der Pumpe P darstellt, ist ein als Rückschlagventil ausgebildetes Nachsaugventil NSV angeordnet, das eine Ölströmung in Zuführrichtung, d.h. aus dem Vorratsbehälter 11 zu der Pumpe P zuläßt und eine Rückströmung verhindert.
  • Stromab der Pumpe P schließt sich ein zweiter Abschnitt L1.2 der Zuführleitung L1 an, der zu einem ersten Sitzventil SV1 führt, das zwischen einer Offenstellung, in der eine Strömung in beide Richtungen möglich ist, und einer Sperrstellung verstellbar ist, in der eine Ölströmung in Zuführrichtung, d.h. zu den Hubzylindern 12 unterbunden ist. Das erste Sitzventil SV1 ist mittels einer Feder in die Sperrstellung vorgespannt, die es bei einem eventuellen Stromausfall selbsttätig einnimmt.
  • Unmittelbar hinter dem ersten Sitzventil SV1 ist ein erstes Rückschlagventil RV1 angeordnet, das nur eine Ölströmung in Zuführrichtung, d.h. zu den Hubzylindern 12 zuläßt und eine Rückströmung verhindert.
  • Von dem zweiten Abschnitt L1.2 der Zuführleitung L1 zweigt zwischen der Pumpe P und dem ersten Sitzventil SV1 eine Druckleitung LDA4 ab, die zu einem vierten Druckaufnehmer DA4 führt, mittels dessen der im zweiten Abschnitt L1.2 der Zuführleitung L1 herrschende Druck erfaßt werden kann.
  • Von dem zweiten Abschnitt L1.2 der Zuführleitung L1 zweigt zwischen der Pumpe P und der Druckleitung LDA4 eine Zweigleitung L6 ab, in der ein proportionales Druckbegrenzungsventil PDBV angeordnet ist und die in dem Vorratsbehälter 11 mündet.
  • An das erste Sitzventil SV1 schließt sich ein dritter Abschnitt L1.3 der Zuführleitung L1 an, der sich an seinem stromab gelegenen Ende in die zwei Verbindungsleitungen L4.1 und L4.2 verzweigt, die jeweils zu einem der hydraulischen Hubzylinder 12 führen. Von der Verbindungsleitung L4.2 zweigt eine weitere Druckleitung LDA1 ab, die zu einem ersten Druckaufnehmer DA1 führt, mittels dessen der in der Verbindungsleitung L4.2 herrschende Druck und somit der Lastdruck erfaßt werden kann.
  • Im dritten Abschnitt L1.3 der Zuführleitung L1 zweigt eine Rückführleitung L2 ab, die ebenfalls aus mehreren Abschnitte L2.1, L2.2 und L2.3 besteht. Ein erster Abschnitt L2.1 der Rückführleitung L2 führt von dem dritten Abschnitt L1.3 der Zuführleitung L1 zu einem zweiten Sitzventil SV2, das zwischen einer Offenstellung, in der eine Strömung in beide Richtungen möglich ist, und einer Sperrstellung verstellbar ist, in der eine Ölströmung in beide Richtungen gesperrt ist. Das zweite Sitzventil SV2 ist mittels einer Feder in die Sperrstellung vorgespannt.
  • Ein zweiter Abschnitt L2.2 der Rückführleitung L2 verläuft von dem zweiten Sitzventil SV2 zu einem proportionalen Druckregelventil PDRV. Von dem zweiten Abschnitt L2.2 der Rückführleitung L2 zweigt stromauf des proportionalen Druckregelventils PDRV eine weitere Druckleitung LDA3 ab, die zu einem dritten Druckaufnehmer DA3 führt, mittels dessen der im zweiten Abschnitt L2.2 der Rückführleitung L2 herrschende Druck erfaßt werden kann. Von dem proportionalen Druckregelventil PDRV führt eine Überbrückungsleitung L5 zu dem zweiten Abschnitt L1.2 der Zuführleitung L1. Die Überbrückungsleitung L5 mündet in den zweiten Abschnitt L1.2 der Zuführleitung L1 zwischen der Druckleitung LDA4 und dem ersten Sitzventil SV1. Darüber hinaus führt ein dritter Abschnitt L2.3 der Rückführleitung L2 von den proportionalen Druckregelventil PDRV zu dem saugseitigen ersten Abschnitt L1.1 der Zuführleitung L1 und mündet in diese zwischen dem Nachsaugventil NSV und der Pumpe P. Nahe der Mündung des dritten Abschnittes L2.3 der Rückführleitung L2 in den ersten Abschnitt L1.1 der Zuführleitung L1 zweigt von dem dritten Abschnitt L2.3 der Rückführleitung L2 eine weitere Druckleitung LDA2 ab, die zu einem zweiten Druckaufnehmer DA2 führt, mittels dessen der in der Nähe des Eingangs der Pumpe P herrschende Druck erfaßt werden kann.
