EP1289809B1 - Systeme de capteurs pour la detection de grandeurs a mesurer sur un objet tournant - Google Patents

Systeme de capteurs pour la detection de grandeurs a mesurer sur un objet tournant Download PDF

Info

Publication number
EP1289809B1
EP1289809B1 EP01929317A EP01929317A EP1289809B1 EP 1289809 B1 EP1289809 B1 EP 1289809B1 EP 01929317 A EP01929317 A EP 01929317A EP 01929317 A EP01929317 A EP 01929317A EP 1289809 B1 EP1289809 B1 EP 1289809B1
Authority
EP
European Patent Office
Prior art keywords
sensor system
sensor
resonator
sensors
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01929317A
Other languages
German (de)
English (en)
Other versions
EP1289809A1 (fr
Inventor
Bernhard Elsner
Henry Heidemeyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1289809A1 publication Critical patent/EP1289809A1/fr
Application granted granted Critical
Publication of EP1289809B1 publication Critical patent/EP1289809B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • H01Q1/2241Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in or for vehicle tyres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0422Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver characterised by the type of signal transmission means
    • B60C23/0433Radio signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/171Detecting parameters used in the regulation; Measuring values used in the regulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2210/00Detection or estimation of road or environment conditions; Detection or estimation of road shapes
    • B60T2210/10Detection or estimation of road conditions
    • B60T2210/13Aquaplaning, hydroplaning

