EP1290663B1 - Capteur, systeme capteur et procede pour la determination a distance d'une grandeur a mesurer - Google Patents

Capteur, systeme capteur et procede pour la determination a distance d'une grandeur a mesurer Download PDF

Info

Publication number
EP1290663B1
EP1290663B1 EP01929318A EP01929318A EP1290663B1 EP 1290663 B1 EP1290663 B1 EP 1290663B1 EP 01929318 A EP01929318 A EP 01929318A EP 01929318 A EP01929318 A EP 01929318A EP 1290663 B1 EP1290663 B1 EP 1290663B1
Authority
EP
European Patent Office
Prior art keywords
sensor
resonator
signal
checking
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01929318A
Other languages
German (de)
English (en)
Other versions
EP1290663A1 (fr
Inventor
Bernhard Elsner
Henry Heidemeyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1290663A1 publication Critical patent/EP1290663A1/fr
Application granted granted Critical
Publication of EP1290663B1 publication Critical patent/EP1290663B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/75Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems using transponders powered from received waves, e.g. using passive transponders, or using passive reflectors
    • G01S13/751Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems using transponders powered from received waves, e.g. using passive transponders, or using passive reflectors wherein the responder or reflector radiates a coded signal
    • G01S13/753Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems using transponders powered from received waves, e.g. using passive transponders, or using passive reflectors wherein the responder or reflector radiates a coded signal using frequency selective elements, e.g. resonator

