EP1304476A2 - Hochdruckfester Injektorkörper - Google Patents

Hochdruckfester Injektorkörper Download PDF

Info

Publication number
EP1304476A2
EP1304476A2 EP02015756A EP02015756A EP1304476A2 EP 1304476 A2 EP1304476 A2 EP 1304476A2 EP 02015756 A EP02015756 A EP 02015756A EP 02015756 A EP02015756 A EP 02015756A EP 1304476 A2 EP1304476 A2 EP 1304476A2
Authority
EP
European Patent Office
Prior art keywords
valve chamber
injector body
inlet opening
bulges
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02015756A
Other languages
English (en)
French (fr)
Other versions
EP1304476B1 (de
EP1304476A3 (de
Inventor
Martin Grieb
Stefan Haug
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1304476A2 publication Critical patent/EP1304476A2/de
Publication of EP1304476A3 publication Critical patent/EP1304476A3/de
Application granted granted Critical
Publication of EP1304476B1 publication Critical patent/EP1304476B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/168Assembling; Disassembling; Manufacturing; Adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/008Arrangement of fuel passages inside of injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/03Fuel-injection apparatus having means for reducing or avoiding stress, e.g. the stress caused by mechanical force, by fluid pressure or by temperature variations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure

Definitions

  • the invention relates to an injector body for a Fuel injection system, wherein the injector body one essentially cylindrical valve chamber has in the via an inlet bore in a Inlet opening in the valve compartment opens, fuel under High pressure can be introduced.
  • Such injector bodies for fuel injection systems have a substantially cylindrical shape Valve chamber, in the wall of which an inlet opening Inlet bore comes to rest.
  • the inlet bore is in place for its part in connection with a pressure connection at which the supply line for fuel under high pressure flows out of a high-pressure collecting space.
  • the High pressure resistance of the injector body depends on the The geometry of the inlet area is crucial.
  • the Intersection of the inlet bore with the valve chamber is the most stressed part.
  • One of the parameters is here the inlet angle of the inlet bore from High pressure manifold (common rail) in the injector body. Is this angle between the central axis of the Inlet bore and longitudinal axis of the valve chamber about 90 °, the stresses in the intersection area can be low being held.
  • the installation conditions on the cylinder head However, an internal combustion engine does not always allow Entry angle of 90 °.
  • the Valve space at least in the area of the inlet opening of the Inlet bore to the valve chamber in the circumferential direction adjacent to this inlet opening, a bulge of the Cross section on. So it comes from both sides of the Inlet opening in the valve chamber for an increase in volume.
  • Is the entry angle (angle between the central axis the inlet bore and the longitudinal axis of the valve chamber) 90 ° are the bulges proposed according to the invention of the valve chamber cross section advantageously in one Plane perpendicular to the longitudinal axis of the valve space.
  • the longitudinal direction of the valve chamber extends Bulge at least over the area of the inlet opening.
  • the plane in which the bulges lie in orientate in the same way as the inlet bore so that the center line of the inlet bore through this plane runs.
  • the bulges in the Cross section perpendicular to the longitudinal axis of the valve chamber to install.
  • valve chambers are cylindrical in shape accordingly have a circular cross section (perpendicular to the longitudinal axis of the valve chamber).
  • the Bulges according to the invention run in the area of Inlet opening of the inlet hole in each case in the circumferential direction of the valve chamber adjacent to the inlet opening, so that the Bulges to deviate from the circular Cross section. It has been shown that a large Strength increases when there is a bulge extends at least to a level defined by the Inlet opening and parallel to the longitudinal axis of the valve chamber runs. Again, it is particularly advantageous if the bulges are arranged symmetrically to the inlet opening are. Extend the bulges over the above Level out, so that arise under internal pressure Bending compressive stresses in the area of the inlet opening Even better compensate for notch tension stresses that occur.
