EP1287036A1 - Trivalente antikörperkonstrukte mit disulfid-brücken stabilisierten variablen regionen - Google Patents

Trivalente antikörperkonstrukte mit disulfid-brücken stabilisierten variablen regionen

Info

Publication number
EP1287036A1
EP1287036A1 EP01933941A EP01933941A EP1287036A1 EP 1287036 A1 EP1287036 A1 EP 1287036A1 EP 01933941 A EP01933941 A EP 01933941A EP 01933941 A EP01933941 A EP 01933941A EP 1287036 A1 EP1287036 A1 EP 1287036A1
Authority
EP
European Patent Office
Prior art keywords
recombinant antibody
construct according
antibody construct
binding
antigen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01933941A
Other languages
English (en)
French (fr)
Inventor
Stefan Dübel
Andreas Schmiedl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universitaet Heidelberg
Original Assignee
Universitaet Heidelberg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitaet Heidelberg filed Critical Universitaet Heidelberg
Publication of EP1287036A1 publication Critical patent/EP1287036A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/468Immunoglobulins having two or more different antigen binding sites, e.g. multifunctional antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/624Disulfide-stabilized antibody (dsFv)

Definitions

  • the present invention relates to recombinant antibody constructs, processes for their preparation, pharmaceutical compositions and diagnostic agents which contain these recombinant antibody constructs, and the use of these recombinant antibody constructs for the diagnosis and treatment of cancer, autoimmune diseases, allergies, immunological overreactions, infections or noxae.
  • Bispecific antibodies are best prepared recombinantly, since in the conventional quadroma or hybrid hybridoma technique a mixture of 10 different products occurs, from which the only correct one can only be separated with considerable effort (Milstein and Cuello, 1983).
  • bispecific antibodies are necessary as agents for new types of therapeutic procedures that could not be carried out without such molecules. They are used in particular to stimulate the immune response against tumor cells (Segal et al., 1999; Hombach et al., 1993; Manzke et al, 1999). T-lymphocytes are specifically introduced to tumor cells and often additionally activated by one of the binding arms of the bispecific agent.
  • Various molecular formats have been developed for the production of therapeutic antibodies in general and bispecific antibodies in particular (Breitling and Dübel, 1997; Carter and Merchant, 1997).
  • minibody about 90 kDa
  • scFv fragments two identical scFv fragments, which dimerize through fused CH3 domains.
  • This construct is bivalent, but monospecific.
  • the production of bispecific antibodies according to this pattern is difficult because it can lead to homologous pairings and thus to undesirable and difficult-to-separate by-products.
  • CH1 and CL (k a pp a ) domains for dimerization solved the problem of by-products in the production of bispecific minibodies, but the affinity is limited by the monovalence of the respective antigen binding sites.
  • Bispecific diabodies such as those often produced for therapy, are smaller than the pharmacokinetically optimal construct for tumor therapy in that they are composed of only two antigen-binding antibody fragments (Hollinger et al., 1993, 1996, 1999; Arndt et al., 1999 ; Helfrich ef a /., 1998).
  • dsFv-dsFv 'antibodies ie constructs from two disulphide bridge-stabilized Fv fragments, which are linked by a short linker peptide (Breitling and Dübel, 1997; Schmiedl et al., 2000) eliminates the stability problems of the diabodies , the construct also has a too low molecular weight for optimal tumor localization.
  • the present invention is therefore based on the object of providing new antibody constructs for diagnostic, therapeutic and research purposes which are intended to eliminate the disadvantages of the prior art listed above.
  • a recombinant antibody construct with at least three antigen-binding antibody fragments is provided, at least one antigen-binding antibody fragment having a disulfide bridge between the variable domains.
  • the recombinant antibody construct according to the invention is preferably at least bispecific, the number of specificities depending on the diversity of the antigen-binding antibody fragments.
  • the recombinant antibody construct according to the invention can have three different antigen-binding antibody fragments, which is therefore trispecific.
  • the valence of the recombinant antibody constructs according to the invention generally corresponds to the number of antigen-binding antibody fragments.
  • the recombinant antibody construct according to the invention preferably has a molecular weight of approximately 90 kDa.
  • the two polypeptide chains of the antigen-binding antibody fragment with at least one disulfide bridge are preferably different from one another.
  • these polypeptide chains are selected from the variable domains (hereinafter also referred to as “Fv”) of immunoglobulins, such as IgA, IgD, IgE and IgG, and biologically active fragments of these variable domains.
  • Fv variable domains
  • biological active fragment here means that these fragments have or result in an essentially identical or improved antigenic binding property, such as the naturally present Fvs.
  • these two polypeptide chains can be in any combination of the variable parts of the H and L chains from one immunoglobulin ("monoclonal") or two different immunoglobulins of one class, such as IgG, or different classes, such as IgG and IgA , occurrence.
  • the recombinant antibody construct can have one or more antigen-binding antibody fragments (hereinafter also referred to as “scFv”) which have a polypeptide chain with two peptide sequences which are different from one another and from the primary structures of the variable domains of immunoglobulins and the biologically active portions thereof are selected.
  • scFv antigen-binding antibody fragments
  • biologically active portion here means that these portions have or result in substantially identical or improved antigenic binding properties to that of naturally occurring Fvs.
  • the recombinant antibody construct according to the invention is linked to one another in accordance with the number n of antigen-binding antibody fragments present via (n-1) peptide linkers.
  • n-1 the number of antigen-binding antibody fragments present via (n-1) peptide linkers.
  • Antibody fragments two peptide linkers present can also contain, in part or in place of the variable parts of the H and L chains of immunoglobulins, at least one corresponding domain of another protein, in particular a member of the immunoglobulin superfamily, for example variable regions or parts of T cell receptors , MHC proteins (class I and II), cell surface proteins, cytokines or growth factors.
  • the recombinant antibody construct according to the present invention can further comprise at least one effector domain, which for example consists of interleukin 2, interferon- ⁇ , interferon- ⁇ , B7.1, B7.2, TNF- ⁇ , complement cascade components, toxins such as ricin, PE, DT , and RNAsen and biologically active fragments thereof are selected.
  • effector domain includes domains that catalyze or inhibit a biochemical reaction.