  • Parallel zu den ersten Abschnitten der Rückführleitung L2 verläuft eine Umgehungsleitung L3, die an ihrem einen Ende zusammen mit dem ersten Abschnitt L2.1 der Rückführleitung L2 in dem dritten Abschnitt L1.3 der Zuführleitung L1 und mit ihren anderen Ende in dem dritten Abschnitt L2.3 der Rückführleitung L2 mündet. In der Umgehungsleitung L3 ist ein drittes Sitzventil SV3 angeordnet, das zwischen einer Offenstellung, in der eine Strömung in beide Richtungen möglich ist, und einer Sperrstellung verstellbar ist, in der eine Ölströmung in Rückführrichtung, d.h. von dem dritten Abschnitt L1.3 der Zuführleitung L1 zu dem dritten Abschnitt L2.3 der Rückführleitung L2 unterbunden ist. Das dritte Sitzventil SV3 ist mittels einer Feder in die Sperrstellung vorgespannt. Unmittelbar hinter dem dritten Sitzventil SV3 ist ein zweites Rückschlagventil RV2 angeordnet, das eine Strömung in Rückführrichtung, d.h. von dem dritten Abschnitt L1.3 der Zuführleitung L1 zu dem dritten Abschnitt L2.3 der Rückführleitung L2 zuläßt und eine Strömung in Gegenrichtung verhindert.
  • Das Hydrauliköl kann aus den Hubzylindern 12 über einen in seiner Gesamtheit als Rückströmleitung bezeichneten Weg in den Vorratsbehälter 11 zurückströmen. Die Rückströmleitung umfaßt die Verbindungsleitungen L4.1 und L4.2, einen Teil des dritten Abschnitts L1.3 der Zuführleitung L1, die Rückführleitung L2, die Umgehungsleitung L3, Teile des ersten und des zweiten Abschnitts L1.1 und L1.2 der Zuführleitung L1 einschließlich des Durchströmens der Pumpe P sowie die Zweigleitung L6.
  • Im folgenden werden die unterschiedlichen Betriebsweisen der hydraulischen Hubvorrichtung 10 im einzelnen erläutert.
  • Im Lasthebebetrieb, d.h. zum Anheben der Hubzylinder 12, muß das Hydrauliköl aus dem Vorratsbehälter 11 durch die Zuführleitung L1 in die entsprechenden Kammern der Hubzylinder 12 gefördert werden. Ausgehend von einem Stillstand der Hubzylinder 12 werden das proportionale Druckbegrenzungsventil PDBV in der Zweigleitung L6 und das erste Sitzventil SV1 in der Zuführleitung L1 geöffnet, während das zweite Sitzventil SV2 und das dritte Sitzventil SV3 geschlossen sind. Der Elektromotor M wird mit der Pumpe P über eine einstellbare Rampenfunktion auf eine Mindestdrehzahl gebracht. Das von der Pumpe P aus dem Vorratsbehälter 11 durch das Nachsaugventil NSV und dem ersten Abschnitt L1.1 der Zuführleitung L1 angesaugte und über den weiterführenden zweiten Abschnitt L1.2 geförderte Hydrauliköl tritt in diesem Zustand, d.h. in der Regel für einige Sekundenbruchteile, aufgrund des vollständig geöffneten proportionalen Druckbegrenzungsventils PDBV vollständig in die Zweigleitung L6 ein und wird drucklos in den Vorratsbehälter 11 abgeleitet.
  • Gleich nach dem Start der Pumpe P werden das proportionale Druckbegrenzungsventil PDBV und das proportionale Druckregelventil PDRV geschlossen, wodurch der Druck in der Zuführleitung L1 ansteigt. Wenn mittels des Druckaufnehmers DA4 festgestellt wird, daß der Druck in der Zuführleitung L1 den Lastschwebedruck, der mittels des Druckaufnehmers DA1 festgestellt wird, erreicht hat, wird die Drehzahlregelung der Pumpe P freigegeben und das Öl wird durch die Zuführleitung L1 und die Verbindungsleitungen L4.1 und L4.2 zu den Hubzylindern 12 gefördert, so daß diese angehoben werden. Die auf diese Weise ermittelte Drehzahl, bei der die Drehzahlregelung freigegeben wird, wird jedes Mal gespeichert und als minimale Drehzahl Nmin beim Bremsen der Hubbewegung zugelassen.