  • the invention proposed bulges up to the above Plane parallel to the longitudinal axis of the valve space and extends through the inlet opening, is it is advantageous if the valve chamber cross-section is even is continued up to the named level, the Diameter then the maximum diameter of the valve space can correspond. With such a configuration showed that a further increase in strength can be achieved if the inlet bore is eccentric in with respect to the valve chamber.
  • FIG. 1 The essential structure of an injector body 1 is shown in FIG. 1 in a section through the longitudinal axis of the injector body 1.
  • the injector body 1 essentially comprises one cylindrical valve chamber 3, in the wall of which one Inlet opening 7 for the supply of high pressure standing fuel. This inlet opening 7 forms the mouth of the inlet bore 2 in the valve chamber 3. Die Inlet bore 2 leads to the pressure connection 5 to which the High pressure manifold (common rail) connects.
  • the injector body in turn has an internal thread 4 Connection to the injection system.
  • the entry angle i.e. the angle between Longitudinal axis of the valve chamber 3 and central axis of the Inlet bore 2, in the illustration according to FIG. 1 Although less than 90 °, it is still in the area above 75 °, i.e. in an area in which one tension-reducing effect through the entry angle given is.
  • FIG. 2A is a highly schematized one according to the invention Injector body 1 in the same way as from Fig. 1 shown. The same elements are the same Provide reference numerals.
  • the inlet hole 2 leads here in the right angle to the valve chamber 3 of the injector body 1.
  • FIG. 2A are those in the plane Bulges 8 of the perpendicular to the plane of the drawing Valve chamber cross section hardly due to the type of representation recognizable.
  • FIG. 2B shows Section along the line A-A of Fig. 2A in a clear manner the bulges 8 according to the invention on both sides of the Inlet opening 7 of the inlet hole 2.
  • the bulges 8 of the valve chamber cross section are in this example symmetrical to the inlet opening 7 and are wide led back towards the inlet hole.
  • the bulges 8 change the Cross section of the valve chamber 3 at least in the area of Inlet opening 7 such that the original circular cross section only in the inlet opening 7 opposite half of the valve chamber 3 maintained while in the other half with the valve compartment maximum diameter up to a plane 9 that is parallel to the longitudinal axis 10 of the valve chamber 3 and through the Inlet opening 7 runs, is continued and above in addition two symmetrical to the center line of the inlet bore 2 and has indentations lying behind level 9.
  • the bulges 8 shown lead to a Deformation of the valve chamber 3 under internal pressure with a Training of bending pressure and circumferential tensile stresses in Area of the bulges 8, the notch tension in the Reduce intersection area 6. So overall it comes for a partial compensation of the occurring Voltages so that the maximum voltage in Intersection area 6 is reduced.
  • FIG. 2C shows a section along the line B-B from FIG. 2 B. This results in the course of the bulges 8 in Longitudinal direction of the valve chamber 3.
  • the bulges 8 focus on the area of the inlet opening 7 and take on both sides in the longitudinal direction of the valve chamber 3 off again, so that the valve chamber 3 there its original takes cylindrical shape again.
  • FIG. 3 Another embodiment of the invention is shown in FIG. 3 shown schematically.
  • the eccentric The arrangement of the inlet bore 2 has this Embodiment as a further strength-increasing Measure proven.
  • the invention can be different Geometries of valve chamber cross sections in the area of Inlet opening to be specified, leading to a reduction the stresses occurring in the intersection area and thus to an increase in the high pressure resistance of the Guide injector body. Especially at High-pressure fuel injectors can be used with it Achieve success.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Die Erfindung betrifft einen Injektorkörper für ein Kraftstoffeinspritzsystem, wobei der Injektorkörper (1) einen im wesentlichen zylindrisch geformten Ventilraum (3) aufweist, in den über eine Zulaufbohrung (2), die in einer Zulauföffnung (7) im Ventilraum (3) mündet, Kraftstoff unter Hochdruck einleitbar ist. Zur Kompensation der hohen lokalen Kerbzugspannungen in Umfangsrichtung des Ventilraumes (3) wird vorgeschlagen, zumindest im Bereich der Zulauföffnung (7) den Ventilraum (3) jeweils in Umfangsrichtung benachbart zur Zulauföffnung (7) mit Ausbuchtungen (8) zu versehen. Diese Ausbuchtungen (8) führen zu einer starken Kompensation der Kerbzugspannungen und damit zu einer Erhöhung der Hochdruckfestigkeit. <IMAGE> <IMAGE>