  • the recombinant antibody construct according to the invention can further contain at least one radioactive substance which is covalently bound by chemical reaction.
  • cytokines for example cytokines, antibodies, receptors, complement proteins or low molecular weight compounds
  • cytokines for example cytokines, antibodies, receptors, complement proteins or low molecular weight compounds
  • the destruction of which of the cells in the vicinity of the V-bodies is caused by the body's own or endogenous effectors, for example by other cells such as Immune system cells, e.g. T lymphocytes or macrophages, or by molecules of the immune system, such as complement proteins.
  • Anchor domains can also be added to the recombinant antibody construct according to the invention, which allow coupling to one of the above-mentioned effectors or effector domains.
  • anchor domains of this type are avidin, streptavidin, or biologically active derivatives or mutations thereof, biotin, streptavidin / avidin binding peptides, bacterial immunoglobulin binding molecules such as protein A, protein G, protein H, protein L, calmodulin, calmodulin binding molecules, fragments of RNAsen , non-natural sequences that bind a fragment of RNAsen, and leucine zippers.
  • polyethylene molecules can be covalently coupled to the recombinant antibody construct according to the invention.
  • Figure 4 is a graphical representation of the vector used in Example 3 to produce a bispecific antibody construct.
  • Another object of the present invention is a method for producing the recombinant antibody constructs defined above, wherein the antigen-binding antibody fragments by means of recombinant DNA technology and introduction of a disulfide bridge into at least one antigen-binding antibody fragment via suitable mutagenesis, for example "site-specific mutagenesis" or PCR Mutagenesis of the nucleic acid sequences coding for the two polypeptide chains.
  • suitable mutagenesis for example "site-specific mutagenesis” or PCR Mutagenesis of the nucleic acid sequences coding for the two polypeptide chains.
  • the antibody constructs according to the invention are recombinantly produced, for example, in E. coli, insect cell cultures, Pichia patoris, CHO cell culture cells or transgenic plants.
  • vectors are produced by means of DNA cloning according to the prior art, which, after transfection into the corresponding host cells or organisms, enable the subunits to be produced recombinantly.
  • the DNA sequences which code for the subunits of the V-bodies are constructed for this purpose by PCR mutagenesis or other methods according to the prior art such that at least one of the Fv regions involved is mutated in the recombinantly produced protein (i) of two at the contact point between VH and V * . opposite amino acid positions (one each in VH and V L ) to cysteine can be stabilized with an interface disulfide bridge (Brinkmann et al., 1993, Proc. Natl. Acad.
  • the resulting molecular mass corresponds to the advantageous minibody size.
  • the optimal arrangement (sequence) of the different VH and V * _ chain genes in relation to each other in the vector can be optimally selected individually for each construct. Possible by-products of the recombinant production which can arise can be separated off using chromatographic methods known in the art.
  • nucleic acids which are at least partially those for the invention contain recombinant antibody constructs or antigen-binding antibody fragments encoding nucleic acid sequences, as well as suitable methods known in the art for the expression of the recombinant antibody constructs or antigen-binding antibody fragments.
  • the method according to the invention provides antibody constructs which, for example, enable a bivalent binding to a tumor or effector and thus a much higher off-rate during dissociation. This results in a longer localization in the target tissue and also does without any dimerization domains. As a result, excellent binding is achieved at a suitable molecular weight, preferably about 90 kDa, which cannot be achieved in the same way with any of the constructs previously described in the prior art.
  • the molecular design described here therefore combines for the first time the previously separately found positive properties of previous constructs:
  • the antibody constructs according to the invention in particular do not contain constant domains, since these domains are no longer necessary for dimerization, and the constructs according to the invention are sufficiently stabilized through the use of //7terc/.a/t.-disulfide bridges.
  • the antibody constructs according to the invention are therefore also referred to below as "V-bodies", since they may be composed exclusively of variable regions except for short spacer peptides.
  • the method according to the invention enables the construction of the V bodies from human V regions. This enables the entire construct to be made from exclusively human protein fragments - this makes one Avoid immune reaction (e.g. HAMA) against the therapeutic agent, as occurs in constructs that achieve their bivalence or bispecificity by fusing the antigen-binding domains to heterologous fusion partners (such as streptavidin, zipper motifs, protein A fusions, etc.).
  • HAMA e.g. antigen-binding domains
  • heterologous fusion partners such as streptavidin, zipper motifs, protein A fusions, etc.
  • Variations of the V-bodies consist of 2, 3 or 4 polypeptide chains, different degrees of disulfide stabilization being used (Fig. 1 (C), 2, 3).
  • Trispecific antibodies can be produced without any additional effort compared to bispecific antibodies if the recombinant expression vectors are constructed in such a way that two polypeptide chain constructs are used, for example, each from an scFv and a variable domain of a dsFv fragment (see FIGS. 2 and 3, each above right).
  • the present invention further relates to a pharmaceutical composition which contains the recombinant antibody construct according to the invention in a pharmaceutically effective amount and optionally a pharmaceutically acceptable carrier and / or diluent.
  • the pharmaceutical composition of the invention can be used, for example, to prevent or treat cancer, i.e. systemic and solid tumors, metastases and metastasis, autoimmune diseases, allergies, immunological overreactions, infections or noxious agents are used.
  • Another object of the present invention is a diagnostic agent which contains the recombinant antibody construct according to the invention.
  • This diagnostic agent can be used for in vitro and / ⁇ u / Vo diagnostics, for example for the detection of cancer, autoimmune diseases, allergies, immunological overreactions, infections or noxious substances.
  • trispecific antibodies can be produced without special Trimerization motifs must be used in addition to the antigen-binding regions of the antibodies. This is used to produce therapeutic agents that can bind several tumor markers on one cell, or several different epitopes of a tumor marker. A combination of a tumor marker and a tissue-specific antibody can also be used. This increases the tumor specificity significantly compared to monovalent or multivalent-monospecific binding, and greatly reduces the burden on the patient due to the previously very common localization of the antibodies in non-specific tissues (both by cross-reactions and by expression of the tumor marker on other tissues). Apparent affinity is also improved by the increased avidity.