  • Beim Bremsen der Hubbewegung werden die Schritte in umgekehrter Reihenfolge durchgeführt. Die Drehzahl der Pumpe P wird auf den konstanten, minimal zugelassenen Wert Nmin eingestellt, der die Bedingungen p(DA4) = p(DA1) sicherstellen muß, d.h. die Drehzahl muß mindestens so hoch sein, daß sie die Ölverluste abdecken und dabei den Schwebedruck noch erzeugen kann. Auf diese Weise wird sichergestellt, daß die Pumpe nicht in einem Drehzahlbereich betrieben wird, in dem die Schmierung der Pumpe nicht gesichert ist.
  • Falls im automatischen Betrieb der Hubvorrichtung die gewünschte Höhenposition verpaßt wurde oder falls ein Benutzer über eine Auswahltaste das sogenannte Schwebeverfahren (= langsame Verstellung) einleitet, wird die Pumpe P mit einer vorgegebenen Mindestdrehzahl Nv (>Nmin) weiterbetrieben, das Sitzventil SV2 der Rückführleitung L2 geöffnet und die Hub- bzw. Senkbewegung über das proportionale Druckregelventil PDRV bestimmt. Wird über die Bestromung dem proportionalen Druckregelventil PDRV der Befehl gegeben, einen größeren Druck als den Schwebedruck zu erzeugen, so wird die Last angehoben. Die Ölzufuhr von der Pumpe P zu den Hubzylindern 12 über die Überbrückungsleitung L5 und das proportionale Druckregelventil PDRV wird geöffnet und die Ableitung des Öls vom Hubzylinder 12 in den dritten Abschnitt L2.3 der Rückführleitung L2 und somit zur Saugseite der Pumpe P wird an dem proportionalen Druckregelventil PDRV geschlossen.
  • Wenn dem proportionalen Druckregelventil PDRV der Befehl gegeben wird, einen niedrigeren Druck als den Lastschwebedruck zu erzeugen, wird trotz des anhaltenden Laufs der Pumpe P die Last langsam abgesenkt. Die Ölzufuhr von der Pumpe P zu den Hubzylindern 12 über die Überbrückungsleitung L5 und das proportionale Druckregelventil PDRV wird an diesem geschlossen und die Ableitung des Öls von den Hubzylindern 12 über die Rückführleitung L2 zur Saugseite der Pumpe P wird an dem proportionalen Druckregelventil PDRV geöffnet. Die übrige Ölmenge wird von der Pumpe P über die Zweigleitung L6 und das proportionale Druckbegrenzungsventil PDBV zum Vorratsbehälter 11 geleitet.
  • Wenn der Druck an dem Druckaufnehmer DA3 und der Druck an dem Druckaufnehmer DA1 gleich ist, wird die Last auf Position gehalten. Da man beim Übergang vom Heben auf das Senken und auch umgekehrt den Zustand der Positionshaltung durchläuft, kann diese Bewegung auch mit einem Schwebeverfahren verglichen werden. Anzumerken ist, daß die Druckbegrenzungs- bzw. Druckregelventile an sich kein Volumen regeln können und die maximale Hub- bzw. Senkgeschwindigkeit der Hubzylinder 12 alleine durch die Pumpendrehzahl begrenzt ist.