Description

Die Erfindung betrifft einen Injektorkörper für ein Kraftstoffeinspritzsystem, wobei der Injektorkörper einen im wesentlichen zylindrisch ausgestalteten Ventilraum aufweist, in den über eine Zulaufbohrung, die in einer Zulauföffnung im Ventilraum mündet, Kraftstoff unter Hochdruck einleitbar ist.
Stand der Technik
Derartige Injektorkörper für Kraftstoffeinspritzsysteme besitzen einen im wesentlichen zylindrisch ausgeformten Ventilraum, in dessen Wandung die Zulauföffnung einer Zulaufbohrung zu liegen kommt. Die Zulaufbohrung steht ihrerseits mit einem Druckanschluß in Verbindung, an dem die Zuleitung für unter hohem Druck stehenden Kraftstoff aus einem Hochdrucksammelraum mündet. Die Hochdruckfestigkeit des Injektorkörpers hängt von der Geometrie des Zulaufbereichs entscheidend ab. Die Verschneidung der Zulaufbohrung mit dem Ventilraum stellt die höchstbelastete Stelle dar. Einer der Parameter ist hier der Einlaufwinkel der Zulaufbohrung vom Hochdrucksammelraum (Common Rail) in den Injektorkörper. Beträgt dieser Winkel zwischen Mittelachse der Zulaufbohrung und Längsachse des Ventilraums etwa 90°, können die Beanspruchungen im Verschneidungsbereich gering gehalten werden. Die Einbauverhältnisse am Zylinderkopf einer Verbrennungskraftmaschine erlaubt jedoch nicht immer Einlaufwinkel von 90°.
Die Hauptbeanspruchung der Verschneidungsstelle wird durch den anliegenden Innendruck hervorgerufen. Unter diesem Innendruck führt die Kerbwirkung der Zulaufbohrung im Verschneidungsbereich der Bohrungen zu hohen lokalen Kerbzugspannungen in Umfangsrichtung des Ventilraumes. Auch bei optimalem Einlaufwinkel sind die genannten Zugspannungen der begrenzende Faktor für die Hochdruckfestigkeit des Injektorkörpers.
Es stellt sich folglich das Problem, die Kerbzugspannungen in Umfangsrichtung des Ventilraumes bei einem gattungsgemäßen Injektorkörper herabzusetzen, um diesen für höhere Druckbelastungen auslegen zu können.
Vorteile der Erfindung
Bei der erfindungsgemäß vorgeschlagenen Lösung weist der Ventilraum zumindest im Bereich der Zulauföffnung der Zulaufbohrung zum Ventilraum jeweils in Umfangsrichtung benachbart zu dieser Zulauföffnung eine Ausbuchtung des Querschnitts auf. Somit kommt es beiderseits der Zulauföffnung im Ventilraum zu einer Volumenvergrößerung. Hierdurch verformt sich der Ventilraum im Verschneidungsbereich der Bohrungen unter Innendruck derart, daß es durch die stärkere Krümmung im Bereich der Hochdruckverschneidung zu einer Überlagerung von Biegedruck- und Umfangszugspannungen kommt, welche wiederum die Kerbzugspannungen im Verschneidungsbereich der beiden Bohrungen (Zulaufbohrung und Ventilraumbohrung) verringert.
Vorteilhaft sind hierbei zu beiden Seiten der Zulauföffnung symmetrisch geformte Ausbuchtungen. Durch diese Symmetrie können sich auftretende Spannungen optimal kompensieren.
Beträgt der Einlaufwinkel (Winkel zwischen der Mittelachse der Zulaufbohrung und der Längsachse des Ventilraums) 90°, liegen die erfindungsgemäß vorgeschlagenen Ausbuchtungen des Ventilraumquerschnitts vorteilhafterweise in einer Ebene senkrecht zur Längsachse des Ventilraums. In Längsrichtung des Ventilraums erstreckt sich die Ausbuchtung zumindest über den Bereich der Zulauföffnung. Bei anderen Einlaufwinkeln als 90°, kann es vorteilhaft sein, die Ebene, in der die Ausbuchtungen liegen, in gleicher Weise wie die Zulaufbohrung zu orientieren, so daß die Mittellinie der Zulaufbohrung durch diese Ebene verläuft. Meist ist es jedoch ausreichend und herstellungstechnisch einfacher, die Ausbuchtungen im Querschnitt senkrecht zur Längsachse des Ventilraums anzubringen.