  • the remaining binding site of the trispecific antibodies serves to strengthen the immune response against the tumor, in particular by binding to CD3 or CD28 of the T lymphocytes. Activation of the natural killer (NK) cells against the tumor by binding to CD16 is also possible. Alternatively, this antibody fragment can also activate complement cascades.
  • NK natural killer
  • V-bodies are assembled in the periplasm of E. coli which contain a binding site for human CD3 and two binding sites for a tumor marker, e.g. MUC1, erbB2 or similar, or differentiation markers, e.g. CD19.
  • the proteins are purified from the periplasm and used intravenously to bring T lymphocytes to the tumor. It is also possible to produce the proteins in eukaryotic cell lines (e.g. CHO or baculovirus) or transgenic plants.
  • scFv single-chain Fv fragments
  • dsFv disulfide bridge-stabilized Fv fragment
  • phOx 4-ethoxymethylene-2- phenyl-2-oxazolin-5-one
  • the C-termini of the variable domains of their heavy chains were combined with the N-termini of the variable domains of their light chains with a flexible // n comprising 18 amino acids / cer peptide, which is composed of the first amino acids of the CH1 domain and the linear ⁇ -tubulin epitope EEGEFSEAR (Yol-Tag) of the monoclonal antibody Yol1 / 34 (Kilmartin et al., 1982; Breitling and Little, 1986 ; Schmiedl et al., 2000a).
  • One of the variable domains of the anti-phox dsFv fragment was fused to the C-termini of the light chains.
  • a short peptide of the human 62 kDa proto-oncogene product c-myc which contains the linear epitope EEKLISEEDL of the monoclonal antibody Myd-9E10 (Evan et al., 1985), is located near the C-termini of both polypeptide chains before a 6xHis- sweeps the fusion proteins scFv 215 (Yol) -10-V H (phOx) and scFv 215 (Yol) -10-V L (phOx).
  • the vector pOPE111-215HphOx / 215LphOx was generated to produce the V-body described above. It codes for the two fusion proteins scFv 215 (Yol) -10-V H (phOx) and scFv 215 (Yol) - 10-V * _ (phOx) described above. The two gene fragments were each separated, with formation of ORFs behind pelB- / eacfer sequences from Erwinia carotovora (Lei et al., 1987) for the secretion of the translation products in the cloned periplasmic space.
  • the vector pOPE111 also has a ColE1 origin of replication and the b-lactamase gene as a selection marker for ampicillin resistance.
  • the expression of the encoded V-body constructs is determined using a synthetic / ac promoter P / A1 / 04 which can be induced by IPTG / 03 and two strong ribosome binding sites (RBS).
  • a 50 mL overnight culture of E. coli cells transformed with pOPE111-215HphOx / 215LphOx was 1/20 in dYT medium (16 g / L Bacto-Trypton, 10 g / L yeast extract, 5 g / L NaCI) with 100 mM Giucose and 100 ⁇ g / mL ampicillin diluted and cultivated at 37 ° C. and 230 rpm to an OD 6 oo of 0.6 before the promoter was induced by adding 20 mM isopropyl-bD-thiogalactopyranoside. After 3 h of incubation at 22 ° C. and 230 rpm, the bacteria were cooled on ice for 10 min and pelleted by centrifugation at 4 ° C. and 5000 ⁇ g.
  • periplasmic extracts For the preparation of periplasmic extracts, the pelleted bacteria were cooled in 1/10 volume (based on the starting volume of the culture) of shock solution (50 mM Tris / HCl, pH 8.0, 20% (w / v) sucrose, 1 mM EDTA) resuspended, incubated for 20 min with occasional shaking on ice and centrifuged again for 10 min at 6200 xg and 4 ° C. The periplasmic extract in the supernatant was centrifuged for a further 30 min at 30,000 ⁇ g and 4 ° C., dialyzed against PBS and analyzed with SDS-PAGE, immunoblot and ELISA.
  • shock solution 50 mM Tris / HCl, pH 8.0, 20% (w / v) sucrose, 1 mM EDTA
  • the cell pellet was resuspended in 1/10 volume (based on the initial volume of the culture) 5 mM MgSO 4 , incubated for 20 min with occasional shaking on ice and also centrifuged for 30 min at 30,000 xg and 4 ° C.
  • the extract thus obtained was also dialyzed against PBS and analyzed with SDS-PAGE, immunoblot and ELISA.
  • a column was loaded with 2 ml / liter bacterial culture Ni-NTA-Sepharose and equilibrated in SSP (PBS, pH 7.5, 10 mM imidazole, 1 M NaCl).
  • SSP SSP
  • the dialyzed periplasmic extracts were pooled, adjusted to the same buffer conditions and added to the column.
  • the proteins were 10 Sepharose volumes elution buffer (PBS, pH 7, 5, 500 mM imidazole, 1 M NaCl) competitively eluted.
  • the collected fractions were analyzed by SDS-PAGE (Laemmli, 1975) and Immunoblot (Towbin et al., 1989; Schmiedl et al., 2000b). Fractions containing protein were pooled.
  • the antibody fragments obtained via IMAC were dialyzed against 30 mM Tris / HCl, pH 8.0 and at 0.5 mL / min on the column equilibrated in the same buffer (Mono Q HR / 5R; Amersham Pharmacia, Freiburg; Schmiedl et al., 2000b). After washing the column with 5 mL 30 mM Tris / HCl, pH 8.0, the proteins were competitively eluted using a two-phase NaCI gradient. For this purpose, the salt concentration was first increased to 20 mM over 20 mL, then over 1 mL to 1 M NaCl.
  • the column was rinsed with 5 ml of Mono Q elution buffer (30 mM Tris / HCl, pH 8.0, 1 M NaCl) and readjusted to Mono-Q buffer.
  • Mono Q elution buffer (30 mM Tris / HCl, pH 8.0, 1 M NaCl) and readjusted to Mono-Q buffer.
  • the collected fractions were analyzed by SDS-PAGE (Laemmli, 1975) and Immunoblot (Towbin et al., 1989; Schmiedl et al., 2000b). Fractions containing protein were pooled and their content determined with Bradford's solution.
  • Fp b-galactosidase-215 is a fusion protein of the bacterial b-galactosidase with a peptide which contains the mAb 215 epitope.
  • b-Galactosidase fused with a comparable peptide served as a control.
  • the recombinant b-galactosidase fusion proteins were previously obtained by expression in E. coli (Kontermann er al., 1995).
  • Phoxylated BSA was prepared by incubating a 20-fold molar excess of 4-ethoxymethylene-2-phenyl-2-oxazolin-5-one (phOx) with BSA in 0.1 M NaCO 3 (pH 8.5) for two hours. Uncoupled 4-ethoxy-methylene-2-phenyl-2-oxazolin-5-one was removed by repeated dialysis against PBS. Unmodified BSA served as a control.
  • the antibody mAb Myc1-9E10 (Calbiochem, Schwalbach; 1/1000 in MPBST) was used in combination with HRP-conjugated goat anti-mouse immunoglobulins (Dianova, Hamburg; 1/2000 in MPBST) to detect bound antibody fragments and with 100 mLl well TMB substrate (10 mL 100 mM sodium acetate, pH 6.0, 25 ⁇ L TMB solution (40 mg / mL in DMSO), 8 ⁇ L 30% (v / v) H 2 O 2 ) was detected. After the color reaction had been stopped by adding 50 ⁇ Uwell 1 MH 2 SO, the analysis was carried out using an ELISA reagent at 450 nm.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Die vorliegende Erfindung betrifft rekombinante Antikörperkonstrukte, Verfahren zu deren Herstellung, pharmazeutische Zusammensetzungen und diagnostische Mittel, welche diese rekombinanten Antikörperkonstrukte enthalten, sowie die Verwendung dieser rekombinanten Antikörperkonstrukte zur Diagnose und Behandlung von Krebserkrankungen, Autoimmunerkrankungen, Allergien, immunologischen Überreaktionen, Infektionen oder Noxen.