  • Beim Lastsenkbetrieb, d.h. dem Absenken der Hubzylinder 12 muß das Hydrauliköl aus den Hubzylindern 12 in den Vorratsbehälter 11 zurückgefördert werden. Zu diesem Zweck werden das proportionale Druckbegrenzungsventil PDBV und das proportionale Druckregelventil PDRV leicht unter dem von dem Druckaufnehmer DA1 erfaßten Lastschwebedruck angeglichen, d.h. p(DA4) ≤ p(DA1) bzw. p(DA3) ≤ p(DA1). Alternativ ist es auch möglich, daß der am proportionalen Druckbegrenzungsventil PDBV eingestellte Druck leicht oberhalb des Lastschwebedrucks liegt. Der Elektromotor M wird auf Null-Drehzahl geregelt gehalten und das Sitzventil SV2 wird geöffnet. Anschließend wird über eine einstellbare Rampe die Bestromung des proportionalen Druckregelventils PDRV reduziert. Dadurch findet in der Rücklaufleitung L2 und auch auf der Eingangsseite der Pumpe P ein Druckanstieg statt, der durch den Druckaufnehmer DA2 erfaßt wird. Durch die Pumpe P hindurch findet ein Druckausgleich soweit statt, daß auch in der Zweigleitung L6 vor dem proportionalen Druckbegrenzungsventil PDBV der voreingestellte Druck herrscht. Sobald der Druckaufnehmer DA2 den vorprogrammierten Wert des Druckanstiegs festgestellt hat, wird die Drehzahlregelung der Pumpe freigeschaltet und das Sitzventil SV3 geöffnet. Da das Öl nur über das auf den Lastschwebedruck voreingestellte proportionale Druckbegrenzungsventil PDBV zum Vorratsbehälter 11 abfließen kann, herrscht an beiden Pumpenanschlüssen in etwa der gleiche Druck. Die Pumpe wird somit wie eine feine Dosiereinrichtung wirken, wobei die innere Leckage Null ist und kleine Senkgeschwindigkeiten der Hubzylinder nunmehr über eine relativ geringe Drehzahl geregelt werden können, da die Gefahr von Kavitationsverschleiß ausgeschlossen ist.
  • Sobald die Pumpe die vorgegebene Mindestdrehzahl erreicht hat, wird der Druck an dem proportionalen Druckbegrenzungsventil PDBV über eine einstellbare Rampenfunktion bis auf sein Minimum reduziert und der Elektromotor M fängt an im Generator-Betrieb zu arbeiten, in dem er durch die Pumpe angetrieben wird.
  • Das Bremsen bzw. das Stoppen der Absenkbewegung findet in entsprechend umgekehrter Reihenfolge statt.
  • Statt einer Druckregelung über das Druckregelventil PDRV kann für das Schwebeverfahren auch eine Geschwindigkeitsregelung mit Hilfe eines Feinproportionalstromreglers für kleine Ölmengen und große Auflösung in Differenzdurchflußverfahren eingesetzt werden. Der Feinproportionalstromregler kann mit seinem einen Anschluß zwischen dem zweiten Sitzventil SV2 und dem proportionalen Druckregelventil PDRV in dem zweiten Abschnitt L2.2 der Rückführleitung L2 münden und mit dem anderen Anschluß an den hinter dem zweiten Rückschlagventil RV2 liegenden und somit der Pumpe P zugewandten Abschnitt der Umgehungsleitung L3 angeschlossen sein. Das Heben, Senken bzw. Schweben der Last kann über die Differenz zwischen der Pumpenfördermenge QP und der Abflußmenge QPSR über den Feinproportionalstromregler bestimmt werden. Wenn die Pumpenfördermenge QP größer als die Abflußmenge QPSR des Feinproportionalstromreglers ist, wird die Last angehoben. Wenn die Pumpenfördermenge QP kleiner als die Abflußmenge QPSR des Feinproportionalstromreglers ist, wird die Last langsam abgesenkt. Wenn die beiden Mengen QP und QPSR gleich sind, wird die Last auf Position gehalten. Die Ölmenge läßt sich entweder über den Feinproportionalstromregler regeln oder über die Pumpendrehzahl entsprechend variieren.
  • Figur 2 zeigt eine Abwandlung der hydraulischen Anordnung gemäß Figur 1 und unterscheidet sich von dieser in folgenden Punkten:
    • Die Überbrückungsleitung L5 ist entfallen,
    • statt des proportionalen Druckregelventils PDRV, das ebenfalls entfallen ist, ist eine Düse D1 in dem zweiten Abschnitt L2.2 der Rückführleitung L2 angeordnet. Von dem zweiten Abschnitt L2.2. der Rückführleitung L2 zweigt weiterhin stromauf der Düse D1 die Druckleitung LDA3 ab, die zum dem dritten Druckaufnehmer DA3 führt.