Die in den meisten Fällen zylindrisch geformten Ventilräume besitzen demgemäß einen kreisförmigen Querschnitt (senkrecht zur Längsachse des Ventilraums). Die erfindungsgemäßen Ausbuchtungen verlaufen im Bereich der Zulauföffnung der Zulaufbohrung jeweils in Umfangsrichtung des Ventilraums benachbart zur Zulauföffnung, so daß die Ausbuchtungen zu einem Abweichen vom kreisförmigen Querschnitt führen. Es hat sich gezeigt, daß eine große Festigkeitssteigerung eintritt, wenn eine Ausbuchtung sich mindestens bis zu einer Ebene erstreckt, die durch die Zulauföffnung sowie parallel zur Längsachse des Ventilraums verläuft. Hierbei ist es wieder besonders vorteilhaft, wenn die Ausbuchtungen symmetrisch zur Zulauföffnung angeordnet sind. Erstrecken sich die Ausbuchtungen über die genannte Ebene hinaus, so können die unter Innendruck entstehenden Biegedruckspannungen im Bereich der Zulauföffnung die auftretenden Kerbzugspannungen noch besser kompensieren.
In einer Ausgestaltung, bei der die erfindungsgemäß vorgeschlagenen Ausbuchtungen sich bis zu der obengenannten Ebene, die parallel zur Längsachse des Ventilraums und durch die Zulauföffnung hindurch verläuft, erstrecken, ist es vorteilhaft, wenn der Ventilraumquerschnitt gleichmäßig bis zu der genannten Ebene fortgeführt wird, wobei der Durchmesser dann dem maximalen Durchmesser des Ventilraums entsprechen kann. Bei einer derartigen Ausgestaltung hat sich gezeigt, daß eine weitere Festigkeitssteigerung erzielt werden kann, wenn die Zulaufbohrung exzentrisch in bezug auf den Ventilraum verläuft.
Zeichnung
Im folgenden sollen Ausführungsbeispiele die Erfindung anhand der beigefügten Figuren näher erläutern.
Es zeigen
Fig. 1
den Schnitt durch die Längsachse eines Injektorkörpers für ein Kraftstoff-Hochdruckeinspritzsystem,
Fig. 2 A
einen erfindungsgemäßen Injektorkörper in stark schematisierter Form im Längsschnitt,
Fig. 2 B
den Schnitt durch die Linie A-A aus Fig. 2 A,
Fig. 2 C
den Schnitt durch die Linie B-B aus Fig. 2 B und
Fig. 3
eine weitere Ausführungsform des erfindungsgemäßen Injektorkörpers in der gleichen Darstellung wie Fig. 3.
Bevorzugte Ausführungsbeispiele
Den wesentlichen Aufbau eines Injektorkörpers 1 zeigt Fig. 1 in einem Schnitt durch die Längsachse des Injektorkörpers 1.
Der Injektorkörper 1 umfaßt einen im wesentlichen zylindrischen Ventilraum 3, in dessen Wandung sich eine Zulauföffnung 7 für die Zuleitung von unter hohem Druck stehenden Kraftstoff befindet. Diese Zulauföffnung 7 bildet die Mündung der Zulaufbohrung 2 in den Ventilraum 3. Die Zulaufbohrung 2 führt zum Druckanschluß 5, an den sich der Hochdrucksammelraum (Common Rail) anschließt. Der Injektorkörper weist seinerseits ein Innengewinde 4 zum Anschluß an das Einspritzsystem auf.
Im Verschneidungsbereich 6 der Zulaufbohrung 2 zum Ventilraum 3 kommt es aufgrund der hohen Kraftstoffdrücke zu starken Belastungen. Bei hohen Innendrücken führt die Kerbwirkung der Zulaufbohrung 2 im Verschneidungsbereich 6 zu hohen lokalen Kerbzugspannungen in Umfangrichtung des Ventilraums 3, so daß die Gefahr von Rissbildung besteht. Sich ausbildende Risse führen letztendlich zu einem Ausfall des Injektors. Der Einlaufwinkel, also der Winkel zwischen Längsachse des Ventilraums 3 und Mittelachse der Zulaufbohrung 2, beträgt in der Darstellung nach Fig. 1 zwar weniger als 90°, liegt jedoch noch im Bereich oberhalb 75°, also in einem Bereich, in dem eine spannungsreduzierende Wirkung durch den Einlaufwinkel gegeben ist.