Definitions

  • the present invention relates to a sensor system for remotely sensing at least one measured quantity measured on a rotating object.
  • the remote queryability of a sensor is required in many applications, especially where it is problematic to establish a permanent physical connection between a sensor and an associated evaluation, can be transmitted via the output signals of the sensor to the evaluation.
  • Such connection problems occur wherever the sensor is moved relative to the associated evaluation unit, in particular during rotational movements.
  • the detection of the pressure in a vehicle rotatably mounted on a pneumatic tire or the Measuring the torque on a rotating shaft can be transmitted via the output signals of the sensor to the evaluation.
  • This sensor system is suitable for detecting measured variables on the rotating object which are substantially constant over the entire object, so that the exact location of a measurement is not important.
  • the known sensor system quickly reaches its limits. Although measurements on portions of the rotating object are still feasible when they rotate together with the object, so if the sensor can be arranged on the part of interest and rotate together with this; when it comes to detecting measured quantities in a portion of the rotating object, based on a not rotating with the object coordinate system is stationary, so the known system is overwhelmed.
  • a sensor system according to the preamble of claim 1 is known from document EP 0 937 615 A.
  • the present invention provides a sensor system for detecting at least one measured variable on a rotating object, which makes it possible in a simple manner to detect a measured variable at a partial area of the rotating object which is stationary with respect to a coordinate system not rotating with the object ,
  • a plurality of sensors are arranged distributed on the rotating object in the circumferential direction, and that the antenna arrangement has a directional characteristic for the transmission and / or reception, which is stationary with respect to the non-rotating coordinate system and which only the portion of the Object includes.
  • a plurality of the sensors arranged on it successively pass through the subarea, where they can interact with the antenna arrangement.
  • the sensors in question only if they are in the subarea, with Radio frequency energy enabling them, in turn, to emit a response radio signal, and / or that a response radio signal emitted by the sensors is received by the antenna arrangement only when the sensor in question is in the subarea.
  • the partial region can advantageously be a contact surface of the article with a base. So it is z. For example, it is possible to measure contact forces acting between the article and the pad as the article rolls over the pad.
  • the antenna assembly comprise a common antenna for transmitting radio frequency energy to the sensors as well as for receiving a response signal from the sensors.
  • Sensors which serve to detect a same physical quantity may expediently have a spacing in the circumferential direction of the object which essentially corresponds to the extent of the subregion in the circumferential direction. In this way, it is ensured that in the course of the rotation of the object at any time a sensor for the relevant measured variable is in the partial area, so that a continuous measurement of the measured variable is ensured.
  • the sensors have a coding which makes it possible to selectively supply at least one sensor with high-frequency energy from a plurality of sensors located in the partial area or to receive it selectively from at least one sensor located in the partial area.
  • a coding which makes it possible to stagger the sensors closer to the circumference of the rotating body, as it corresponds to the extension of the portion in the circumferential direction;
  • the measured variable can be determined with a spatial resolution that is finer than the extent of the subregion.
  • a particularly simple identification of the sensors is given when the sensors form n groups which are each distributed cyclically on the circumference of the object.
  • the subarea be limited so that sensors of all n groups are never located in them at the same time.
  • each sensor has a first resonator which can be excited by a measurement frequency modulated on the carrier frequency of the high-frequency energy and whose resonant frequency is variable as a function of the measured variable.
  • This resonant frequency can be modulated onto a response radio signal which the sensor emits to the antenna arrangement so that a processing device connected to the antenna arrangement can infer the modulation frequency from the value of the measured variable to be detected.
  • This resonator preferably comprises as a vibratable element a surface acoustic wave resonator or a quartz crystal. Further, a sensitive for the measured variable discrete component is preferably included in the first resonator, which makes it possible to use as a vibratable element inexpensive standard components.
  • resonators with a variable resonant frequency as a function of the variable also has the advantage that the above-mentioned coding can be realized by assigning a specific resonator tuning range to each sensor of the sensor system. This allows, based on the modulation frequency of the antenna array from a sensor received response radio signal to the identity of the sending sensor infer.
  • a preferred application of the sensor system according to the invention is the detection of vectorial measured variables, in particular of forces or accelerations.
  • the rotating object z. B. is a vehicle tire
  • each sensor has a second resonator which can be excited by a carrier frequency of the high-frequency energy.
  • This second resonator makes it possible to store the high-frequency energy for a limited time, so that it is available for generating the response radio signal.
  • the sensor for generating the response radio signal is not dependent on the simultaneous transmission of the radio frequency energy by the antenna arrangement, because the second resonator during a pause of the radio frequency energy supply is capable of transmitting the response Radio signal to supply necessary energy. Since the RF power supply can pause, it is conveniently possible to use a same antenna at a time offset to provide the sensors with the radio frequency energy and to receive their answer radio signals. This allows the first resonator to build the sensor as a passive element without its own power supply.
  • Another advantage of using the second resonator is that it allows selective excitation of individual sensors by a query radio signal with tuned to the second resonator Sufrequnez, or that it is assigned in an environment in which a plurality of interrogation units in each case at least one sensor , each interrogation unit and its associated sensors can be assigned a specific carrier frequency that allows the interrogation units to selectively address and interrogate only the sensors associated with them.
  • a second resonator in particular surface acoustic wave resonators are preferred.
  • Such surface acoustic wave resonators which are capable of generating a time-delayed output vibration pulse in response to an excitation oscillation pulse.
  • Such resonators may become one during a first time interval, which should be shorter than the delay in the second resonator Vibration are stimulated; however, the energy stored in this oscillation is only available as drive energy for the sensor when the high-frequency energy supply is paused by the antenna arrangement. As long as the delay lasts, the energy in the second resonator is stored with small losses due to the vibration damping of the resonator substrate.