Definitions

  • the present invention relates to a sensor for Further acquisition of a measured variable, a sensor system, in which such a sensor is used, as well as a Method for the remote acquisition of a measured variable.
  • a permanent physical Connection between a sensor and a to produce the associated evaluation unit via the Output signals from the sensor to the evaluation unit can be transferred.
  • Such connection problems occur wherever the sensor is relative is moved to the associated evaluation unit, in particular with rotary movements. As examples of this can capture the pressure in one at a time Vehicle swivel-mounted pneumatic tires or the Torque measurement on a rotating shaft serve.
  • An example of one by electromagnetic means remote-sensing sensor or a sensor system is in DE 1 9702 768 C1 treated.
  • the one from this script known sensor includes: a resonator, the one resonance frequency which changes under the influence of the measured variable has an antenna for transmitting and Receiving a modulated radio frequency signal, and a modulator / demodulator for coupling the first Resonators to the antenna.
  • a remotely query the known sensor becomes an interrogation radio signal from an interrogation unit emitted, the one with a query measurement signal a first frequency modulated interrogation carrier signal a second frequency.
  • the frequency of the interrogation carrier signal is in the microwave frequency range around 2.4 GHz, that of the query measurement signal in the frequency range from 1 to 30 MHz.
  • the Query radio signal is from the antenna of the sensor received and applied to the modulator / demodulator, its output frequency spectrum thereupon has a portion with the first frequency.
  • the first frequency is usually in a resonance range of the resonator so that it is received of the interrogation radio signal to a forced one Vibration is excited, the amplitude among other things on the difference between the first frequency and the resonance frequency dependent on the measured variable of the resonator depends.
  • the Interference radio signal modulation interrupted, and it becomes the pure, non-modulated interrogation carrier signal broadcast.
  • This known sensor is through an interrogation radio signal any carrier frequency excitable, if only the modulation frequency close enough to that Resonance frequency of the oscillator is. To the answer radio signal to receive the interrogation carrier signal be broadcast continuously. It is therefore not possible to use the same antenna Broadcast the interrogation radio signal and receive it of the response radio signal.
  • the present invention makes it remotely accessible Sensor or a sensor system with a A plurality of such sensors and a method for Further acquisition of a measured variable created a faster query of the measured variable and the simultaneous Use of multiple sensors in one same area without the risk of mutual Disorder or the need for coordination the query processes of the individual sensors enable.
  • the sensor with a second, by a carrier frequency of the high-frequency signal excitable resonator Is provided.
  • This construction of the sensor allows, during a period in which the Interrogation unit the modulated interrogation radio signal is broadcast, both the first, tunable Resonator with the query measurement signal for vibration to stimulate, as well as the second resonator of the query carrier signal to excite vibration. In this way, energy becomes the carrier vibration saved on the sensor.
  • this has the consequence that one to generate the response radio signal no longer on the simultaneous transmission of the query carrier signal depends on what is needed Response radio signal on the part of the sensor by mistake the signals from the two resonators on the modulator / demodulator can be generated.
  • This answer radio signal can receive at the interrogation unit and be evaluated as soon as after an interruption the transmission of the interrogation radio signal Echoes have subsided
  • the interrogation unit Since the presence of the second resonator enables the transmission of the query carrier signal to interrupt when the response radio signal can be received on pages the interrogation unit has the same antenna for transmission the interrogation radio signal and to receive the response radio signal be used. Besides, it is possible in an environment in which a plurality of interrogation units at least one sensor each is assigned to each query unit and its associated sensors a specific first carrier frequency assign it to the query units allows selectively only those assigned to them Address and query sensors.
  • the sensor is preferably a purely passive element without own power supply. Therefore as a modulator / demodulator especially a detector diode (Schottky diode or varactor). These components generate through their already in the area the zero voltage strongly nonlinear characteristic a strong coupling of the different spectral Components of an applied signal and favor so the emergence of difference or sum frequencies.