    • Von der zu dem dritten Druckaufnehmer DA3 führenden Druckleitung LDA3 zweigt eine Verbindungsleitung L8 ab, die stromab des proportionalen Druckbegrenzungsventils PDBV in die Zweileitung L6 mündet, die zum Vorratsbehälter 11 führt.
    • In der Verbindungsleitung L8 ist ein Volumenstromregler SR1 angeordnet.
  • Im Lastsenkbetrieb erlaubt die Düse D1 den Druckaufbau in der Rücklaufleitung L2 beim Start der normalen Senkbewegung. Das Sitzventil SV2 wird bestromt und geöffnet, so daß in der Rücklaufleitung L2 und auch auf der Eingangsseite der Pumpe P ein Druckanstieg stattfindet. Sobald der zweite Druckaufnehmer DA2 den vorgegebenen Wert des Druckanstieges feststellt, wird das Sitzventil SV3 geöffnet und die Drehzahlregelung der Pumpe freigegeben. Der weitere Ablauf des Senkbetriebes entspricht dem der Ausführung gemäß Figur 1.
  • Wenn beim Heben die gewünschte Soll-Position der Hubzylinder 12 überfahren wurde, wird die Soll-Position im sogenannten Schwebezustand angefahren. Dabei wird die Pumpe P auf der minimalen Drehzahl, die die Leckage abdeckt, in Betrieb gehalten, wobei in dem Leitungsabschnitt L1.2 stromab der Pumpe P ein Druck vorhanden sein muß, was durch den vierten Druckaufnehmer DA4 festgestellt wird. Das erste Sitzventil SV1 und das zweite Sitzventil SV2 bleiben bestromt offen. Der Volumenstromregler SR1 wird geöffnet, so daß Hydraulikflüssigkeit über den ersten Abschnitt L2.1 und den zweiten Abschnitt L2.2 der Rückführleitung L2 sowie die Druckleitung LDA3, die Verbindungsleitung L8 und die Zweigleitung L6 in den Vorratsbehälter 11 zurückströmen kann. Der Volumenstromregler SR1 wird soweit geöffnet, bis die gewünschte Senkgeschwindigkeit erreicht ist. Sollte beim Senken die Soll-Position wiederum verpaßt werden, wird die Drehzahl der Pumpe P erhöht, um das Heben einzuleiten. Die Differenz dQ zwischen der von der Pumpe P geförderten Hydraulikölmenge und der von dem Volumenstromregler SR1 abgelassenen Hydraulikölmenge bestimmt die Bewegungsrichtung der Hubzylinder 12. Wenn die Differenzmenge dQ positiv ist (dQ > 0), d.h. die Pumpe P mehr Hydrauliköl fördert als über den Volumenstromregler SR1 abgelassen wird, werden die Hubzylinder 12 angehoben. Entsprechend werden die Hubzylinder 12 abgesenkt, wenn die Differenzmenge negativ ist, d.h. die Pumpe P weniger Hydrauliköl fördert, als durch den Volumenstromregler SR1 abgelassen wird.
  • Wenn die von der Pumpe P gefördert Hydraulikölmenge exakt der Hydraulikölmenge entspricht, die durch den Volumenstromregler SR1 abgelassen wird, wird die Position der Hubzylinder gehalten. Die einzelnen Hydraulikölmengen und entsprechend die genannte Differenz zwischen der geförderten und der abgelassenen Hydraulikölmenge kann über eine Änderung der Drehzahl der Pumpe und/oder über die Bestromung und somit den Grad der Öffnung des Volumenstromreglers SR1 beeinflußt werden.
  • Wenn beim Senken die Soll-Position der Hubzylinder 12 überfahren wurde, wird das dritte Sitzventil SV3 geschlossen und der Druck an dem proportionalen Druckbegrenzungsventil PDBV über den herrschenden Lastdruck, der mittels des ersten Druckaufnehmers DA1 erfaßt wird, eingestellt. Anschließend werden das erste Sitzventil SV1 und das zweite Sitzventil SV2 geöffnet und die Drehzahl der Pumpe P soweit erhöht, bis die gewünschte Hubgeschwindigkeit der Hubzylinder 12 erreicht ist. Von da ab kann das Schwebeverfahren in oben genannter Weise weiter fortgeführt werden.