  • Such a delay can be easily achieved by means of a surface wave propagation path which must be traveled by a surface wave excited in the resonator before it is tapped.
  • Such resonators may be formed, for example, as a surface acoustic wave filter having a first electrode pair for exciting the surface acoustic wave and a spatially-spaced second electrode pair for sensing the surface acoustic wave, the two electrode pairs being separated from each other by the propagation path.
  • they may be formed as resonators with a single pair of electrodes, the single pair of electrodes serving both to excite and to pick up the surface wave, with reflector electrodes spaced apart from each other Electrode pair are arranged to reflect the propagating in the substrate of the resonator surface wave with a time delay to the pair of electrodes.
  • Fig. 1 shows a first example of a vehicle wheel with a pneumatic tire 30, which is equipped with a sensor system according to the invention.
  • a plurality of sensors 33 are arranged; they can z. B. in the Profile elements of the tire embedded or arranged in the region of the (steel) jacket.
  • the sensors 33 may be capacitive or inductive sensors, the structure and mode of operation of which will be discussed in more detail below with reference to FIGS.
  • the sensors 33 are provided to measure the deformation of the profile of the pneumatic tire 30 at a portion of the pneumatic tire 30, namely its flattened contact surface 32 to the road.
  • An antenna 11 is arranged in the vicinity of the axis of the wheel and has an orientation oriented on the flattened region 32, here represented by the lobe 34.
  • the antenna 11 is part of an interrogation unit, which is shown in Figure 4 as a block diagram.
  • an oscillator 13 which generates a signal, referred to here as interrogation carrier signal, with a carrier frequency f T in the range of 2.54 GHz.
  • the carrier frequency is preferably selectively varied by a few MHz.
  • a second oscillator 14 generates an interrogation measuring signal in the form of a vibration having a frequency f M in the range of 0 to 80 MHz. If the query unit to query a plurality of sensors is used, the measuring frequency f M is expediently also selectively varied, in steps corresponding to the size of the resonance range of a first resonator of the sensors, which will be discussed later.
  • a modulator 15 is connected to the two oscillators 13, 14 and modulates the interrogation measurement signal on the interrogation carrier signal, thus generating a interrogation radio signal which is output to a switch 12.
  • the switch 12 is under the control of a timer 16 which alternately connects a transmit-receive antenna 11 to the output of the modulator 15 and the input of a demodulation and measurement circuit 17 which comprises processing means for extracting the values of the measurands to be detected from the received response Represents radio signals.
  • the modulation carried out by the modulator 15 may in particular be an amplitude modulation or a quadrature modulation; the demodulation taking place in the demodulation and measuring circuit 17 is complementary thereto.
  • the construction of the sensors 33 is shown in FIG. 3 on the basis of a block diagram.
  • the interrogation radio signal radiated by the antenna 11 is from an antenna 1 of the sensor shown in FIG receive.
  • a demodulation diode 2 for example, a Schottky or detector diode is connected to the antenna.
  • a demodulation diode for example, a Schottky or detector diode is connected to the antenna.
  • Such a diode is characterized by an already in the vicinity of the coordinate origin substantially parabolic curve and thus by a highly nonlinear behavior, resulting in a mixture of the spectral components contained in the query radio signal and thus to produce a spectral component with the frequency f M of Measuring signal at the output of the demodulation diode 2 leads.
  • the also appearing at the output of the demodulation diode 2 spectral component with the carrier frequency f T is used to excite a resonator 3, referred to here as the second resonator.
  • a low-pass filter 4 and, behind the low-pass filter 4, a so-called first resonator 5 is connected, which forms a resonant circuit together with an element 6 sensitive to the measured variable.
  • the first resonator 5, like the second resonator 3, is a commercially available component, for example a quartz oscillator or a surface acoustic wave resonator. Through the interconnection with the sensitive element 6, the resonance frequency of the first resonator 5 in dependence on the measured variable is variable.
  • the purpose of the low-pass filter 4 is essentially to keep spectral components in the range of the carrier frequency f T of the first resonator 5 and to prevent their dissipation in the first resonator 5 so. In this way, the low-pass filter 4 on the one hand causes a more effective excitation of the second resonator 3 as long as the interrogation radio signal is received by the antenna 1; When the interrogation radio signal pauses, the low-pass filter 4 limits the attenuation of the second resonator 3.
  • the sensitive element 6 is an inductive or capacitive element, for example a micromechanical pressure sensor element with two capacitor plates movable relative to each other as a function of an acting force or acceleration. Such an element 6 essentially influences only the resonant frequency, but not the attenuation of the first resonator 5.
  • three sensors 33 are provided in the pneumatic tire 30 of Figure 1 at each circumferential position 31, two for the tangential to the surface of the tire, in Driving direction and across it, and a third for the radial direction.
  • FIG. 5 schematically illustrates the course of the reception field strength P at the antenna 11 of the interrogation unit as a function of the time t in the course of a polling cycle.
  • the reception field strength P is plotted on a logarithmic scale.
  • the interrogation radio signal is radiated, it is thus inevitably orders of magnitude stronger than echo signals reflected from the environment of the interrogation unit or a response signal possibly supplied by a sensor.
  • the switch 12 connects the antenna 11 to the demodulation and measurement circuit 17, and the transmission of the interrogation radio signal is interrupted.
  • echoes of the interrogation radio signal arrive at the antenna 11, which are reflected by obstacles at different distances in the vicinity of the antenna 11.
  • the antenna 11 arrives at only one response radio signal, which in the sensor 33 by mixing the oscillations of the two resonators 3, 5 in the now as a modulator acting diode 2 have been generated and emitted via the antenna 1. Therefore, the demodulation measuring circuit 17 waits for a predetermined period of time .DELTA.t after switching the switch 12 before it begins to examine the response signal received by the antenna 11 to frequency and / or attenuation and thus extract the information contained therein about the measured variable ,
  • the delay .DELTA.t may be fixed as a function of the transmission and reception power of the interrogation unit, for example in the sense that a maximum range is determined for a given type of interrogation unit from which echo signals are still detectable by the interrogation unit, and the delay ⁇ t is chosen to be at least twice the running time corresponding to this range.