Description

Beschreibung
TRIVALENTE ANTIKORPERKONSTRUKTE MIT DISULFID-BRÜCKEN STABILISIERTEN VARIABLEN
REGIONEN
Die vorliegende Erfindung betrifft rekombinante Antikörperkonstrukte, Verfahren zu deren Herstellung, pharmazeutische Zusammensetzungen und diagnostische Mittel, welche diese rekombinanten Antikörperkonstrukte enthalten, sowie die Verwendung dieser rekombinanten Antikörperkonstrukte zur Diagnose und Behandlung von Krebserkrankungen, Autoimmunerkrankungen, Allergien, immunologischen Überreaktionen, Infektionen oder Noxen.
Bispezifische Antikörper sind am besten rekombinant herzusteilen, da bei der herkömmlichen Quadroma- bzw. Hybrid-Hybridoma-Technik ein Gemisch aus 10 verschiedenen Produkten auftritt, aus denen das einzige korrekte nur unter erheblichem Aufwand abgetrennt werden kann (Milstein und Cuello, 1983). Bispezifische Antikörper sind aber als Agenzien für neuartige Therapieverfahren notwendig, die ohne solche Moleküle nicht durchgeführt werden könnten. Anwendung finden sie im besonderen bei der Stimulierung der Immunantwort gegen Tumorzellen (Segal et al., 1999; Hombach et al., 1993; Manzke et al, 1999). Dabei werden T-Lymphozyten spezifisch an Tumorzellen herangeführt und oft noch zusätzlich durch einen der Bindungsarme des bispezifischen Agens aktiviert. Verschiedene molekulare Formate wurden zur Herstellung von therapeutischen Antikörpern im allgemeinen und von bispezifischen Antikörpern im speziellen entwickelt (Breitling und Dübel, 1997; Carter und Merchant, 1997).
Bei ausführlichen Untersuchungen zur Tumorlokalisation von verschiedenen Antikörperformaten (scFv, Diabody, Minibody, komplette IgG) mit identischer Antigenbindestelle (Tumormarker carcinoembryonic antigen, CEA) aber mit unterschiedlichem Molekulargewicht (ca. 30 kDa, 60 kDa, 90 kDa und 150 kDa) zeigte sich, daß die beiden kleineren Formate aufgrund ihrer raschen Filtrierung durch die Niere zu einem weit geringeren Konzentrationsverhältnis Tumor/Gewebe führten als Konstrukte, deren Molekulargewichte über der Filtrationsgrenze der Niere lagen (Wu et al., 1996; Hu et al., 1996). Beste Tumorlokalisation erbrachte der sog. Minibody (etwa 90 kDa), der aus zwei identischen scFv-Fragenten besteht, welche durch fusionierte CH3 Domänen dimerisieren (Hu et al., 1996). Dieses Konstrukt ist zwar bivalent, aber monospezifisch. Die Herstellung von bispezifischen Antikörpern nach diesem Muster ist schwierig, da es wiederum zu homologen Paarungen und damit zu unerwünschten und schwer abtrennbaren Nebenprodukten kommen kann.
Die Verwendung von CH1 und CL(kappa)-Domänen zur Dimerisierung (Müller et al., 1998) löste zwar das Problem der Nebenprodukte bei der Herstellung bispezifischer Minibodies, jedoch ist die Affinität durch die Monovalenz der jeweiligen Antigenbindestellen eingeschränkt.
Die Stabilisierung von Fv-Fragmenten durch Disulfidbrücken (dsFv, Brinkmann et al., 1993; Reiter et al., 1995) verbesserte deren Serum-Halbwertzeit gegenüber scFvs und führte zu einer erhöhten Lokalisierung dieser Konstrukte im Tumorgewebe (Reiter et al., 1994a, b, c; Webber et al., 1995).
Bispezifische Diabodies, wie sie vielfach für die Therapie hergestellt wurden, sind kleiner als das pharmakokinetisch optimale Konstrukt für die Tumortherapie, indem sie lediglich aus zwei antigenbindenden Antikörperfragmenten zusammengesetzt sind (Hollinger et al., 1993, 1996, 1999; Arndt et al., 1999; Helfrich ef a/., 1998).
Die Verwendung von dsFv-dsFv '-Antikörpern, d.h. Konstrukten aus zwei Disulfidbrücken-stablisierten Fv-Fragmenten, die durch ein kurzes Linker-Peptid verbunden sind (Breitling und Dübel, 1997; Schmiedl et al., 2000) beseitigt zwar die Stabilitätsprobleme der Diabodies, das Konstrukt hat aber auch ein zu geringes Molekulargewicht für eine optimale Tumorlokalisation. Somit liegt der vorliegenden Er indung die Aufgabe zugrunde, neue Antikörperkonstrukte für diagnostische, therapeutische und Forschungszwecke bereitzustellen, welche die vorstehend aufgeführten Nachteile des Standes der Technik beseitigen sollen.
Diese Aufgabe wird durch die in den Ansprüchen gekennzeichneten Ausführungsformen gelöst. Insbesondere wird ein rekombinantes Antikörperkonstrukt mit mindestens drei antigenbindenden Antikörperfragmenten bereitgestellt, wobei mindesten ein antigenbindendes Antikörperfragment eine Disulfid-Brücke zwischen den variablen Domänen aufweist.
Das erfindungsgemäße rekombinante Antikörperkonstrukt ist vorzugsweise mindestens bispezifisch, wobei die Anzahl der Spezifitäten von der Diversität der antigenbindenden Antikörperfragmente abhängt. Beispielsweise kann das erfindungsgemäße rekominante Antikörperkonstrukt drei unterschiedliche antigenbindende Antikörperfragmente aufweisen, welches somit trispezifisch ist. Die Valenz der erfindungsgemäßen rekominanten Antikörperkonstrukte entspricht im allgemeinen der Anzahl der antigenbindenden Antikörperfragmente. Das erfindungsgemäße rekominante Antikörperkonstrukt weist vorzugsweise ein Molekulargewicht von etwa 90 kDa auf.
Die zwei Polypeptid-Ketten des antigenbindenden Antikörperfragments mit mindestens einer Disulfid-Brücke (im Folgenden auch als „dsFv" bezeichnet), sind vorzugsweise unterschiedlich zueinander.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung werden diese Polypeptid-Ketten aus den variablen Domänen (im Folgenden auch als „Fv" bezeichnet) von Immunglobulinen, wie IgA, IgD, IgE und IgG, sowie biologisch aktiven Fragmenten dieser variablen Domänen ausgewählt. Der Begriff „biologisch aktives Fragment" bedeutet hier, daß diese Fragmente eine im wesentlichen identische oder verbesserte antigene Bindungseigenschaft aufweisen bzw. zur Folge haben, wie die natürlich vorhandenen Fvs.
Gemäß dieser Ausführungsform können diese zwei Polypeptid-Ketten in jedweder Kombination aus den variablen Teilen der H- und L-Ketten von einem Immunglobulin („monoklonal") oder zwei unterschiedlichen Immunglobulinen einer Klasse, wie IgG,, oder unterschiedlichen Klassen, wie IgG und IgA, vorkommen.
In einer weiteren Ausführungsform der vorliegenden Erfindung kann das rekombinante Antikörperkonstrukt ein oder mehrere antigenbindende Antikörperfragmente (im Folgenden auch als „scFv" bzeichnet) aufweisen, welche eine Polypeptid-Kette mit zwei Peptidsequenzen, die unterschiedlich zueinander sind und aus den Primärstrukturen der variablen Domänen von Immunglobulinen und den biologisch aktiven Abschnitten davon ausgewählt sind, aufweisen. Der Begriff „biologisch aktiver Abschnitt" bedeutet hier, daß diese Abschnitte eine im wesentlichen identische oder verbesserte antigene Bindungseigenschaft aufweisen bzw. zur Folge haben, wie die natürlich vorhandenen Fvs. Diese zwei Peptidsequenzen können in jedweder Kombination aus den Primärstrukturen der variablen Teile der H- und L-Ketten von einem Immunglobulin oder zwei unterschiedlichen Immunglobulienen einer Klasse oder unterschiedlichen Klassen vorkommen.
Das erfindungsgemäße, rekombinante Antikörperkonstrukt ist entsprechend der Anzahl n der vorhandenen antigenbindenden Antikörperfragmente über (n-1 ) Peptid-Linker miteinander verbunden. Beispielsweise sind bei einem rekombinanten Antikörperkonstrukt mit drei antigenbindenden