  • a modulator / demodulator especially a detector diode (Schottky diode or varactor).
  • Surface wave resonators are the first resonator or quartz crystals. Such resonators are not direct in their behavior influenced by the size to be recorded, but are expediently put together in a resonant circuit with one sensitive to the size to be detected Component used. This allows inexpensive standard components for the resonators to use.
  • a sensitive element for the measurand preferably a resistance element with under the Influence of the measurable variable resistance value used.
  • Preferred parameters are, for example the pressure or the temperature.
  • Surface wave resonators in particular are the second resonator suitable that capable are in response to an excitation vibration pulse a delayed output vibration pulse to create.
  • Such resonators can, for example, as a surface wave filter with a first pair of electrodes for excitation the surface wave and a spatially objectionable second pair of electrodes for tapping the surface wave or as a resonator with a single one Electrode pair that both for excitation and for Tapping the surface wave is used be, each with reflector electrodes in one Distance from the pair of electrodes are arranged to the spreading in the substrate of the resonator Surface wave with a time delay to that Reflect pair of electrodes.
  • a sensor of the type described above When using a measured variable a sensor of the type described above first of all, its two oscillators by an interrogation radio signal excited that the one with a query measurement signal a first frequency modulated interrogation carrier signal at a second frequency.
  • the Broadcast of the entire interrogation radio signal, the Carrier as well as the modulation, interrupted, and a response radio signal emitted by the sensor is caught by a response carrier signal the resonance frequency of the second oscillator with a response measurement signal at the resonance frequency of the first oscillator. Because in this No interrogation carrier signal broadcast for the time is the background from which the response radio signal must be isolated, low, so low Reception strengths for a satisfactory measurement are sufficient.
  • the same antenna can be used to transmit the interrogation radio signal as well as for receiving the response radio signal be used without the danger there is crosstalk from the query to the reception.
  • the second resonator one against the excitation Delayed vibration pulse delivers it is useful to determine the time interval in which the Interrogation radio signal is broadcast shorter than to choose the time delay of the second resonator. This leads to the fact that the sensor first with a delay after the end of the interrogation radio signal begins to transmit the answer radio signal.
  • This delay is advantageously chosen so that echoes of the interrogation radio signal have decayed, before the response radio signal at the interrogation unit arrives.
  • a sensor system for the remote interrogation of a measured variable consists of an interrogation unit, as shown in FIG. 2, and one or more sensors, as shown in FIG. 1.
  • an oscillator 13 which generates a signal, here referred to as an interrogation carrier signal, with a carrier frequency f T in the range of 2.54 GHz.
  • the carrier frequency is preferably selectively variable by a few MHz.
  • a second oscillator 14 generates an interrogation measurement signal in the form of an oscillation with a frequency f M in the range from 0 to 80 MHz.
  • the measurement frequency f M can also expediently be varied in a targeted manner, namely in steps that correspond to the size of the resonance range of a first resonator of the sensors, which will be discussed later.
  • a modulator 15 is connected to the two oscillators 13, 14 connected and modulates the query measurement signal on the query carrier signal and generated such a query radio signal that is sent to you Switch 12 is issued.
  • the switch 12 is on under the control of a timer 16, the one Transceiver antenna 11 alternately with the output of the modulator 15 and the input of a demodulation and measuring circuit connects.
  • the one from the modulator 15 executed modulation can in particular an amplitude modulation or a quadrature modulation his; those in the demodulation and measurement circuit demodulation taking place is complementary to.
  • the interrogation radio signal emitted by the antenna 11 is received by an antenna 1 of the sensor shown in FIG.
  • a demadulation diode 2 for example a Schottky or detector diode, is connected to the antenna.