Claims (6)

  1. Verfahren zur Steuerung einer hydraulischen Hubvorrichtung insbesondere für batteriegetriebene Flurförderzeuge, die eine von einem Elektromotor (M) antreibbare Pumpe (P) aufweist, mittels der im Lasthebebetrieb zumindest einem hydraulischen Hubzylinder (12) Hydrauliköl aus einem Vorratsbehälter (11) über eine Zuführleitung (L1) zugeführt wird, wobei das Hydrauliköl im Lastsenkbetrieb von dem Hubzylinder (12) über eine Rückströmleitung (L2,L3,L1.2,L6) unter Durchströmen der den als Generator arbeitenden Elektromotor (M) antreibenden Pumpe (P) in den Vorratsbehälter (11) zurückgeführt wird, dadurch gekennzeichnet, daß zu Beginn des Lastsenkbetriebs sowohl im stromauf der Pumpe (P) gelegenen Abschnitt (L2.3) der Rückströmleitung als auch im stromab der Pumpe (P) gelegenen Abschnitt (L1.2) der Rückströmleitung im wesentlichen der im Hubzylinder (12) herrschende hydraulische Druck aufgebaut wird, wobei die Pumpe mit einer IST-Drehzahl betrieben wird, die unterhalb eines Drehzahl-Grenzwertes liegt, und daß ein in der Rückströmleitung stromab der Pumpe (P) angeordnetes proportionales Druckbegrenzungsventil (PDBV) über eine Rampenfunktion erst dann im wesentlichen vollständig geöffnet wird, wenn die IST-Drehzahl der Pumpe oberhalb des Drehzahl-Grenzwertes liegt, wobei der Elektromotor (M) dann als Generator arbeitet.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Druck in der Rückströmleitung zu Beginn des Lastsenkbetriebes mittels eines proportionalen Druckregelventils (PDRV), das stromauf der Pumpe (P) angeordnet ist, über eine Rampenfunktion auf dem im Hubzylinder (12) herrschenden hydraulischen Druck gebracht wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Pumpe (P) zu Beginn des Lasthebebetriebes das Hydrauliköl solange über eine Zweigleitung (L6) drucklos in den Vorratsbehälter (11) zurückleitet, wie die IST-Drehzahl der Pumpe unterhalb des Drehzahl-Grenzwertes liegt, und daß die Zweigleitung (L6) mittels eines Ventils (PDBV) geschlossen wird, sobald die IST-Drehzahl der Pumpe (P) oberhalb des Drehzahl-Grenzwertes liegt.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Drehzahl-Grenzwert der Mindestdrehzahl der Pumpe (P) entspricht.
  5. Hydraulische Hubvorrichtung insbesondere zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 4, mit einer von einem Elektromotor (M) antreibbaren Pumpe (P) mittels der im Lasthebebetrieb zumindest einem hydraulischen Hubzylinder (12) Hydrauliköl aus einem Vorratsbehälter (11) über eine Zuführleitung (L1) zuführbar ist, wobei das Hydrauliköl im Lastsenkbetrieb von dem Hubzylinder (12) über eine Rückströmleitung (L2,L3,L1.2,L6) unter Durchströmen der den als Generator arbeitenden Elektromotor (M) antreibenden Pumpe (P) in den Vorratsbehälter (11) zurückführbar ist, dadurch gekennzeichnet, daß ein erster Druckaufnehmer (DA1) vorgesehen ist, der den im Hubzylinder (12) herrschenden hydraulischen Druck erfaßt, daß in der Rückströmleitung stromauf der Pumpe (P) ein proportionales Druckregelventil (PDRV) angeordnet ist, daß ein zweiter Druckaufnehmer (DA2) vorgesehen ist, der den eingangsseitigen Druck der Pumpe (P) erfaßt, daß eine Steuervorrichtung vorgesehen ist, mittels der der eingangsseitige Druck der Pumpe durch Ansteuerung des Druckregelventils (PDRV) in Abhängigkeit von den von den Druckaufnehmern (DA1,DA2) gemessenen Druckwerten an den im Hubzylinder (12) herrschenden hydraulischen Druck angleichbar ist, und daß stromab der Pumpe (P) in der Rückströmleitung ein proportionales Druckbegrenzungsventil (PDBV) angeordnet ist.
  6. Hydraulische Hubvorrichtung insbesondere zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 4, mit einer von einem Elektromotor (M) antreibbaren Pumpe (P) mittels der im Lasthebebetrieb zumindest einem hydraulischen Hubzylinder (12) Hydrauliköl aus einem vorratsbehälter (11) über eine Zuführleitung (L1) zuführbar ist, wobei das Hydrauliköl im Lastsenkbetrieb von dem Hubzylinder (12) über eine Rückströmleitung (L2,L3,L1.2,L6) unter Durchströmen der den als Generator arbeitenden Elektromotor (M) antreibenden Pumpe (P) in den Vorratsbehälter (11) zurückführbar ist, dadurch gekennzeichnet, daß ein erster Druckaufnehmer (DA1) vorgesehen ist, der den im Hubzylinder (12) herrschenden hydraulischen Druck erfaßt, daß ein zweiter Druckaufnehmer (DA2) vorgesehen ist, der den eingangsseitigen Druck der Pumpe (P) erfaßt, daß in der Rückströmleitung stromauf der Pumpe (P) eine Düse (D1) angeordnet ist, mittels der der eingangsseitige Druck der Pumpe an den im Hubzylinder (12) herrschenden hydraulischen Druck angleichbar ist, und daß stromab der Pumpe (P) in der Rückströmleitung ein proportionales Druckbegrenzungsventil (PDBV) angeordnet ist.
EP20020024330 2001-11-06 2002-11-02 Hydraulische Hubvorrichtung insbesondere für batteriegetriebene Flurförderzeuge und Verfahren zu deren Steuerung Expired - Fee Related EP1308415B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10154449 2001-11-06
DE2001154449 DE10154449A1 (de) 2001-11-06 2001-11-06 Hydraulische Hubvorrichtung insbesondere für batteriegetriebene Flurförderzeuge und Verfahren zu deren Steuerung