  • the delay time .DELTA.t is determined by the query unit and the delay at least equal to twice the signal delay from the sensor element to the interrogation unit and thus just so large that an echo from this source is not evaluated.
  • the time that corresponds to the transit time of a radio signal from the antenna 11 to the roadway in the area of the flattened area 32 and back to the antenna 11 can be selected as the delay time ⁇ t.
  • FIG. 8 is a schematic representation of the response field intensity P at the antenna 11 of the interrogation unit as a function of time t during a polling cycle that results when a surface acoustic wave resonator of the type shown in FIG. 6 or 7 is used as the second resonator of the sensor; which has two spatially-spaced pairs 25, 26 or a pair 27 of electrodes 21, 22 and a reflector electrode 23.
  • the interrogation radio signal is emitted, as in the case of Figure 5.
  • the radiation of the interrogation radio signal is interrupted; the reception field strength P at the antenna 11 decreases as echoes of the interrogation radio signal reflected back from the surroundings of the antenna 11 fade away.
  • the retransmission of the interrogation radio signal begins a new duty cycle of the interrogation unit of the sensor.
  • FIG. 2 shows a further developed embodiment of the sensor system of FIG. 1.
  • only two sensors 33 are arranged which are sensitive to force or acceleration in the directions tangential to the surface of the tire.
  • Their structure is the same as described above with reference to Figures 1, 3, 5 or 6.
  • the sensor which is present at any position 31 in FIG. 1 and sensitive to a force or acceleration in the radial direction, is replaced by a single sensor 36, which measures the dynamic internal pressure of the pneumatic tire. From this internal pressure or its changes can be deduced a force acting on the pneumatic tire 30 in the radial direction force.
  • This sensor 36 has an extended in the circumferential direction of the tire 30 antenna 37 or antenna arrangement, of which in each rotational position of the pneumatic tire is a part within the lobe 34 of the antenna 11, so that the pressure sensor 36 can be queried at any time.
  • the extension of the lobe 34 in the circumferential direction and the distance of the sensor positions 31 is selected so that at any time three positions 31 are within the lobe 34.
  • a coding of the radio signals is required.
  • Software coding is here inconvenient, on the one hand due to the associated with running a program Processing times, on the other hand, because the sensors can gain the energy required for such coding only from the query radio signal, the energy is therefore scarce.
  • the sensors 33 distributed on the circumference of the pneumatic tire 30 are respectively divided into a plurality of groups, in the examples of FIGS. 1 and 2 this number is arbitrarily set to four, and the positions 31 are one of the four, depending on the membership of their sensors 33 Groups in Figures 1 and 2 denoted by a, b, c or d.
  • the carrier frequency f T of the interrogation radio signal is the same for all sensors 33, and the second resonators 3 of all sensors 33 are tuned to this carrier frequency f T.
  • the first resonators 5 have tuning ranges which are different within a group according to the measurement quantity to be detected by the sensor 33, and which also differ from one group to another. For example, in the case of FIG.
  • tuning ranges of the first resonators 5 each have a width of 10 MHz have the following assignment of tuning ranges to groups and measurands possible: group Force in the direction of travel Force in transverse direction a 0-10 MHz 40-50 MHz b 10-20 MHz 50-60 MHz c 20-30 MHz 60-70 MHz d 30-40 MHz 70-80 MHz
  • the interrogation unit is thus able, by selecting the measurement frequency selectively only the first resonators of a group and within this group only the first resonator of the sensor 33, which is assigned to a specific measurement, to stimulate, so that the response received after the excitation Radio signal can only come from the sensor 33 addressed in this way.
  • a further possibility is to assign different carrier frequencies at identical tuning ranges of the first resonators 5 to different sensors 33 arranged at the same position 31 and belonging to the same group. In this way, each of these sensors answer wireless signals can be obtained, although the same measurement frequencies or more accurately measuring frequencies within a same tuning range, but based on their different carrier frequencies in the interrogation unit are separated from each other and so each correctly associated with the measured variables to be detected can.
  • the antennas 1 of the sensors 33 may also be expedient to construct the antennas 1 of the sensors 33 polarization-sensitive.
  • the antenna 1 of a sensor 33 which detects a force in the direction of travel may be sensitive only to a polling radio signal polarized parallel to the direction of travel, and a sensor 33 arranged at the same position 31 for detecting the force transverse to the direction of travel is sensitive for a cross polarized interrogation radio signal. Accordingly, the polarizations differ from those of the two Sensors 33 radiated response radio signals, so that the interrogation unit is able to distinguish the polarization of the response radio signals.
  • the lobe 34 of the antenna 11 can be dimensioned such that essentially only one position 31 always lies within the lobe. In order to avoid a disturbance of the detection of the measured variable by sensors located at the edge of the lobe 34, a very sharp spatial boundary of the lobe 34 is required here.
  • the size of the lobe 34 of the antenna 11 in the circumferential direction of the pneumatic tire 30 is on the one hand so great that there are always several positions 31 in this lobe 34, but not as large as would allow sensors of all groups to fit into it.
  • the interrogation unit can respectively excite sensors of groups c, d and a and receive response radio signals from them, sensors of group b are not in the lobe 34.
  • the interrogation unit may be out of the absence of a response radio signal
  • Group b conclude that the sensors of groups a and c must be near the edge of the flattened region 32 and that the sensor of group d must lie in the center of the flattened region 32. At the edge of the region 32, a strong flexing movement of the material of the pneumatic tire 30 takes place, so that the sensors of the groups a and c can thereby be exposed to strong forces.
  • the sensor of group d must be located in the middle of the flattened area 32, that is, where the flexing movement is low, but the transmission of power between the pneumatic tire 30 and the road is most effective.
  • the response radio signal provided by this sensor thus allows the most accurate inference to the quality of the traction of the tire.
  • the interrogation unit therefore identifies the response radio signal of the sensor of group d on the basis of its characteristic measuring frequency and causes, for example, the issuing of a warning signal to the driver of the vehicle if the instantaneous value of this measuring frequency representing the force detected by the sensor of group d Desired range leaves. In this way, the driver can be warned even before the traction of the vehicle is lost, for example by aquaplaning or driving on an icy road, and the risk of accidents can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Claims (22)