  • Such a diode is characterized by a parabolic characteristic already in the vicinity of the coordinate origin and thus by a strongly non-linear behavior, which leads to a mixture of the spectral components contained in the interrogation radio signal and thus to the generation of a spectral component with the frequency f M des Measurement signal at the output of the demodulation diode 2 leads.
  • the spectral component with the carrier frequency f T also appearing at the output of the demodulation diode 2 is used for.
  • first resonator 5 At the output of the demodulation diode 2 is also a low-pass filter 4 and, behind the low-pass filter 4 a so-called first resonator 5 is connected, which together with one sensitive to the measured variable Element 6 forms a resonant circuit.
  • the first resonator 5 is the same as the second resonator 3 a commercially available device, for example a quartz crystal or a surface wave resonator.
  • the sensitive Element 6 By interconnecting with the sensitive Element 6 is the resonance frequency of the first Resonators 5 depending on the measured variable variable.
  • the purpose of the low-pass filter 4 is essentially to keep spectral components in the range of the carrier frequency f T away from the first resonator 5 and to prevent their dissipation in the first resonator 5. In this way, the low-pass filter 4, on the one hand, excites the second resonator 3 more effectively as long as the interrogation radio signal is received by the antenna 1; when the interrogation radio signal pauses, the low-pass filter 4 limits the attenuation of the second resonator 3.
  • the sensitive element 6 can be a resistive element be, for example, a temperature-dependent resistor, if the measurand is the temperature. On such a resistive element affects both Resonance frequency as well as the time constant of the first Resonators 5. It can also be a capacitive Element, for example a micromechanical one Pressure sensor, with two relative to each other from the prevailing pressure movable capacitor plates. Such a capacitive element affects essentially only the resonance frequency, but not the damping of the first resonator 5.
  • FIG. 3 schematically illustrates the course of the received field strength P on the antenna 11 of the interrogation unit as a function of the time t in the course of an interrogation cycle.
  • the received field strength P is plotted on a logarithmic scale.
  • the switch 12 connects the antenna 11 to the demodulation and measuring circuit 17, and the transmission of the interrogation radio signal is interrupted.
  • echoes of the interrogation radio signal arrive at the antenna 11 and are reflected by obstacles at different distances in the vicinity of the antenna 11.
  • the demodulation measuring circuit 17 therefore waits after switching the switch 12 still a predetermined Time period ⁇ t before it starts, that of the Antenna 11 received response signal on frequency and / or damping to examine and so those in it extract contained information about the measured variable.
  • the delay ⁇ t can be a function of the Sending and receiving power of the interrogation unit fixed be predetermined, for example in the sense that for a given type of query unit a maximum Range is determined from the echo signals are still detectable by the interrogation unit, and the delay ⁇ t is at least twice the term is chosen that this range equivalent.
  • Figures 4 and 5 show two exemplary embodiments for surface acoustic wave resonators, which according to a preferred further development as the first resonator 3 of a sensor used as shown in Figure 1 can be.
  • the resonator shown in Figure 4 comprises two pairs 25, 26 of such electrodes 21, 22, each of which a pair 25 or 26 as a transmitter to excite one Surface vibration and the other pair 26 or 25 serve as a receiver for picking up the vibration can.
  • a pair 25 or 26 as a transmitter to excite one Surface vibration
  • the other pair 26 or 25 serve as a receiver for picking up the vibration can.
  • the two electrodes of each pair 25, 26 is one on the opposite pair 26, 25 side facing away with a reflector structure 23 provided the surface wave propagation prevented.
  • the two pairs 25, 26 are separated from each other by a distance L which causes one excited by a couple Vibration with a delay ⁇ ⁇ c / L the other 'Couple reached and can be tapped there.
  • the surface acoustic wave resonator shown in FIG. 5 comprises only one pair of electrodes 27 with electrodes 21, 22, each in both to the electrode fingers Radiate 24 vertical directions. At a distance L / 2 of the pair of electrodes 27 are reflector structures 23 arranged one of the pair of electrodes 27 emitted surface wave back in itself reflect. The reflected surface wave thus reaches ⁇ ⁇ with the same delay c / L, as in the case of FIG. 4, again the pair of electrodes 27 and can be tapped there.
  • Figure 6 is a schematic representation of the course the reception field strength P at the antenna 11 the interrogation unit as a function of time t over the course a polling cycle that results when a Surface wave resonator of the type shown in FIG. 4 or 5 shown design as the second resonator of the sensor is used.