Antikörperfragmenten zwei Peptid-Linker vorhanden, (vgl. auch Figur 2). Das erfindungsgemäße rekombinante Antikörperkonstrukt kann ferner teilweise oder anstelle der variablen Teile der H- und L- Ketten von Immunglobulinenen mindestens eine entsprechende Domäne eines anderen Protein, insbesondere eines Mitglieds der Immunglobulin-Superfamilie enthalten, beispielsweise variable Regionen bzw. Teile von T-Zell-Rezeptoren, MHC-Proteine (Klasse I und II), Zeiloberflächenproteine, Cytokine oder Wachstumsfaktoren.
Das rekombinante Antikörperkonstrukt gemäß der vorliegenden Erfindung kann ferner mindestens eine Effektordomäne, welche beispielsweise aus Interleukin 2, Interferon-α, Interferon-ß, B7.1 , B7.2, TNF-α, Komplementkaskaden- Komponenten, Toxinen wie Ricin, PE, DT, und RNAsen und biologisch aktiven Fragmenten davon ausgewählt sind, enthalten. Der Begriff „Effektordomäne" umfaßt Domänen, welche eine biochemische Reaktion katalysieren oder inhibieren.
Das erfindungsgemäße rekombinante Antikörperkonstrukt kann weiter mindestens eine radioaktive Substanz enthalten, welche durch chemische Reaktion kovalent gebunden ist.
Ferner können an das erfindungsgemäße rekombinante Antikörperkonstrukt weitere Substanzen, beispielsweise Cytokine, Antikörper, Rezeptoren, Komplementproteine oder niedermolekurlare Verbindungen, gekoppelt sein, deren Zerstörung der Zellen in der Umgebung der V-Bodies durch körpereigene bzw. endogene Effektoren bewirken, beispielsweise durch andere Zellen, wie Zellen des Immunsystems, z.B. T-Lymphocyten oder Makrophagen, oder durch Moleküle des Immunsystems, wie Komplementproteine.
An das erfindungsgemäße rekombinante Antikörperkonstrukt können auch Ankerdomänen angefügt werden, welche eine Koppelung an einen der obengenannten Effektoren bzw. Effektordomänen erlauben. Beispiele für derartige Ankerdomänen sind Avidin, Streptavidin, oder biologisch aktive Derivate bzw. Mutationen davon, Biotin, Streptavidin/Avidin-Bindepeptide, bakterielle Immunglobulin-Bindemoleküle wie Protein A, Protein G, Protein H, Protein L, Calmodulin, Calmodulin-Bindemoleküle, Fragmente von RNAsen, nicht-natürliche Sequenzen, welche ein Fragment von RNAsen binden, und Leucin-Zipper.
Darüber hinaus können an das erfindungsgemäße rekombinante Antikörperkonstrukt ein oder mehrere Polyethylenmoleküle kovalent gekoppelt werden.
Die Figuren zeigen:
Fig.1 zeigt die Entwicklung der Erfindung zu Ausführungsforme in (C) aus dem Stand der Technik in (A) und (B) am Beispiel von Immunglobulinen.
Fig. 2 und 3 zeigen weitere bevorzugte Ausführungsformen der vorliegenden Erfindung.
Fig. 4 ist eine graphische Darstellung des in Beispiel 3 verwendeten Vektors zur Herstellung eines bispezifischen Antikörperkonstrukts.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung der vorstehend definierten rekombinanten Antikörperkonstrukte, worin die antigenbindenden Antikörperfragmente mittels rekombinanter DNA- Technologie und Einführen einer Disulfid-Brücke in mindestens ein antigenbindendes Antikörperfragment über geeignete Mutagenese, beispielsweise „site-specific mutagenesis" oder PCR-Mutagenese der für die zwei Polypeptid- Ketten kodierenden Nukleinsäure-Sequenzen hergestellt werden. Die rekombinante Herstellung der erfindungsgemäßen Antikörperkonstrukte erfolgt beispielsweise in E. coli, Insektenzellkulturen, Pichia patoris, CHO- Zellkulturzellen oder transgenen Pflanzen. Dazu werden Vektoren mittels DNA- Klonierung nach dem Stand der Technik hergestellt, welche nach Transfektion in die entsprechenden Wirtszellen bzw. -Organismen die rekombinante Proteinproduktion der Untereinheiten ermöglichen. Die DNA-Sequenzen, welche für die Untereinheiten der V-bodies codieren, werden dafür solcherart durch PCR- Mutagenese oder andere Methoden nach dem Stand der Technik konstruiert, daß im rekombinant produzierten Protein (i) mindestens eines der beteiligten Fv- Regionen durch -Mutation von zwei an der Kontaktstelle zwischen VH und V*. gegenüberliegenden Aminosäurepositionen (jeweils eine in VH und VL) zu Cystein mit einer interface-Disulfid-Brücke stabilisiert werden (Brinkmann et al., 1993, Proc. Natl. Acad. Sei., USA 90(16), 7538-4) und (ii) die erfindungsgemäßen rekombinanten Antikörperkonstrukte (vgl. Figuren 1(C), 2, 3) erzeugt werden. Letzteres wird dadurch erreicht, daß über die Einführung von kompatiblen Restriktionsschnittstellen an den Enden der Genfragmente für die verschiedenen variablen Domänen und darauffolgende Ligation oder durch PCR-Assembly die verschiedenen variablen Domänen in den entsprechenden Expressionsvektoren so angeordnet werden, daß sie für die in Fig. 1 (C), 2 oder 3 gezeigten Polypeptidketten codieren. Bi- Trivalenz resp. Bi- Trispezifität und Minibody-Größe werden dadurch erreicht, daß die für die variablen Regionen codierenden DNA- Fragmente so zusammengesetzt werden, daß das resultierende Produkt aus 3 Fv- Fragmenten besteht. Die resultierende Molekularmasse entspricht dadurch der vorteilhaften Minibody-Größe. Die optimale Anordnung (Reihenfolge) der verschiedenen VH- und V*_-Ketten-Gene zueinander im Vektor kann dabei individuell für jedes Konstrukt optimal gewählt werden. Mögliche entstehende Nebenprodukte der rekombinanten Produktion können mit Hilfe im Stand der Technik bekannten chromatographischer Methoden abgetrennt werden.
Weitere Gegenstände der vorliegenden Anmeldung sind somit auch Nukleinsäuren, welche mindestens teilweise die für die erfindungsgemäßen rekombinanten Antikörperkonstrukte oder antigenbindenden Antikörperfragmente codierenden Nukleinsäuresequenzen enthalten, sowie geeignete, im Stand der Technik bekannte Verfahren zur Expression der rekombinanten Antikörperkonstrukte oder antigenbindenden Antikörperfragmente.
Das erfindungsgemässe Verfahren stellt Antikörperkonstrukte zur Verfügung, welche beispielsweise eine bivalente Bindung an einen Tumor oder Effektor und damit eine weit höhere off-rate bei der Dissoziierung ermöglichen. Dies hat eine längere Lokalisation im Zielgewebe zur Folge, und kommt außerdem ohne jegliche Dimerisierungsdomänen aus. Dadurch wird bei einem geeigneten Molekulargewicht, vorzugsweise etwa 90 kDa, eine ausgezeichnete Bindung erreicht, die mit keinem der bisher im Stand der Technik beschriebenen Konstrukte in gleicher Weise erreicht werden kann. Das hier beschriebene molekulare Design vereint deshalb erstmals die zuvor separat gefundenen positiven Eigenschaften bisheriger Konstrukte:
1. Stabilisierung durch Disulfidbrücken,
2. vorzugsweise Trivalenz zusätzlich zur mindestens Bispezifität und
3. vorzugsweise Minibody-Größe.
Die erfindungsgemäßen Antikörperkonstrukte enthalten insbesondere keine konstanten Domänen, da diese Domänen für die Dimerisierung nicht mehr notwendig sind, und die erfindungsgemäßen Konstrukte durch den Einsatz von //7terc/.a/t.-Disulfidbrücken ausreichend stabilisiert sind. Die erfindungsgemäßen Antikörperkonstrukte werden deshalb im weiteren auch als "V-Bodies" bezeichnet, da sie gegebenenfalls bis auf kurze Spacer-Peptide ausschließlich aus variablen Regionen zusammengesetzt sind.