In Fig. 2 A ist stark schematisiert ein erfindungsgemäßer Injektorkörper 1 in der gleichen Betrachtungsweise wie aus Fig. 1 dargestellt. Gleiche Elemente sind mit gleichen Bezugszeichen versehen. Die Zulaufbohrung 2 führt hier im rechten Winkel zum Ventilraum 3 des Injektorkörpers 1. In der Darstellung der Fig. 2 A sind die in der Ebene senkrecht zur Zeichenebene liegenden Ausbuchtungen 8 des Ventilraumquerschnitts aufgrund der Darstellungsart kaum erkennbar. Hingegen zeigt der in Fig. 2 B dargestellte Schnitt entlang der Linie A-A aus Fig. 2 A in klarer Weise die erfindungsgemäßen Ausbuchtungen 8 zu beiden Seiten der Zulauföffnung 7 der Zulaufbohrung 2. Die Ausbuchtungen 8 des Ventilraumquerschnitts sind in diesem Beispiel symmetrisch zur Zulauföffnung 7 ausgebildet und sind weit nach hinten in Richtung Zulaufbohrung geführt. Wie aus Fig. 2 B ersichtlich, verändern die Ausbuchtungen 8 den Querschnitt des Ventilraums 3 zumindest im Bereich der Zulauföffnung 7 dergestalt, daß der ursprünglich kreisförmige Querschnitt nur noch in der der Zulauföffnung 7 gegenüberliegenden Hälfte des Ventilraums 3 beibehalten wird, während in der anderen Hälfte der Ventilraum mit maximalem Durchmesser bis zu einer Ebene 9, die parallel zur Längsachse 10 des Ventilraums 3 und durch die Zulauföffnung 7 verläuft, fortgeführt wird und darüber hinaus zwei symmetrisch zur Mittellinie der Zulaufbohrung 2 und hinter der Ebene 9 liegende Einbuchtungen aufweist.
Die dargestellten Ausbuchtungen 8 führen zu einer Verformung des Ventilraums 3 unter Innendruck mit einer Ausbildung von Biegedruck- und Umfangszugspannungen im Bereich der Ausbuchtungen 8, die die Kerbzugspannungen im Verschneidungsbereich 6 verringern. Insgesamt kommt es also zu einer teilweisen Kompensation der auftretenden Spannungen, so daß die Maximalspannung im Verschneidungsbereich 6 reduziert wird.
Fig. 2 C zeigt einen Schnitt entlang der Linie B-B aus Fig. 2 B. Hieraus ergibt sich der Verlauf der Ausbuchtungen 8 in Längsrichtung des Ventilraums 3. Die Ausbuchtungen 8 konzentrieren sich auf den Bereich der Zulauföffnung 7 und nehmen zu beiden Seiten in Längsrichtung des Ventilraums 3 wieder ab, so daß der Ventilraum 3 dort seine ursprüngliche zylinderförmige Gestalt wieder einnimmt.
Eine weitere Ausführungsform der Erfindung ist in Fig. 3 schematisch dargestellt. Auch hier weist der Ventilraum 3 Ausbuchtung 8 zu beiden Seiten der Zulauföffnung 7 auf, so daß insgesamt ein symmetrischer Querschnitt des Ventilinnenraums 3 entsteht, wobei hier eine Verbreiterung des ursprünglich kreisförmigen Querschnitts auf einen Querschnitt mit konstantem Durchmesser, der dem des kreisförmigen Ventilraums 3 entspricht, bis zu der Ebene 9 stattfindet, die parallel zur Längsachse 10 des Ventilraums 3 und durch die Zulauföffnung 7 verläuft. Die exzentrische Anordnung der Zulaufbohrung 2 hat sich bei diesem Ausführungsbeispiel als weitere festigkeitssteigernde Maßnahme bewährt.
Insgesamt können durch die Erfindung verschiedene Geometrien von Ventilraumquerschnitten im Bereich der Zulauföffnung angegeben werden, die zu einer Verminderung der auftretenden Spannungen im Verschneidungsbereich und somit zu einer Steigerung der Hochdruckfestigkeit des Injektorkörpers führen. Insbesondere bei Hochdruckkraftstoffinjektoren lassen sich damit gute Erfolge erzielen.