  • the interrogation radio signal is emitted, just as in the case of FIG. 3.
  • the interrogation radio signal is interrupted; the reception field strength P at the antenna 11 decreases to the extent that echoes of the interrogation radio signal reflected from the surroundings of the antenna 11 decay.
  • the surface wave which has been excited in the second resonator 3 during the reception of the interrogation radio signal by the sensor, begins to reach the pair of electrodes at which it is tapped so that a modulated response radio signal is generated at the sensor from time t 3 .
  • a new work cycle of the interrogation unit of the sensor begins with the re-transmission of the interrogation radio signal.
  • the measurement frequency of the interrogation measurement signal is selected such that excitation of the first resonator 5 is possible.
  • the resonance frequency of the first resonator 5 which is influenced as a result of a strong change in the measured variable is changed so much that an effective excitation of the first resonator with the frequency of the interrogation measurement signal is no longer possible.
  • the response radio signal cannot be modulated or cannot be modulated with a strength that is sufficient to obtain the measured variable from the signal received at the interrogation unit.
  • the frequency of the oscillator 14, that is to say the measurement frequency f M can be changed in a targeted manner, and that the interrogation station changes this frequency f M when an unusable response radio signal is received, that is to say if a response radio signal is received, the quality of which is insufficient to determine the measured variable in the demodulation and measuring circuit.
  • Such a change in the measuring frequency can be made iteratively based on the value f M * of the measuring frequency f M at which a usable response radio signal was received for the last time.
  • a possible procedure here is, for example, that the ambient f this last useful measurement frequency of M * f smaller to larger deviations from this measuring frequency M * progressively alternately above and below. the measuring frequency f M * is searched.
  • a tendency of the change in the resonance frequency of the first resonator 5 is determined on the basis of two previously used measurement frequencies, and that a search is carried out over several steps in the direction indicated by this tendency before the search in the opposite direction is started. Which of these search strategies is more effective can depend on the specific application environment of the system.
  • the first resonator is under the influence of the measured variable tunable in a frequency range whose Width is typically 4 MHz.
  • the limits of the tuning range are limits that also apply to the search procedure explained above is not exceeded become.
  • Disturbances in the reception of the response radio signal can also occur if several interrogation units that use the same frequencies interfere with each other.
  • this problem can be avoided by assigning each interrogation unit and the sensors assigned to it to a specific carrier frequency f T which is characteristic of the interrogation unit. This ensures that each interrogation unit only excites the second resonators 3 of the sensors assigned to it, so that they can only generate a response radio signal to their interrogation unit if they have been excited by it.
  • Interrogation radio signals emitted by other interrogation units can indeed possibly excite the first resonator 5 if the modulation frequency f M of these interrogation radio signals corresponds to the resonance frequency of the resonator 5; since the second resonator 3 is not excited, no response radio signal can arise.
  • the answer carrier signal only with Delay ⁇ can provide selectivity the query can also be achieved that sensors with different delay times ⁇ can be used.
  • a query unit determines a delay ⁇ be assigned so that they receive response radio signals from Sensors that have the same carrier and measurement frequencies like the interrogation radio signal it emits have not detected because their response radio signals not into that dependent on the delay ⁇ Time windows fall within which the Interrogation unit evaluates the incoming radio signals.
  • Assign sensors the same carrier and measurement frequencies, but different delays ⁇ exhibit. All of these sensors can be used with one single pulse of the interrogation radio signal can be excited, but the response radio signals they provide meet one after the other and in time separately on the interrogation unit so that the demodulation and measuring circuit the various Response radio signals to the individual excited sensors or the sizes they monitor the time at which they arrive.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Radar Systems Or Details Thereof (AREA)