Das erfindungsgemässe Verfahren ermöglicht im Gegensatz zu anderen Methoden zur Herstellung bispezifischer Antikörper, die Konstruktion der V-bodies aus humanen V-Regionen. Dies ermöglicht die Herstellung des gesamten Konstruktes aus ausschließlich humanen Protein-Fragmenten - damit wird eine Immunreaktion (z.B. HAMA) gegen das therapeutische Agens vermieden, wie sie bei Konstrukten auftritt, die ihre Bivalenz oder Bispezifität durch Fusion der antigenbindenden Domänen an heterologe Fusionspartner erreichen (wie Streptavidin, Zipper-Motive, Protein A-Fusionen etc.). Variationen der V-bodies bestehen aus 2, 3 oder 4 Polypeptidketten, wobei unterschiedliche Grade der Disulfidstabilisierung zum Einsatz kommen (Fig. 1 (C), 2, 3). Trispezifische Antikörper sind ohne Mehraufwand gegenüber bispezifischen Antikörpern herzustellen, wenn die rekombinanten Expressionsvektoren so konstruiert werden, daß zwei Polypeptidketten-Konstrukte zum Beispiel aus je einem scFv und einer variablen Domäne eines dsFv-Fragmentes eingesetzt werden (vgl. Fig. 2 und 3, jeweils oben rechts).
Ein weiterer Gegenstand der vorliegenden Erfindung betrifft eine pharmazeutische Zusammensetzung, die das erfindungsgemäße rekombinante Antikörperkonstrukt in einer pharmazeutisch wirksamen Menge und gegebenenfalls ein pharmazeutisch verträglichen Träger und/oder Verdünnungsmittel enthält. Die erfindungsgemäße pharmazeutische Zusammensetzung kann beispielsweise zur Verhinderung oder Behandlung von Krebserkrankungen, d.h. systemischen und soliden Tumoren, Metastasen und Metastasenbildung, Autoimmunerkrankungen, Allergien, immunologischen Überreaktionen, Infektionen oder Noxen verwendet werden.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein diagnostisches Mittel, welche das erfindungsgemäße rekombinante Antikörperkonstrukt enthält. Dieses diagnostische Mittel kann zur invitro und /πu/Vo-Diagnostik, beispielsweise zum Nachweis von Krebserkrankungen, Autoimmunerkrankungen, Allergien, immunologischen Überreaktionen, Infektionen oder Noxen verwendet werden.
Die vorliegende Erfindung wird durch die nachfolgenden Beispiele näher erläutert.
1. Trispezifische Antikörper
Unter Beibehaltung der für das in vivo-targeting optimalen Molekülgröße lassen sich trispezifische Antikörper herstellen, ohne daß besondere Trimerisierungsmotive zusätzlich zu den antigenbindenden Regionen der Antikörper eingesetzt werden müssen. Dies wird eingesetzt, um therapeutische Agentien herzustellen, die zum einen mehrere Tumormarker auf einer Zelle binden können, oder mehrere verschiedene Epitope eines Tumormarkers. Ebenso kann eine Kombination aus einem Tumormarker und einem gewebespezifischen Antikörper eingesetzt werden. Dadurch erhöht sich die Tumorspezifität erheblich gegenüber monovalenter oder multivalent-monospezifischer Bindung, und verringert stark die Belastung der Patienten durch die bisher sehr häufig auftretende Lokalisierung der Antikörper in unspezifischen Geweben (sowohl durch Kreuzreaktionen wie durch Expression des Tumormarkers auf anderen Geweben). Zudem wird die apparente Affinität durch die erhöhte Avidität verbessert. Die verbleibende Bindestelle der trispezifischen Antikörper dient zur Verstärkung der Immunantwort gegen den Tumor, insbesondere durch Bindung an CD3 oder CD28 der T-Lymphozyten. Auch eine Aktivierung der Natural Killer (NK)-Zellen gegen den Tumor über Bindung an CD16 ist möglich. Alternativ kann dieses Antikörperfragment auch Komplementkaskaden aktivieren.
2. Bispezifische Antikörper mit verbesserter Tumor-Anreicherung und optimierter Pharmakokinetik
Durch Produktion von zwei verschiedenen Antikörperketten in E. coli unter Benutzung von kompatiblem Expressionsvektoren (z.B. pOPE und pDOPE), werden V-Bodies im Periplasma von E. coli zusammengesetzt, welche eine Bindestelle für humanes CD3 enthalten, und zwei Bindestellen für einen Tumormarker, z.B. MUC1 , erbB2 o.a., oder Differenzierungsmarker, wie z.B. CD19. Die Proteine werden aus dem Periplasma gereinigt, und intravenös eingesetzt, um T-Lymphozyten an den Tumor heranzuführen. Eine Produktion der Proteine in eukaryontischen Zellinien (z.B. CHO oder Baculovirus) oder transgenen Pflanzen ist zur Herstellung ebenfalls möglich.
3. Herstellung eines bispezifischen V-bodies
Zur Herstellung eines bispezifischen -bodies wurden zwei single-chain Fv- Fragmenten (scFv), welche gegen die größte Untereinheit der RNA-Polymerase II von Drosophila Melanogaster gerichtet sind (Krämer et al., 1980; Kontermann et al., 1995; Schmiedl et al., 2000a) mit Hilfe eines Disulfidbrücken-stabilisierten Fv- Fragments (dsFv), welches an das Hapten 4-Ethoxymethylen-2-phenyl-2-oxazolin- 5-on (phOx) bindet (Marks et al., 1992; Schmiedl et al., 2000a) durch kurze, aber flexible Peptid-//n/fer kovalent miteinander verknüpft.
Um die beiden monovalenten anti-215 scFv-Fragmente des V-bodies zu generieren, wurden die C-Termini der variablen Domänen ihrer schweren Ketten mit den N-Termini der variablen Domänen ihrer leichten Ketten jeweils mit einem 18 Aminosäuren umfassenden, flexiblen //n/cer-Peptid verbunden, welches sich aus den ersten Aminosäuren der CH1 -Domäne und dem linearen α-Tubulin-Epitop EEGEFSEAR (Yol-Tag) des monoklonalen Antikörpers Yol1/34 zusammensetzt (Kilmartin et al., 1982; Breitling and Little, 1986; Schmiedl et al., 2000a). An die C- Termini der leichten Ketten wurde jeweils eine der variablen Domäne des anti- phOx dsFv-Fragments fusioniert. Um die kovalente Verknüpfung der beiden phOx-Domänen durch eine interchenare Disulfidbrücke zu gewährleisten, wurden zuvor die beiden Aminosäuren LysH105 der schweren und AlaL43 der leichten Kette des anti-phOx Fv-Fragments durch Cysteine ersetzt (Schmiedl et al., 2000a). Weitere, carboxyterminale tags am Ende beider anti-phOx Domänen dienen zur Detektion und Aufreinigung der beiden Fusionsproteine (Dübel et al., 1992). Jeweils ein kurzes Peptid des humanen 62 kDa Proto-Oncogenprodukts c-myc, welches das lineare Epitop EEKLISEEDL des monoklonalen Antikörpers Myd- 9E10 beinhaltet (Evan et al., 1985), ist nahe der C-Termini beider Polypeptidketten lokalisiert, bevor ein 6xHis-feg die Fusionsproteine scFv 215(Yol)-10-VH(phOx) und scFv 215(Yol)-10-VL(phOx) abschließt.
Vektorkonstruktion
Zur Herstellung des oben beschriebenen V-bodies wurde der Vektor pOPE111-215HphOx/215LphOx generiert. Er kodiert für die beiden oben bechriebenen Fusionsproteine scFv 215(Yol)-10-VH(phOx) und scFv 215(Yol)- 10-V*_(phOx). Die beiden Genfragmente wurden jeweils separat, unter Ausbildung von ORFs hinter pelB-/eacfer Sequenzen aus Erwinia carotovora (Lei et al., 1987) zur Sekretion der Translationsprodukte in den periplasmatischen Raum kloniert. Der Vektor pOPE111 besitzt ferner ein ColE1 origin of replication und das b-Lactamase-Gen als Selektionsmarker für die Ampicillinresistenz Die Expression der kodierten V-body-Konstrukte wird mit Hilfe eines, durch IPTG induzierbaren, synthetischen /ac-Promotors P/A1/04/03 und zwei starken ribosome binding sites (RBS) reguliert.
Expression
Eine 50 mL Übernachtkultur von E. coli Zellen transformiert mit pOPE111- 215HphOx/215LphOx wurde 1/20 in dYT-Medium (16 g/L Bacto-Trypton, 10 g/L Hefe-Extrakt, 5 g/L NaCI) mit 100 mM Giucose und 100 μg/mL Ampicillin verdünnt und bei 37 °C und 230 rpm bis zu einer OD6oo von 0,6 kultiviert, bevor der Promotor durch Zugabe von 20 mM Isopropyl-b-D- thiogalactopyranosid induziert wurde. Nach 3 h Inkubation bei 22 °C und 230 rpm wurden die Bakterien 10 min auf Eis abgekühlt und durch Zentrifugation bei 4 °C und 5000 x g pelletiert.