  1. Système de capteurs pour la détection d'au moins une grandeur de mesure sur un objet en rotation (30), comprenant au moins un capteur sensible à la grandeur de mesure, placé sur l'objet en rotation (30), et des moyens pour prélever des signaux de mesure du capteur et pour transférer les signaux, vers un dispositif de traitement qui comprend un dispositif d'antenne (11) pour alimenter en énergie à haute fréquence le capteur et pour recevoir du capteur un signal de haute fréquence modulé en fonction de la grandeur à détecter,
    caractérisé en ce que
    plusieurs capteurs de ce type sont disposés sur l'objet (30) et répartis sur la périphérie, et le dispositif d'antenne (11) a une directivité (34) pour l'envoi et/ou la réception qui est stationnaire par rapport à un système de coordonnées rotatif qui ne tourne pas avec l'objet (30) et qui inclut seulement une zone partielle (32) de l'objet (30) en rotation.
  2. Système de capteurs selon la revendication 1,
    caractérisé en ce que
    la zone partielle est la surface de l'objet (30) en contact avec une base.
  3. Système de capteurs selon la revendication 1 ou 2,
    caractérisé en ce que
    le dispositif d'antenne (11) comporte une antenne commune pour l'envoi et la réception.
  4. Système de capteurs selon l'une quelconque des revendications précédentes,
    caractérisé en ce que
    les capteurs qui servent à détecter une même grandeur physique, présentent un écart dans le sens périphérique de l'objet (30) qui correspond essentiellement à l'allongement de la zone partielle (32) dans le sens périphérique.
  5. Système de capteurs selon l'une quelconque des revendications précédentes,
    caractérisé en ce que
    les capteurs présentent un codage qui permet, parmi plusieurs capteurs se trouvant dans la zone partielle (32), d'alimenter en énergie à haute fréquence de manière sélective au moins un capteur ou de recevoir de manière sélective au moins un capteur se trouvant dans la zone partielle.
  6. Système de capteurs selon la revendication 5,
    caractérisé en ce que
    les capteurs forment n groupes respectivement répartis de manière cyclique sur la périphérie de l'objet (30).
  7. Système de capteurs selon la revendication 6,
    caractérisé en ce que
    la zone partielle est délimitée de telle sorte que jamais des capteurs de la totalité des n groupes ne s'y trouvent simultanément.
  8. Système de capteurs selon l'une quelconque des revendications précédentes,
    caractérisé en ce que
    chaque capteur présente un premier résonateur (5) excitable par une fréquence de mesure modulée par une fréquence porteuse de l'énergie à haute fréquence, et dont la fréquence de résonance est variable selon la grandeur de mesure.
  9. Système de capteurs selon la revendication 8,
    caractérisé en ce que
    le premier résonateur (5) comprend un résonateur d'ondes de surface ou un cristal oscillateur.
  10. Système de capteurs selon la revendication 9,
    caractérisé en ce que
    le premier résonateur (5) comprend en outre un élément de construction discret sensible (6) pour la grandeur de mesure.
  11. Système de capteurs selon l'une quelconque des revendications 5 à 7 et l'une quelconque des revendications 8 à 10,
    caractérisé en ce que
    chaque codage correspond à une gamme d'accord spécifique du résonateur.
  12. Système de capteurs selon la revendication 11,
    caractérisé en ce que
    les gammes d'accord de résonateur des différents codages sont disjointes.
  13. Système de capteurs selon l'une quelconque des revendications précédentes,
    caractérisé en ce que
    la grandeur de mesure est une grandeur vectorielle, en particulier une force ou une accélération.
  14. Système de capteurs selon la revendication 13,
    caractérisé en ce que
    les capteurs sont conçus chacun pour la détection de deux composants de la grandeur de mesure perpendiculaires l'un à l'autre et tangentiels par rapport à la surface de l'objet.
  15. Système de capteurs selon l'une quelconque des revendications précédentes,
    caractérisé en ce que
    l'objet (30) est un pneu.
  16. Système de capteurs selon la revendication 15,
    caractérisé en ce qu'
    il présente en outre un capteur isolé (36) pour la pression du pneu.
  17. Système de capteurs selon l'une quelconque des revendications précédentes,
    caractérisé en ce que
    chaque capteur présente un deuxième résonateur (3) excitable par une fréquence porteuse de l'énergie à haute fréquence.
  18. Système de capteurs selon la revendication 17,
    caractérisé en ce que
    le deuxième résonateur (3) est un résonateur à ondes de surface.
  19. Système de capteurs selon la revendication 18,
    caractérisé en ce que
    le deuxième résonateur (3) est en mesure de produire une impulsion oscillante de sortie à retardement en réaction à une impulsion oscillante d'excitation.
  20. Système de capteurs selon la revendication 19,
    caractérisé en ce que
    le deuxième résonateur (3) présente une distance de propagation (L) pour l'onde de surface qui doit être parcourue par une onde de surface excitée dans le deuxième résonateur (3) avant d'être prélevée.
  21. Système de capteurs selon la revendication 19 ou 20,
    caractérisé en ce que
    le deuxième résonateur (3) présente deux paires (25, 26) éloignées d'électrodes (21, 22).
  22. Système de capteurs selon la revendication 19 ou 20,
    caractérisé en ce que
    le deuxième résonateur (3) présente une paire (27) d'électrodes (21, 22) pour l'excitation et le prélèvement d'une onde de surface, et des électrodes de réflecteur (23) écartées de la paire d'électrodes (27).
EP01929317A 2000-05-23 2001-04-05 Systeme de capteurs pour la detection de grandeurs a mesurer sur un objet tournant Expired - Lifetime EP1289809B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10025502A DE10025502A1 (de) 2000-05-23 2000-05-23 Sensorsystem zur Erfassung von Meßgrößen an einem rotierenden Gegenstand
DE10025502 2000-05-23
PCT/DE2001/001323 WO2001089896A1 (fr) 2000-05-23 2001-04-05 Systeme de capteurs pour la detection de grandeurs a mesurer sur un objet tournant