Publications (3)

Publication Number Publication Date
EP1308415A2 EP1308415A2 (de) 2003-05-07
EP1308415A3 EP1308415A3 (de) 2005-05-25
EP1308415B1 true EP1308415B1 (de) 2007-02-07

Family

ID=7704772

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20020024330 Expired - Fee Related EP1308415B1 (de) 2001-11-06 2002-11-02 Hydraulische Hubvorrichtung insbesondere für batteriegetriebene Flurförderzeuge und Verfahren zu deren Steuerung

Country Status (2)

Country Link
EP (1) EP1308415B1 (de)
DE (2) DE10154449A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE525159C2 (sv) * 2002-06-05 2004-12-14 Bt Ind Ab Förfarande för att styra sänkningsrörelsen för en trucks luftcylinder
DE102009053618A1 (de) * 2009-11-17 2011-05-19 Robert Bosch Gmbh Hydraulikantrieb mit Energierückgewinnung
US8196464B2 (en) * 2010-01-05 2012-06-12 The Raymond Corporation Apparatus and method for monitoring a hydraulic pump on a material handling vehicle
KR20110127773A (ko) 2010-05-20 2011-11-28 두산산업차량 주식회사 전동지게차의 에너지 회수 시스템
CN102108948B (zh) * 2010-12-28 2012-11-28 山河智能装备股份有限公司 一种适用于装卸搬运电动车的能量再生发电***
DE102012005432A1 (de) * 2012-03-17 2013-09-19 Jungheinrich Aktiengesellschaft Flurförderzeug mit mindestens einem Hubzylinder
JP6577336B2 (ja) * 2015-11-05 2019-09-18 株式会社豊田自動織機 産業車両
CN107601390A (zh) * 2017-09-22 2018-01-19 太仓市高泰机械有限公司 一种带有自锁功能的液压车的工作方法
CN107352473A (zh) * 2017-09-22 2017-11-17 太仓市高泰机械有限公司 一种自调型液压车的工作方法
CN107458999A (zh) * 2017-09-22 2017-12-12 太仓市高泰机械有限公司 一种带有阻尼减震装置的自调型液压车
CN107601391A (zh) * 2017-09-22 2018-01-19 太仓市高泰机械有限公司 一种液压车的自动感应及自锁方法
CN112209305A (zh) * 2020-10-30 2021-01-12 合力工业车辆(上海)有限公司 一种仓储叉车液压***
CN215058526U (zh) * 2021-03-19 2021-12-07 湖南星邦智能装备股份有限公司 双作用浮动油缸控制回路