Präparation periplasmatischer Extrakte
Zur Präparation periplasmatischer Extrakte wurden die pelletierten Bakterien in 1/10 Volumen (bezogen auf das Ausgangsvolumen der Kultur) gekühlter Schock- Lösung (50 mM Tris/HCI, pH 8,0, 20 % (w/v) Saccharose, 1 mM EDTA) resuspendiert, für 20 min unter gelegentlichem Schütteln auf Eis inkubiert und erneut für 10 min bei 6200 x g und 4 °C zentrifugiert. Der periplasmatische Extrakt im Überstand wurde für weitere 30 min bei 30000 x g und 4 °C zentrifugiert, gegen PBS dialysiert und mit SDS-PAGE, Immunoblot und ELISA analysiert. Das Zellpellet wurde in 1/10 Volumen (bezogen auf das Ausgangsvolumen der Kultur) 5 mM MgSO4 resuspendiert, für 20 min unter gelegentlichem Schütteln auf Eis inkubiert und ebenfalls für 30 min bei 30000 x g und 4 °C zentrifugiert. Der so erhaltene Extrakt wurde ebenfalls gegen PBS dialysiert und mit SDS-PAGE, Immunoblot und ELISA analysiert.
Anreicherung der Antikörper-Fragmente durch IMAC
Eine Säule wurde mit 2 mL/Liter Bakterienkultur Ni-NTA-Sepharose beladen und in SSP (PBS , pH 7,5, 10 mM Imidazol, 1 M NaCI) äquilibriert. Die dialysierten periplasmatischen Extrakte wurden vereinigt, auf dieselben Pufferbedingungen eingestellt und auf die Säule gegeben. Nach Waschen der Säule mit 5 Sepharose-Volumen SSP, 5 Sepharose-Volumen SWP (PBS, pH 7.5, 50 mM Imidazol, 1 M NaCI) und 5 Sepharose-Volumen PBS wurden die Proteine 10 Sepharose-Volumen Elutionspuffer (PBS, pH 7,5, 500 mM Imidazol, 1 M NaCI) kompetitiv eluiert. Die gesammelten Fraktionen wurden durch SDS-PAGE (Laemmli, 1975) und Immunoblot (Towbin et al., 1989; Schmiedl et al., 2000b) analysiert. Protein enthaltende Fraktionen wurden vereinigt.
Mono Q-Chromatographie
Die über IMAC erhaltenen Antikörperfragmente wurden gegen 30 mM Tris/HCI, pH 8,0 dialysiert und mit 0,5 mL/min auf die im selben Puffer äquilibrierte Säule (Mono Q HR/5R; Amersham Pharmacia, Freiburg; Schmiedl et al., 2000b) gegeben. Nach Waschen der Säule mit 5 mL 30 mM Tris/HCI, pH 8,0 wurden die Proteine mit Hile eines zweiphasigen NaCI-Gradienten kompetitiv eluiert. Dazu wurde die Salzkonzentration zunächst über 20 mL auf 250 mM, dann über 1 mL auf 1 M NaCI gesteigert. Die Säule wurde noch mit 5 mL Mono Q-Elutionspuffer (30 mM Tris/HCI, pH 8,0, 1 M NaCI) gespült und wieder auf Mono-Q-Puffer eingestellt. Die gesammelten Fraktionen wurden durch SDS-PAGE (Laemmli, 1975) und Immunoblot (Towbin et al., 1989; Schmiedl et al., 2000b) analysiert. Protein enthaltende Fraktionen wurden vereinigt und ihr Gehalt mit Bradford- Lösung bestimmt.
ELISA (enzyme linked immunosorbent assay)
96-well Maxisorp Platten (Nunc, Karlsruhe) wurden zunächst ü.N. bei 4 °C mit 100 μ /well 0,1 M Na2CO3 (pH 9.6), in denen je 1 mg eines Antigens gelöst wurden, inkubiert, bevor unspezifische Bindungsstellen durch MPBS (400 μUwell) für 2 h bei RT abgesättigt wurden. Zum Nachweis funktioneller Antikörper-Fragmente wurden die Antigene Fp b-Galactosidase-215, Fp b-Galactosidase-control, BSA- phox bzw. BSA verwendet. Fp b-Galactosidase-215 ist ein Fusionsprotein der bakteriellen b-Galactosidase mit einem Peptid, welches das mAb 215 Epitop beinhaltet. b-Galactosidase fusioniert mit einem vergleichbaren Peptid diente als Kontrolle. Die rekombinanten b-Galactosidase-Fusionsproteine wurden zuvor durch Expression in E. coli gewonnen (Kontermann er al., 1995). Phoxyliertes BSA wurde durch Inkubation eines 20fachen molaren Überschusses von 4- Ethoxymethylen-2-phenyl-2-oxazolin-5-on (phOx) mit BSA in 0,1 M NaCO3 (pH 8,5) für zwei Stunden dargestellt. Nicht gekoppeltes 4-Ethoxy-methylen-2- phenyl-2-oxazolin-5-on wurde durch wiederholte Dialyse gegen PBS entfernt. Nicht-modifiziertes BSA diente als Kontrolle.
Unspezifische Bindungsstellen der Maxisorp-Platte wurden durch Blocken mit 400 mLlwell MPBS für mindestens 3 h bei RT abgesättigt. Die Periplasma- Extrakte wurden 1 :1 in MPBST verdünnt und je 100 mLlwell für 2 h bei RT inkubiert. Der Antikörper mAb Myc1-9E10 (Calbiochem, Schwalbach; 1/1000 in MPBST) wurde in Kombination mit HRP-konjugierten Ziege-anti-Maus Immunglobulinen (Dianova, Hamburg; 1/2000 in MPBST) zum Nachweis gebundener Antikörperfragmente eingesetzt und mit 100 mLl well TMB-Substrat (10 mL 100 mM Natriumacetat, pH 6,0, 25 μL TMB-Lösung (40 mg/mL in DMSO), 8 μL 30 % (v/v) H2O2) detektiert. Nach Stoppen der Farbreaktion durch Zugabe von 50 μUwell 1 M H2SO erfolgte die Analyse mit Hilfe eines ELISA-Reaαfers bei 450 nm.
Zum Nachweis der Bispezifität des Antikörper-Konstrukts wurden 100 mL/well Antikörper-Extrakt für 2 Stunden an BSA-phOx gecoatete Maxisorp-Platten gebunden. HRP-konjugietes Streptavidin (8/1000 in PBST) wurde mit 0,1 nmol des N-terminal biotinylieten Peptids LPHFIKDDYGPESRGFVENSYLAGLTPSE (ZMBH, Heidelberg), welches das Epitop des Antikörpers mAb 215 enthält, bzw. mit dem entsprechend biotinylierten Kontoll-Peptid KESRAKKFQRQHMDEGEEF (ZMBH, Heidelberg) für eine Stunde bei RT inkubiert, bevor je 100 mU well aufgetragen wurden. Der Nachweis der Bispezifität erfolgte nach 2 Stunden Inkubation bei RT mit TMB-Substrat.
Literatur
Breitling, F. und Little, M. (1986) C-terminal regions on the surface of tubulin and microtubules. Epitope locations of Yol1/34, DM1A and DM1 B. J. Mol. Biol. 789, 367-70. Dübel, S., Breitling, F., Klewinghaus, I. und Little, M. (1992) Regulated secretion and purification of recombinant antibodies in E. coli. Cell Biophysics 21, 69-79.
Evan, G.I., Lewis, G.K., Ramsay, G. und Bishop, J.M. (1985) Isolation of Monocional Antibodies Specific for Human c-myc Proto-Oncogene Product. Mol. Cell. Bio!. 5, 3610-6.
Kilmartin, J.V., Wright, B. und Milstein, C. (1982) Rat monocional antitubulin antibodies derieved by using a new nonsecreting rat cell line. J. Cell. Biol. 93, 576- 82.
Kontermann, R.E., Liu, Z., Schulze, R.A., Sommer, K.A., Queitsch, I., Dübel, S., Kipriyanov, S.M., Breitling, F. und Bautz, E.K.F. (1995) Characterizatiön of the epitope recognised by a monocional antibody directed against the largest subunit of Drosophila RNA polymerase II. Biol. Chem. Hoppe-Seyler 376, 473-81.
Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature 227, 680-5.
Lei, S.-P., Lin, H.-C, Wang, S.-S., Callaway, J. und Wilcox, G. (1987) Characterizatiön of the Erwinia carotovora pelB gene and its product pectate lyase. J. Bacteriol. 769, 4379-83.
Marks, J.D., Griffiths, A.D., Malmqvist, M., Clackson, T.P., Bye, J.M. und Winter, G. (1992) By-passing immunization: building high affinity human antibodies by chain shuffling. Biotechnology (N.Y.) 10, 779-83.
Schmiedl, A., Breitling, F., Winter, C.H., Queitsch, I. und Dübel, S., (2000a) Effects of unpaired cysteines on yield, solubility and activity of different recombinant antibody constructs expressed in E. coli. J. Immunol. Methods. 242, 101-14.
Schmiedl, A., Breitling, F. und Dübel, S. (2000b) Expression of a bispecific dsFv- dsFv' antibody fragment in Escherichia coli. Protein Eng. 13, 725-34.
Towbin, H., Staehelin, T. und Gordon, l. (1980) Electrophoretic transfer of protein from polyacrylamid gels to nitrocellulose sheets: procedures and some applications. Proc. Natl. Acad. Sei. U.S.A. 76, 4350-4.