Publications (2)

Publication Number Publication Date
EP1289809A1 EP1289809A1 (fr) 2003-03-12
EP1289809B1 true EP1289809B1 (fr) 2007-05-23

Family

ID=7643247

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01929317A Expired - Lifetime EP1289809B1 (fr) 2000-05-23 2001-04-05 Systeme de capteurs pour la detection de grandeurs a mesurer sur un objet tournant

Country Status (6)

Country Link
US (1) US6888471B2 (fr)
EP (1) EP1289809B1 (fr)
JP (1) JP2003534539A (fr)
KR (1) KR20030001546A (fr)
DE (2) DE10025502A1 (fr)
WO (1) WO2001089896A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022086611A1 (fr) * 2020-10-20 2022-04-28 Lyten, Inc. Systèmes pour détecter des changements de propriétés physiques dans un matériau élastomère
US11555748B2 (en) 2019-03-27 2023-01-17 Lyten, Inc. Sensors incorporated into tire plies to detect reversible deformation and/or temperature changes
US11555761B1 (en) 2019-03-27 2023-01-17 Lyten, Inc. Sensors incorporated into elastomeric components to detect physical characteristic changes
US11585731B2 (en) 2019-03-27 2023-02-21 Lyten, Inc. Sensors incorporated into semi-rigid structural members to detect physical characteristic changes
US11592279B2 (en) 2019-03-27 2023-02-28 Lyten, Inc. Sensors incorporated into elastomeric materials to detect environmentally-caused physical characteristic changes
US11656070B2 (en) 2019-03-27 2023-05-23 Lyten, Inc. Systems for detecting physical property changes in an elastomeric material
US11719582B2 (en) 2019-03-27 2023-08-08 Lyten, Inc. Sensors incorporated into tire plies to detect reversible deformation and/or temperature changes
US11965803B2 (en) 2019-03-27 2024-04-23 Lyten, Inc. Field deployable resonant sensors