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4416173C2 (de) * 1994-05-06 1996-05-30 Jungheinrich Ag Hydraulische Hubvorrichtung für batteriebetriebene Flurförderzeuge oder dergleichen
DE19744429A1 (de) * 1997-10-08 1999-04-22 Still Wagner Gmbh & Co Kg Flurförderfahrzeug mit einer Lastaufnahmevorrichtung und Verfahren zum Absenken der Lastaufnahmevorrichtung
DE19921629B4 (de) * 1999-05-10 2005-05-25 Dambach Lagersysteme Gmbh Hydraulische Hubvorrichtung
DE10048215A1 (de) * 2000-09-28 2002-04-11 Still Wagner Gmbh & Co Kg Hydraulische Hubvorrichtung

Also Published As

Publication number Publication date
EP1308415A3 (de) 2005-05-25
DE10154449A1 (de) 2003-05-15
DE50209428D1 (de) 2007-03-22
EP1308415A2 (de) 2003-05-07

Similar Documents

Publication Publication Date Title
DE112013000992B4 (de) Baumaschine
EP1308415B1 (de) Hydraulische Hubvorrichtung insbesondere für batteriegetriebene Flurförderzeuge und Verfahren zu deren Steuerung
DE3018156C2 (de)
DE112012003474B4 (de) Hydraulisches Antriebssystem
EP3601805B1 (de) Vorrichtung zum regeln einer hydraulischen maschine
EP2846994A1 (de) Verfahren zum betreiben einer hydraulischen presse und eine hydraulische presse
DE112012005015T5 (de) Hydraulisches Antriebssystem
EP1208057B1 (de) Hydraulischer aufzug mit einem als gegengewicht wirkenden druckspeicher und verfahren zum steuern und regeln eines solchen aufzugs
DE102008034301B4 (de) Hydraulisches System mit einem verstellbaren Schnellsenkventil
EP2667038A2 (de) Hydraulische Schaltungsanordnung
EP0305761A2 (de) Sekundärgeregeltes hydrostatisches Getriebe mit offenem Kreislauf
EP3601806B1 (de) Vorrichtung zum regeln einer hydraulischen maschine
EP2161458A2 (de) Anordnung zur Versorgung eines Hydrauliksystems mit Hydraulikflüssigkeit
DE3247289A1 (de) Einrichtung zum speichern hydraulischer energie
DE102012006551B4 (de) Hydraulische Schaltungsanordnung
DE2532768C3 (de) Hydraulische Servomotoranlage
DE2509228C3 (de) Elektro-hydraulischer Antrieb für Hebezeuge
EP1052215A2 (de) Hydraulische Hubvorrichtung
DE102014105127A1 (de) Hydraulisches Antriebssystem einer mobilen Arbeitsmaschine
LU87045A1 (de) Hydraulischer steuerblock
DE4243578A1 (de) Nutzfahrzeughydraulik
EP3536656B1 (de) Verfahren zum entleeren eines hydraulikflüssigkeitstanks eines flurförderzeugs sowie ein flurförderzeug
DE3236957C2 (de)
DE3812312A1 (de) Hydraulischer antrieb fuer einen gurtbandfoerderer
EP1239167B1 (de) Hydraulische Hubvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIC1 Information provided on ipc code assigned before grant

Ipc: 7F 15B 21/14 B

Ipc: 7B 66F 9/22 A

17P Request for examination filed

Effective date: 20050727

AKX Designation fees paid

Designated state(s): DE IT NL SE

RBV Designated contracting states (corrected)

Designated state(s): DE GB IT NL SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT NL SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50209428

Country of ref document: DE

Date of ref document: 20070322

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071108

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20131128

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50209428

Country of ref document: DE

Owner name: BT PRODUCTS AB, SE

Free format text: FORMER OWNER: DAMBACH LAGERSYSTEME GMBH & CO. KG, 76571 GAGGENAU, DE

Effective date: 20140227

Ref country code: DE

Ref legal event code: R082

Ref document number: 50209428

Country of ref document: DE

Representative=s name: LICHTI PATENTANWAELTE, DE

Effective date: 20140227

Ref country code: DE

Ref legal event code: R082

Ref document number: 50209428

Country of ref document: DE

Representative=s name: LICHTI - PATENTANWAELTE PARTNERSCHAFT MBB, DE

Effective date: 20140227

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20141113 AND 20141119

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20150601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20161102

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20161122

Year of fee payment: 15

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20181122

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200130

Year of fee payment: 18

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191103

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50209428

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210601