Claims (16)

  1. Capteur pour enregistrer à distance une grandeur mesurée comportant un premier résonateur (5) qui présente une fréquence de résonance modifiable sous l'effet de la grandeur mesurée, une antenne (1) destinée à envoyer et à recevoir un signal haute fréquence modulé et un modulateur/démodulateur (2) destiné à coupler le premier résonateur (5) à l'antenne (1), caractérisé en ce qu'il comprend un deuxième résonateur (3) qui peut être excité par une fréquence porteuse du signal haute fréquence.
  2. Capteur selon la revendication 1,
    caractérisé en ce que
    le modulateur (2) est une diode de démodulation, par exemple une diode à barrière de Schottky ou une diode de détection.
  3. Capteur selon l'une des revendications précédentes,
    caractérisé en ce que
    le premier résonateur (5) comprend un résonateur d'onde de surface ou un cristal oscillant.
  4. Capteur selon la revendication 3,
    caractérisé en ce que
    le premier résonateur (5) comprend en outre un composant discret (6) sensible à la grandeur mesurée.
  5. Capteur selon l'une des revendications précédentes,
    caractérisé en ce que
    la grandeur mesurée est une pression ou une température.
  6. Capteur selon l'une des revendications précédentes,
    caractérisé en ce que
    l'amortissement du deuxième résonateur (3) est plus faible que celui du premier (5).
  7. Capteur selon l'une des revendications précédentes,
    caractérisé en ce que
    le deuxième résonateur (3) est un résonateur d'onde de surface qui est en mesure de produire, en réaction à une impulsion d'oscillation d'excitation, une impulsion d'oscillation de sortie retardée dans le temps.
  8. Capteur selon la revendication 7,
    caractérisé en ce que
    le deuxième résonateur présente deux paires (25, 26) d'électrodes (21, 22) écartées dans l'espace.
  9. Capteur selon la revendication 7,
    caractérisé en ce que
    le deuxième résonateur (5) présente une paire (27) d'électrodes (21, 22) destinée à exciter et à prélever une onde de surface et des électrodes de réflexion (23) placées à distance de la paire d'électrodes (27).
  10. Système de capteurs comportant un grand nombre de capteurs selon l'une des revendications précédentes, au moins une unité d'interrogation pour envoyer un signal radio d'interrogation aux capteurs et pour recevoir un signal radio de réponse provenant des capteurs,
    caractérisé en ce que
    les premiers résonateurs (5) présentent chacun des zones différentes de fréquence de résonance.
  11. Système de capteurs selon la revendication 10,
    caractérisé en ce qu'
    à chaque unité d'interrogation sont associés une première fréquence porteuse (fT) spécifique du signal radio d'interrogation et au moins un capteur dont le deuxième résonateur (5) peut être excité sélectivement par la fréquence porteuse (fT) spécifique.
  12. Unité d'interrogation pour un capteur selon l'une des revendications 1 à 9 ou pour un système de capteurs selon la revendication 10 ou 11,
    caractérisée en ce qu'
    elle présente des oscillateurs (13, 14) destinés à produire un signal radio d'interrogation qui comprend pour une deuxième fréquence (fT) un signal porteur d'interrogation modulé avec un signal de mesure d'interrogation d'une première fréquence (fM) et une antenne (11) commune pour émettre le signal radio d'interrogation et pour recevoir un signal radio de réponse provenant d'un des capteurs, l'unité d'interrogation interrompant l'émission du signal radio d'interrogation afin de recevoir le signal radio de réponse.
  13. Unité d'interrogation selon la revendication 12,
    caractérisée en ce que
    l'on peut faire varier la fréquence du signal porteur d'interrogation (fT).
  14. Procédé pour enregistrer à distance une grandeur de mesure en utilisant le capteur selon l'une des revendications 1 à 9 ou le système de capteurs selon la revendication 10 ou 11, pour lequel les deux oscillateurs (3, 5) d'un capteur sont excités par un signal radio d'interrogation qui comprend pour une deuxième fréquence (fT) un signal porteur d'interrogation modulé avec un signal de mesure d'interrogation d'une première fréquence (fM) et un signal radio de réponse émis par le capteur est reçu et exploité, lequel signal radio de réponse comprend un signal porteur de réponse pour la fréquence de résonance du deuxième oscillateur (3) modulé avec un signal de mesure de réponse pour la fréquence de résonance du premier oscillateur (5), l'émission du signal porteur d'interrogation étant interrompue pour recevoir le signal radio de réponse.
  15. Procédé selon la revendication 14,
    caractérisé en ce que
    le signal radio d'interrogation et le signal de mesure de réponse sont envoyés ou reçus par l'intermédiaire de la même antenne (11).
  16. Procédé selon la revendication 14 ou 15,
    caractérisé en ce que
    la fréquence du signal de mesure d'interrogation est modifiée lorsqu'aucun signal de mesure de réponse suffisant n'est reçu.
EP01929318A 2000-05-23 2001-04-05 Capteur, systeme capteur et procede pour la determination a distance d'une grandeur a mesurer Expired - Lifetime EP1290663B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10025503 2000-05-23
DE10025503A DE10025503A1 (de) 2000-05-23 2000-05-23 Sensor, Sensorsystem und Verfahren zur Fernerfassung einer Meßgröße
PCT/DE2001/001324 WO2001091079A1 (fr) 2000-05-23 2001-04-05 Capteur, systeme capteur et procede pour la determination a distance d'une grandeur a mesurer