Claims (6)

  1. Injektorkörper für ein Kraftstoffeinspritzsystem, wobei der Injektorkörper (1) einen im wesentlichen zylindrisch geformten Ventilraum (3) aufweist, in den über eine Zulaufbohrung (2), die in einer Zulauföffnung (7) im Ventilraum (3) mündet, Kraftstoff unter Hochdruck einleitbar ist,
    dadurch gekennzeichnet, daß der Ventilraum (3) zumindest im Bereich der Zulauföffnung (7) jeweils in Umfangsrichtung benachbart zur Zulauföffnung (7) eine Ausbuchtung (8) seines Querschnitts aufweist.
  2. Injektorkörper nach Anspruch 1, dadurch gekennzeichnet, daß die Ausbuchtungen (8) symmetrisch zur Mittellinie der Zulaufbohrung (2) liegen.
  3. Injektorkörper nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß sich die Ausbuchtung (8) bis zu einer Ebene (9), die parallel zur Längsachse (10) des Ventilraums (3) und durch die Zulauföffnung (7) hindurch verläuft, oder über diese Ebene (9) hinaus erstreckt.
  4. Injektorkörper nach Anspruch 3, dadurch gekennzeichnet, daß beide Ausbuchtungen (8) sich symmetrisch und gleichmäßig bis zur Ebene (9) erstrecken, so daß die Breite des Ventilraumquerschnitts im Bereich der Ausbuchtungen (8) dem Innendurchmesser des zylindrischen Ventilraums (3) entspricht.
  5. Injektorkörper nach Anspruch 4, dadurch gekennzeichnet, daß die Zulaufbohrung (2) exzentrisch zum Ventilraum (3) angeordnet ist.
  6. Injektorkörper nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß in Längsrichtung des Ventilraums (3) über den Bereich der Zulauföffnung (7) die Ausbuchtungen (8) zu einer konstanten Querschnitterweiterung des Ventilraums (3) führen.
EP02015756A 2001-10-20 2002-07-13 Hochdruckfester Injektorkörper Expired - Lifetime EP1304476B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10152230A DE10152230A1 (de) 2001-10-20 2001-10-20 Hochdruckfester Injektorkörper
DE10152230 2001-10-20

Publications (3)

Publication Number Publication Date
EP1304476A2 true EP1304476A2 (de) 2003-04-23
EP1304476A3 EP1304476A3 (de) 2004-05-19
EP1304476B1 EP1304476B1 (de) 2011-09-14