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6719134B2 (en) * 2001-02-01 2004-04-13 Vincent R. Phillips Toilet plunger storage device
EP1417470A1 (fr) * 2001-08-06 2004-05-12 Société de Technologie Michelin Methode de determination de composantes d'efforts subis par un pneumatique et du couple d'auto-alignement
DE10155672A1 (de) 2001-11-13 2003-05-22 Bosch Gmbh Robert Reifensensorik zur kontinuierlichen Messung der übertragenen Kraft und des Reibwertpotentials mu
ES2534480T3 (es) * 2001-12-21 2015-04-23 Kabushiki Kaisha Bridgestone Método y aparato para estimar el estado de la superficie de una carretera y el estado de marcha de un neumático
FR2835918A1 (fr) * 2002-02-08 2003-08-15 Michelin Soc Tech Mesure de coefficient d'adherrence maximal a partir de la mesure de l'extension circonferentielle dans un flanc d'un pneu
DE10218781A1 (de) 2002-04-26 2003-11-13 Tuev Automotive Gmbh Auf einer Felge montierbarer Luftreifen, Sensornetz, Umdrehungsmesseinheit und Fahrzeugüberwachungssystem
JP4255048B2 (ja) * 2002-08-02 2009-04-15 横浜ゴム株式会社 タイヤの歪み状態検出方法、歪み状態検出装置及びそのセンサユニット並びにこれを備えたタイヤ
DE10325667A1 (de) * 2003-06-06 2005-03-03 Fag Kugelfischer Ag & Co. Ohg Messsystem mit wenigstens zwei SAW-oder BAW-Sensoren und Verfahren zum Betreiben desselben
JP2005047460A (ja) * 2003-07-31 2005-02-24 Aisin Seiki Co Ltd タイヤ情報検知装置
US7696902B2 (en) 2003-11-07 2010-04-13 Kabushiki Kaisha Bridgestone Tire sensor device and tire information transmission method
US7518495B2 (en) * 2003-11-18 2009-04-14 Lear Corporation Universal tire pressure monitor
US7489996B2 (en) * 2004-05-06 2009-02-10 Hydro-Aire, Inc. Antiskid control unit and data collection system for vehicle braking system
WO2006001255A1 (fr) 2004-06-23 2006-01-05 Bridgestone Corporation Système de détection d'usure de pneu et pneumatique
US7827858B2 (en) * 2004-06-30 2010-11-09 Michelin Recherche Et Technique S.A. System for estimating the maximum adherence coefficient by measuring stresses in a tire tread
JP4089673B2 (ja) * 2004-09-24 2008-05-28 アイシン精機株式会社 タイヤ情報検知装置
JP2006131195A (ja) * 2004-11-09 2006-05-25 Alps Electric Co Ltd タイヤ情報検出装置
JP2006170686A (ja) * 2004-12-14 2006-06-29 Sumitomo Electric Ind Ltd タイヤ状態検出装置、タイヤ状態検出方法、タイヤ及びアンテナ
FR2885411B1 (fr) * 2005-05-04 2007-07-06 Michelin Soc Tech Pneumatique comportant un dispositif de mesure de force a tige rigide
FR2898542B1 (fr) * 2006-03-14 2008-05-30 Michelin Soc Tech Vehicule comportant au moins un ensemble monte et utilisation d'un systeme de mesure.
US7903038B2 (en) * 2006-12-08 2011-03-08 Lockheed Martin Corporation Mobile radar array
FR2914743B1 (fr) * 2007-04-06 2009-05-15 Michelin Soc Tech Procede de detection et d'estimation d'un phenomene d'hydroplanage d'un pneumatique sur une chaussee mouillee
FR2914745B1 (fr) * 2007-04-06 2009-07-03 Michelin Soc Tech Procede d'estimation d'une hauteur d'eau au contact d'un pneumatique sur une chaussee
FR2914744B1 (fr) * 2007-04-06 2009-07-03 Michelin Soc Tech Procede de detection d'un phenomene d'hydroplanage d'un pneumatique sur une chaussee
US7683799B2 (en) * 2007-05-03 2010-03-23 Gm Global Technology Operations, Inc. Absolute angular position sensing system based on radio frequency identification technology
CN101687447B (zh) 2007-07-03 2015-02-11 欧陆汽车***美国有限公司 通用轮胎压力监测传感器
BRPI0722239A2 (pt) * 2007-11-30 2014-06-10 Volvo Lastvagnar Ab Método de identificação de posições de módulos de roda
US20090167525A1 (en) * 2008-01-02 2009-07-02 Christopher Gilboy System, method and apparatus for avoiding loss of portable devices
CN101999049A (zh) * 2008-04-10 2011-03-30 沃尔沃拉斯特瓦格纳公司 识别制动监视器的位置的方法
FR2935937B1 (fr) * 2008-09-16 2010-09-17 Continental Automotive France Procede et dispositif de localisation de la position longitudinale de roues d'un vehicule.
DE102009057596A1 (de) * 2009-12-09 2011-06-16 Continental Aktiengesellschaft Vorrichtung zum Ermitteln einer Latschlänge eines Fahrzeugreifens
US8751092B2 (en) 2011-01-13 2014-06-10 Continental Automotive Systems, Inc. Protocol protection
CN103826879B (zh) 2011-08-09 2017-10-10 大陆汽车***公司 用于传输轮胎压力信号的设备和方法
RU2570246C2 (ru) 2011-08-09 2015-12-10 Континенталь Отомоутив Системз, Инк. Устройство и способ для недопущения неправильной интерпретации протокола для системы контроля давления в шине
WO2013022435A1 (fr) 2011-08-09 2013-02-14 Continental Automotive Systems, Inc. Appareil et procédé de surveillance de pression de pneu
KR101599373B1 (ko) 2011-08-09 2016-03-03 컨티넨탈 오토모티브 시스템즈 인코포레이티드 타이어 압력 모니터에 대한 로컬화 과정을 활성화하기 위한 장치 및 방법
US9676238B2 (en) 2011-08-09 2017-06-13 Continental Automotive Systems, Inc. Tire pressure monitor system apparatus and method
JP5421418B2 (ja) * 2012-03-21 2014-02-19 コンパニー ゼネラール デ エタブリッスマン ミシュラン タイヤ状態のための撓み特徴解析
US8874345B2 (en) * 2012-04-04 2014-10-28 General Electric Company Method and system for identifying an erroneous speed of a vehicle
WO2013175073A1 (fr) * 2012-05-22 2013-11-28 Teknologian Tutkimuskeskus Vtt Plate-forme de capteur d'intermodulation basée sur un résonateur mécanique
US9446636B2 (en) 2014-02-26 2016-09-20 Continental Automotive Systems, Inc. Pressure check tool and method of operating the same
US10038535B2 (en) * 2014-04-09 2018-07-31 Lg Electronics Inc. Method and apparatus for transmitting frame on basis of sounding procedure
DE102014109402B4 (de) * 2014-07-04 2017-06-14 Sick Ag Sensor für eine Rollenbahn und Verfahren zum Erkennen von auf einer Rollenbahn befindlichen Objekten
US9517664B2 (en) 2015-02-20 2016-12-13 Continental Automotive Systems, Inc. RF transmission method and apparatus in a tire pressure monitoring system
DE102016213290A1 (de) 2015-08-03 2017-02-09 Continental Automotive Systems, Inc. Vorrichtung, System und Verfahren zum Konfigurieren eines Reifeninformationssensors mit einem Übertragungsprotokoll auf der Basis von Fahrzeugtriggerkenngrößen
EP3390029B1 (fr) 2015-12-16 2020-09-09 Bridgestone Americas Tire Operations, LLC Produit anti-crevaison magnétique pour la détection de perforations
US9970782B1 (en) 2016-03-24 2018-05-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration RFID-enabled angular position sensing system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4300119A (en) * 1979-09-06 1981-11-10 Facet Enterprises, Inc. Power generator for telemetry transmitter
JPH0210105U (fr) * 1988-07-04 1990-01-23
SE9201816D0 (sv) 1992-06-11 1992-06-11 Saab Scania Combitech Ab Kraft- och toejningsmaetare hos daeck
DE69330265T2 (de) * 1992-11-25 2002-02-07 Simmonds Precision Products Inc., Akron Datenverarbeitungsstrukturen und Methoden
DE19702768C1 (de) 1997-01-27 1998-04-23 Bartels Mangold Electronic Gmb Vorrichtung zur drahtlosen Übertragung von mindestens einem Meßwert aus bewegten Teilen
DE59706501D1 (de) * 1996-05-29 2002-04-04 Iq Mobil Electronics Gmbh Vorrichtung zur drahtlosen übertragung aus bewegten teilen
DE19807004A1 (de) 1998-02-19 1999-09-09 Siemens Ag Sensorsystem und Verfahren für Überwachung/Messung des Kraftschlusses eines Fahrzeugreifens mit der Fahrbahn und weiterer physikalischer Daten des Reifens
US6501372B2 (en) * 2001-02-02 2002-12-31 Trw Inc. Tire condition sensor communication with unique sampling on vehicle-side diversity antenna array