Publications (2)

Publication Number Publication Date
EP1290663A1 EP1290663A1 (fr) 2003-03-12
EP1290663B1 true EP1290663B1 (fr) 2004-01-21

Family

ID=7643248

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01929318A Expired - Lifetime EP1290663B1 (fr) 2000-05-23 2001-04-05 Capteur, systeme capteur et procede pour la determination a distance d'une grandeur a mesurer

Country Status (6)

Country Link
US (1) US6897775B2 (fr)
EP (1) EP1290663B1 (fr)
JP (1) JP2003534561A (fr)
KR (1) KR100809527B1 (fr)
DE (2) DE10025503A1 (fr)
WO (1) WO2001091079A1 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3960112B2 (ja) * 2002-04-22 2007-08-15 トヨタ自動車株式会社 タイヤ状態検出・通信装置
JP2006131195A (ja) * 2004-11-09 2006-05-25 Alps Electric Co Ltd タイヤ情報検出装置
JP2006131196A (ja) * 2004-11-09 2006-05-25 Alps Electric Co Ltd タイヤ情報検出装置
US20060197655A1 (en) * 2005-02-24 2006-09-07 Yi Luo Batteryless tire pressure monitoring system
JP2006260090A (ja) * 2005-03-16 2006-09-28 Fuji Xerox Co Ltd シート、表示媒体ユニット、シート取付装置およびシート取外装置
DE102005027670A1 (de) * 2005-06-15 2007-01-11 Siemens Ag Anordnung und Verfahren zur Lagerstromüberwachung eines Elektromotors
US7446660B2 (en) * 2006-03-22 2008-11-04 Intel Corporation Passive environmental RFID transceiver
JP4934341B2 (ja) * 2006-03-31 2012-05-16 アルプス電気株式会社 タイヤ情報検出装置
JP2008201369A (ja) * 2007-02-22 2008-09-04 Alps Electric Co Ltd タイヤ情報検出装置
US20100095740A1 (en) * 2007-12-07 2010-04-22 The Ohio State University Research Foundation Determining physical properties of structural members in multi-path clutter environments
US8342027B2 (en) 2007-12-07 2013-01-01 The Ohio State University Determining physical properties of objects or fluids in multi-path clutter environments
US20110001655A1 (en) * 2007-12-07 2011-01-06 The Ohio State University Research Foundation Determining physical properties of structural members in dynamic multi-path clutter environments
US8085156B2 (en) * 2009-04-08 2011-12-27 Rosemount Inc. RF cavity-based process fluid sensor
FR2979147B1 (fr) * 2011-08-17 2013-08-09 Senseor Procede d'interrogation d'un capteur differentiel de type acoustique a deux resonances et dispositif mettant en oeuvre le procede d'interrogation
IT201600079657A1 (it) * 2016-07-28 2018-01-28 Agenzia Naz Per Le Nuove Tecnologie Lenergia E Lo Sviluppo Economico Sostenibile Enea Dispositivo e sistema di misura
DE102017007594A1 (de) * 2017-08-12 2019-02-14 Albert-Ludwigs-Universität Freiburg Messvorrichtung mit einem passiven kooperativen Target

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4096740A (en) * 1974-06-17 1978-06-27 Rockwell International Corporation Surface acoustic wave strain detector and gage
AT340038B (de) * 1975-02-21 1977-11-25 Rodler Ing Hans Messanordnung zur ermittlung von biologischen messparametern
US4069472A (en) * 1975-12-25 1978-01-17 Tokyo Shibaura Electric Co., Ltd. Foreground subject-identifying apparatus
DE2652122A1 (de) * 1976-11-16 1978-05-18 Vdo Schindling Einrichtung zum uebertragen von messwerten
JPS5972530U (ja) * 1982-11-08 1984-05-17 日産自動車株式会社 タイヤ空気圧センサ
US5301553A (en) * 1989-12-20 1994-04-12 Tjs Development Corporation Apparatus for remote sensing and receiving
DE19510452C2 (de) 1994-04-07 1997-10-23 Landis & Gyr Tech Innovat Sende- und Empfangseinrichtung zur drahtlosen Abfrage eines physikalischen Parameters
EP0677752B1 (fr) * 1994-04-15 2001-06-27 Siemens Aktiengesellschaft Système pour détection
DE4413211C2 (de) 1994-04-15 1997-04-24 Siemens Ag Identifizierungs- und/oder Sensorsystem
ATE213699T1 (de) * 1996-05-29 2002-03-15 Iq Mobil Electronics Gmbh Vorrichtung zur drahtlosen übertragung aus bewegten teilen
DE19702768C1 (de) 1997-01-27 1998-04-23 Bartels Mangold Electronic Gmb Vorrichtung zur drahtlosen Übertragung von mindestens einem Meßwert aus bewegten Teilen
US5694111A (en) * 1996-12-23 1997-12-02 Huang; Tien-Tsai Tire pressure indicator
DE19851002A1 (de) 1998-09-07 2000-05-04 Jochen Ehrenpfordt Elektronische Baugruppe mit Identifikations- und/oder Sensorfunktion
BR0008160A (pt) * 1999-02-11 2002-05-28 Emtop Ltd Transmissão de sinal em um sistema de leitura de pressão pneumática