Family

ID=7703405

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02015756A Expired - Lifetime EP1304476B1 (de) 2001-10-20 2002-07-13 Hochdruckfester Injektorkörper

Country Status (4)

Country Link
US (1) US6796512B2 (de)
EP (1) EP1304476B1 (de)
JP (1) JP4227393B2 (de)
DE (1) DE10152230A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010012393A1 (de) * 2008-07-29 2010-02-04 Robert Bosch Gmbh Ventilgehäuse
WO2012103899A1 (de) * 2011-02-01 2012-08-09 Robert Bosch Gmbh Gehäuse eines druckbelasteten bauteils
EP2960486A1 (de) * 2014-06-25 2015-12-30 Robert Bosch Gmbh Verfahren zur reduzierung der spannung an einer verschneidung zweier ineinander einmündenden kanäle

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007018471A1 (de) * 2007-04-19 2008-10-23 Robert Bosch Gmbh Verschneidungsbereich zwischen einer Hochdruckkammer und einem Hochdruckkanal
DE102008040383A1 (de) * 2008-07-14 2010-01-21 Robert Bosch Gmbh Hochdruckfester Kraftstoffinjektor
DE102011101770A1 (de) * 2011-05-17 2012-08-02 L'orange Gmbh Anordnung mit einem Festkörper sowie einer darin gebildeten Verschneidung zweier Hochdruck-Fluidkanäle
AT512893B1 (de) * 2013-02-05 2013-12-15 Bosch Gmbh Robert Bauelement mit ineinandermündenden Hochdruckbohrungen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0449662A1 (de) * 1990-03-29 1991-10-02 Cummins Engine Company, Inc. Kraftstoffeinspritzdüse und Verfahren zum Entlasten von Spannungskonzentration in einer Einspritzdüsenbohrung
EP0717227A2 (de) * 1994-12-16 1996-06-19 Perkins Limited Verfahren zur Verminderung der Spannung in Abzweigungen in einem Hochdruckströmungskanalsystem, und dadurch gebildete Abzweigung
DE19826719A1 (de) * 1998-06-16 1999-12-23 Bosch Gmbh Robert Ventilsteuereinheit für ein Kraftstoffeinspritzventil
DE10022378A1 (de) * 2000-05-08 2001-11-22 Bosch Gmbh Robert Hochdruckfester Injektorkörper

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4709679A (en) * 1985-03-25 1987-12-01 Stanadyne, Inc. Modular accumulator injector
US4875658A (en) * 1986-10-08 1989-10-24 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Electromagnetic valve
JP3750126B2 (ja) * 1996-03-26 2006-03-01 株式会社デンソー 燃料噴射弁
US5755190A (en) * 1996-11-18 1998-05-26 Ronen; Avner Reciprocating machine with cooling jacket
JP3939864B2 (ja) * 1998-08-27 2007-07-04 ヤマハ発動機株式会社 筒内噴射式エンジン
US6598592B2 (en) * 2000-10-04 2003-07-29 Seimens Automotive Corporation Fuel system including a fuel injector internally mounted to a fuel rail

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0449662A1 (de) * 1990-03-29 1991-10-02 Cummins Engine Company, Inc. Kraftstoffeinspritzdüse und Verfahren zum Entlasten von Spannungskonzentration in einer Einspritzdüsenbohrung
EP0717227A2 (de) * 1994-12-16 1996-06-19 Perkins Limited Verfahren zur Verminderung der Spannung in Abzweigungen in einem Hochdruckströmungskanalsystem, und dadurch gebildete Abzweigung
DE19826719A1 (de) * 1998-06-16 1999-12-23 Bosch Gmbh Robert Ventilsteuereinheit für ein Kraftstoffeinspritzventil
DE10022378A1 (de) * 2000-05-08 2001-11-22 Bosch Gmbh Robert Hochdruckfester Injektorkörper