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11555748B2 (en) 2019-03-27 2023-01-17 Lyten, Inc. Sensors incorporated into tire plies to detect reversible deformation and/or temperature changes
US11555761B1 (en) 2019-03-27 2023-01-17 Lyten, Inc. Sensors incorporated into elastomeric components to detect physical characteristic changes
US11585731B2 (en) 2019-03-27 2023-02-21 Lyten, Inc. Sensors incorporated into semi-rigid structural members to detect physical characteristic changes
US11592279B2 (en) 2019-03-27 2023-02-28 Lyten, Inc. Sensors incorporated into elastomeric materials to detect environmentally-caused physical characteristic changes
US11656070B2 (en) 2019-03-27 2023-05-23 Lyten, Inc. Systems for detecting physical property changes in an elastomeric material
US11719582B2 (en) 2019-03-27 2023-08-08 Lyten, Inc. Sensors incorporated into tire plies to detect reversible deformation and/or temperature changes
US11892372B2 (en) 2019-03-27 2024-02-06 Lyten, Inc. Sensors incorporated into semi-rigid structural members to detect physical characteristic changes
US11965803B2 (en) 2019-03-27 2024-04-23 Lyten, Inc. Field deployable resonant sensors
US12025510B2 (en) 2019-03-27 2024-07-02 Lyten, Inc. Sensors incorporated into tire plies to detect reversible deformation and/or temperature changes
WO2022086611A1 (fr) * 2020-10-20 2022-04-28 Lyten, Inc. Systèmes pour détecter des changements de propriétés physiques dans un matériau élastomère

Also Published As

Publication number Publication date
WO2001089896A1 (fr) 2001-11-29
DE50112525D1 (de) 2007-07-05
US6888471B2 (en) 2005-05-03
DE10025502A1 (de) 2001-11-29
US20040036590A1 (en) 2004-02-26
EP1289809A1 (fr) 2003-03-12
JP2003534539A (ja) 2003-11-18
KR20030001546A (ko) 2003-01-06

Similar Documents

Publication Publication Date Title
EP1289809B1 (fr) Systeme de capteurs pour la detection de grandeurs a mesurer sur un objet tournant
EP0677752B1 (fr) Système pour détection
EP0821796B1 (fr) Detecteur interrogeable par radio, a ondes de surface
EP0937615B1 (fr) Système de capteur et procédé pour surveiller/mesurer l'adhérence d'un pneu de véhicule avec la piste de roulage et autres données physiques du pneu
EP1051639B1 (fr) Dispositif de detection radar
EP0901881B1 (fr) Outil ou porte-outil
EP1290663B1 (fr) Capteur, systeme capteur et procede pour la determination a distance d'une grandeur a mesurer
DE10253278B4 (de) Reifenmessung mit einem energieautark modulierten Backscatter-Transponder
EP1421354B1 (fr) Mesure sans contact de contraintes sur des pieces rotatives
DE2455923C2 (de) Warnvorrichtung zum Melden eines Luftdruckabfalles in Fahrzeugreifen
EP2331917A1 (fr) Appareil de mesure de niveau fonctionnant à micro-ondes
WO1995022770A1 (fr) Etiquette d'identification fonctionnant avec des ondes acoustiques de surface
EP1285284A1 (fr) Procede et dispositif permettant de determiner par radio la position et/ou l'orientation d'au moins un objet
DE1946627A1 (de) UEbertragungseinrichtung zur drahtlosen UEbertragung von mindestens einem Messwert,wie Druck,Temperatur,Unwucht,Abstand usw.,zugeordneten Signalen
WO2004021509A1 (fr) Transpondeur a retrodiffusion module de façon autonome en energie
CH616240A5 (en) Distance measuring system for road vehicles, using a Doppler radar
DE4413211C2 (de) Identifizierungs- und/oder Sensorsystem
WO1987003254A1 (fr) Dispositif pour transmettre des signaux de mesure, par exemple la pression des pneumatiques, aux roues jumelees de vehicules a moteur
WO2011091965A1 (fr) Système et procédé de suppression des interférences dans des systèmes radar à modulation de fréquence
EP0965073A1 (fr) Systeme de guidage pour unite mobile et son procede de fonctionnement
DE10049019A1 (de) Verfahren und Vorrichtung zur drahtlosen Messung wenigstens eines aus einer Drehbewegung eines Objekts, insbesondere Rotors resultierenden Parameters
WO2003100743A2 (fr) Mesure de position sans contact d'elements rotatifs
DE19851002A1 (de) Elektronische Baugruppe mit Identifikations- und/oder Sensorfunktion
DE4023890C2 (fr)
DE2902213A1 (de) Einrichtung zur kontinuierlichen ueberwachung des luftdruckes in fahrzeugreifen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021223

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

REF Corresponds to:

Ref document number: 50112525

Country of ref document: DE

Date of ref document: 20070705

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100506

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100624

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20111230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111101

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110502

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50112525

Country of ref document: DE

Effective date: 20111101