Also Published As

Publication number Publication date
KR20030003290A (ko) 2003-01-09
KR100809527B1 (ko) 2008-03-04
US6897775B2 (en) 2005-05-24
WO2001091079A1 (fr) 2001-11-29
JP2003534561A (ja) 2003-11-18
DE50101368D1 (de) 2004-02-26
US20030102984A1 (en) 2003-06-05
DE10025503A1 (de) 2002-01-31
EP1290663A1 (fr) 2003-03-12

Similar Documents

Publication Publication Date Title
EP1290663B1 (fr) Capteur, systeme capteur et procede pour la determination a distance d'une grandeur a mesurer
EP1289809B1 (fr) Systeme de capteurs pour la detection de grandeurs a mesurer sur un objet tournant
EP0677752B1 (fr) Système pour détection
DE2331328C2 (fr)
DE2711869C3 (de) Alarmvorrichtung
EP1181575B1 (fr) Dispositif pour la detection d'objets dans l'environnement d'un vehicule
DE2427374C2 (de) Oszillator mit einer akustischen Oberflächenwellen-Verzögerungsleitung
CH676164A5 (fr)
DE19946161A1 (de) Verfahren zur Abstandsmessung
DE3438052C2 (fr)
WO1999039220A1 (fr) Dispositif de detection radar
WO1995022770A1 (fr) Etiquette d'identification fonctionnant avec des ondes acoustiques de surface
DE102013205892A1 (de) Radarvorrichtung und Verfahren zum Betrieb einer Radarvorrichtung
DE2744092C3 (de) Entfernungsmeßsystem zur Scharfeinstellung von Kameras
EP3095530B1 (fr) Dispositif d'envoi et de reception de signaux acoustiques
DE102007042954A1 (de) Mikrowellen-Näherungssensor und Verfahren zur Ermittlung des Abstands zwischen einem Messkopf und einem Zielobjekt
DE102011075767A1 (de) Einsatz von aktiven Radarreflektoren in einer produktions- oder fördertechnischen Umgebung der Automatisierungstechnik
DE4413211C2 (de) Identifizierungs- und/oder Sensorsystem
DE112018002734T5 (de) Objekterfassungssystem
DE4420432C2 (de) Anordnung zur ortsselektiven Geschwindigkeitsmessung nach dem Doppler-Prinzip
EP1977190B1 (fr) Appareil de mesure de distance
DE1548168B2 (de) Annaeherungsfuehler
EP3171291B1 (fr) Procédé et dispositif d'interrogation de données provenant d'un élément passif
CH680161A5 (fr)
DE1616285A1 (de) Vorrichtung fuer die Auffindung von Objekten durch Aussendung eines Hochfrequenzsignals in Form einer sich ausbreitenden Welle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021223

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50101368

Country of ref document: DE

Date of ref document: 20040226

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCINTILLA AG, DIREKTION

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040514

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20041022

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100624

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110427

Year of fee payment: 11

Ref country code: CH

Payment date: 20110421

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110419

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110422

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111101

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50101368

Country of ref document: DE

Effective date: 20111101

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120405

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20121228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120405

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120405