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010012393A1 (de) * 2008-07-29 2010-02-04 Robert Bosch Gmbh Ventilgehäuse
US8844902B2 (en) 2008-07-29 2014-09-30 Robert Bosch Gmbh Valve housing
WO2012103899A1 (de) * 2011-02-01 2012-08-09 Robert Bosch Gmbh Gehäuse eines druckbelasteten bauteils
US20140026983A1 (en) * 2011-02-01 2014-01-30 Robert Bosch Gmbh Housing for a pressure-loaded component
US9291278B2 (en) 2011-02-01 2016-03-22 Robert Bosch Gmbh Housing for a pressure-loaded component
EP2960486A1 (de) * 2014-06-25 2015-12-30 Robert Bosch Gmbh Verfahren zur reduzierung der spannung an einer verschneidung zweier ineinander einmündenden kanäle

Also Published As

Publication number Publication date
US20030089793A1 (en) 2003-05-15
US6796512B2 (en) 2004-09-28
EP1304476B1 (de) 2011-09-14
JP2003139013A (ja) 2003-05-14
EP1304476A3 (de) 2004-05-19
DE10152230A1 (de) 2003-04-30
JP4227393B2 (ja) 2009-02-18

Similar Documents

Publication Publication Date Title
WO1991010062A1 (de) Elektrisch gesteuerte kraftstoffeinspritzpumpe für brennkraftmaschinen, insbesondere pumpedüse
EP1304476A2 (de) Hochdruckfester Injektorkörper
DE10152261A1 (de) Hochdruckspeicher wie Kraftstoffhochdruckspeicher
DE10131110A1 (de) Zwischenflanschsystem für eine direkteinspritzende Brennkraftmaschine
EP0367777B1 (de) Einspritzventil
DE1805024C2 (de) Aus einer Baueinheit aus Einspritzpumpe und Einspritzventil bestehende Kraftstoffeinspritzvorrichtung für Brennkraftmaschinen
EP1605159A1 (de) Kraftstoffeinspritzventil
EP0890735A2 (de) Kraftstoffeinspritzventil
DE3423592A1 (de) Kraftstoffeinspritzduese
DE10261737A1 (de) Innendruckbelastetes Bauteil, insbesondere für die Kraftstoffeinspritzung für Brennkraftmaschinen mit einer Kraftstoffhochdruckpumpe
DE19936685A1 (de) Kraftstoffhochdruckspeicher
DE102005025601A1 (de) Einspritzpumpe für eine Brennkraftmaschine sowie Brennkraftmaschine
DE19540529B4 (de) Absteuerventil des Schmierölkreislaufs einer Brennkraftmaschine
AT512893B1 (de) Bauelement mit ineinandermündenden Hochdruckbohrungen
DE10022378A1 (de) Hochdruckfester Injektorkörper
DE102010063844A1 (de) Düsenkörper mit einem Einspritzloch mit mindestens zwei Eintrittsöffnungen
DE10126617A1 (de) Kraftstoffzuführvorrichtung
DE102019218946A1 (de) Komponente für eine Einspritzanlage, insbesondere Brennstoffverteilerleiste, und Einspritzanlage mit solch einer Komponente
DE102007008281A1 (de) Hubkolbenbrennkraftmaschine
AT413299B (de) Pleuelstange
DE10234909A1 (de) Kraftstoffinjektor mit hochdruckfestem Anschlußbereich
EP1017938B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP4077907A1 (de) Fluidverteiler für eine einspritzanlage, insbesondere brennstoffverteilerleiste für eine brennstoffeinspritzanlage für gemischverdichtende, fremdgezündete brennkraftmaschinen
DE10146741A1 (de) Kraftstoffhochdruckspeicher
DE102012211160A1 (de) Kraftstoffinjektor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20041119

AKX Designation fees paid

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20071031

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50215203

Country of ref document: DE

Effective date: 20111110

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50215203

Country of ref document: DE

Effective date: 20120615

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130719

Year of fee payment: 12

Ref country code: GB

Payment date: 20130723

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130729

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140713

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140713

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160927

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50215203

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180201