Claims

Patentansprüche
1. Rekombinantes Antikörperkonstrukt mit mindestens drei antigenbindenden Antikörperfragmenten, wobei mindestens ein antigenbindendes Anitkörperfragment eine Disulfid-Brücke zwischen den beiden Antikörperdomänen aufweist.
2. Rekombinantes Antikörperkonstrukt nach Anspruch 1 , welches mindestens bispezifisch ist.
3. Rekombinantes Antikörperkonstrukt nach Anspruch 1 oder 2, welches ein Molekulargewicht von etwa 90 kDa aufweist.
4. Rekombinantes Anikörperkonstrukt nach einem der Ansprüche 1 bis 3, wobei die zwei Polypeptid-Ketten des eine Disulfid-Brücke aufweisenden, antigenbindenden Antikörperfragements unterschiedlich zueinander sind.
5. Rekombinantes Antikörperkonstrukt nach Anspruch 4, wobei die Polypeptid-Ketten aus den variablen Domänen von Immunglobulinen und biologisch aktiven Fragmenten davon ausgewählt sind.
6. Rekombinantes Antikörperkonstrukt nach Anspruch 5, wobei die Polypeptid-Ketten jeweils aus den variablen Teilen der H- und L-Ketten von einem Immunglobulin oder zwei unterschiedlichen Immunglobulinen einer Klasse oder unterschiedlichen Klassen ausgewählt sind.
7. Rekombinantes Antikörperkonstrukt nach einen der Ansprüche 1 bis 6, wobei ein oder zwei antigenbindende Antikörperfragmente eine Polypeptid- Kette mit zwei Peptidsequenzen, die unterschiedlich zueinander sind und aus den Primärstrukturen der variablen Domänen von Immunglobulinen und den biologisch aktiven Abschnitten davon ausgewählt sind, aufweist.
8. Rekombinantes Antikörperkonstrukt nach Anspruch 7, wobei die Peptidsequenzen jeweils aus den Primärstrukturen der variablen Teile der H- und L-Ketten von einem Immunglobulin oder zwei unterschiedlichen Immunglobulinen einer Klasse oder unterschiedlichen Klassen ausgewählt sind.
9. Rekombinantes Antiköprerkonstrukt nach einem der Ansprüche 1 bis
8, wobei die antigenbindenden Antikörperfragmente über mindestens zwei Peptid- Linker miteinander verbunden sind.
10. Rekombinantes Antiköperkonstrukt nach einem der Ansprüche 1 bis
9, welches anstelle der variablen Teile der H- und L-Ketten von Immunglobulinen mindestens eine entsprechende Domäne eines anderen Proteins, insbesondere eines Mitgliedes der Immunglobulin-Superfamilie enthält.
11. Rekombinantes Antikörperkonstrukt nach Anspruch 10, wobei die Mitglieder aus T-Zell-Rezeptoren, MHC-Proteine, Zeiloberflächenproteinen, Cytokinen und Wachstumsfaktoren ausgewählt sind.
12. Rekombinantes Antikörperkonstrukt nach einem der Ansprüche 1 bis 11 , welches weiter mindestens eine Effektordomäne aufweist, welche eine biochemische Reaktion katalysiert oder inhibiert.
13. Rekombinantes Antikörperkonstrukt nach Anspruch 12, wobei die Effektordomänen aus Interleukin 2, Interferon- , Interferon-ß, B7.1 , B7.2, TNF-α, Komplementkaskadenkomponenten, Toxinen oder RNasen ausgewählt sind.
14. Rekombinantes Antikörperkonstrukt nach einem der Ansprüche 1 bis
13, welches weiter mindestens eine radioaktive Substanz enthält, welche durch chemische Reaktion kovalent gebunden ist.
15. Rekombinantes Antikörperkonstrukt nach einen der Ansprüche 1 bis
14, welches weiter Substanzen enthält, die eine Zerstörung der Zellen in der Umgebung der rekombinanten Antikörperkonstrukte durch endogene Effektoren bewirken.
16. Rekombinantes Antikörperkonstrukt nach Anspruch 15, wobei die endogenen Effektoren aus Zellen des Immunsystems oder Molekülen des Immunsystems ausgewählt sind.
17. Rekombinantes Antikörperkonstrukt nach einem der Ansprüche 1 bis 16, welches weiter mindestens eine Ankerdomäne enthält, die eine Kopplung an einen Effektor bzw. eine Effektordomäne, wie in einem der Ansprüche 12 bis 16 definiert, bewirkt.
18. Rekombinantes Antikörperkonstrukt nach Anspruch 17, wobei die Ankerdomäne aus Avidin, Streptavidin oder biologisch aktiven Derivaten davon, Biotin, Streptavidin/Avidin-Bindepeptiden, bakteriellen Immunglobulinbindemolekülen, Calmodulin-Bindemolekülen, Fragmenten von RNasen, nicht-natürlichen Sequenzen, welche an Fragmente von RNasen binden, oder Leucin-Zipper ausgewählt ist.
19. Rekombinantes Antikörperkonstrukt nach einen der Ansprüche 1 bis 18, an welches weiter ein oder mehrere Polyethylenglykolmoleküle kovalent gekoppelt sind.
20. Verfahren zur Herstellung von rekombinanten Antikörperkonstrukten nach einen der Ansprüche 1 bis 19, worin die antigenbindenen Antikörperfragmente mittels rekombinanter DNA-Technologie und Einführen einer Disulfid-Brücke in mindestens ein antigenbindendes Antikörperfragment über geeignete Mutagenese der für die Polypeptid-Ketten kodierenden Nukleinsäuresequenzen hergestellt werden.
21. Pharmazeutische Zusammensetzung, enthaltend das rekombinante Antikörperkonstrukt nach einen der Ansprüche 1 bis 19 in einer pharmazeutisch wirksamen Menge und gegebenenfalls einen pharmazeutisch verträglichen Träger und/oder Verdünnungsmittel.
22. Diagnostisches Mittel, enthaltend das rekombinante Antikörperkonstrukt nach einen der Ansprüche 1 bis 19.
23. Verwendung des rekombinanten Antikörperkonstrukts nach einem der Ansprüche 1 bis 19 oder des pharmazeutischen Mittels nach Anspruch 21 zur Verhinderung oder Behandlung von Krebserkrankungen, Autoimmunerkrankungen, Allergien, immunologischen Überreaktionen, Infektionen oder Noxen.
24. Verwendung des rekombinanten Antikörperkonstrukts nach einem der Ansprüche 1 bis 19 oder des diagnostischen Mittels nach Anspruch 22 zum Nachweis von Krebserkrankungen, Autoimmunerkrankungen, Allergien, immunologischen Überreaktionen, Infektionen oder Noxen.
EP01933941A 2000-05-05 2001-05-07 Trivalente antikörperkonstrukte mit disulfid-brücken stabilisierten variablen regionen Withdrawn EP1287036A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10021678A DE10021678A1 (de) 2000-05-05 2000-05-05 Antikörperkonstrukte mit variablen Regionen
DE10021678 2000-05-05
PCT/EP2001/005161 WO2001085795A1 (de) 2000-05-05 2001-05-07 Trivalente antikörperkonstrukte mit disulfid-brücken stabilisierten variablen regionen

Publications (1)

Publication Number Publication Date
EP1287036A1 true EP1287036A1 (de) 2003-03-05

Family

ID=7640738

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01933941A Withdrawn EP1287036A1 (de) 2000-05-05 2001-05-07 Trivalente antikörperkonstrukte mit disulfid-brücken stabilisierten variablen regionen

Country Status (4)

Country Link
EP (1) EP1287036A1 (de)
AU (1) AU6028501A (de)
DE (1) DE10021678A1 (de)
WO (1) WO2001085795A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2014680A1 (de) * 2007-07-10 2009-01-14 Friedrich-Alexander-Universität Erlangen-Nürnberg Rekombinante, einkettige, trivalente trispezifische oder bispezifische Antikörperderivate
WO2009040562A1 (en) 2007-09-26 2009-04-02 Ucb Pharma S.A. Dual specificity antibody fusions
LT2334705T (lt) * 2008-09-26 2017-03-27 Ucb Biopharma Sprl Biologiniai produktai
ES2537100T3 (es) 2009-04-07 2015-06-02 Roche Glycart Ag Anticuerpos biespecíficos trivalentes
US9676845B2 (en) 2009-06-16 2017-06-13 Hoffmann-La Roche, Inc. Bispecific antigen binding proteins
SG10201408401RA (en) 2009-09-16 2015-01-29 Genentech Inc Coiled coil and/or tether containing protein complexes and uses thereof
TW201138821A (en) 2010-03-26 2011-11-16 Roche Glycart Ag Bispecific antibodies
BR112013001847A2 (pt) 2010-08-24 2016-05-31 Hoffmann La Roche anticorpo biespecífico, método de preparação do anticorpo biespecífico, do anticorpo biespecífico trivalente, métodos e composição farmacêutica
BR112013020338A2 (pt) 2011-02-28 2016-10-18 Hoffmann La Roche proteína de ligação de antígeno monovalente, composição farmacêutica, uso da proteína de ligação de antígeno monovalente, método para o tratamento de um paciente com necessidade de terapia, método para a preparação de uma proteína de ligação de antígeno monovalente, ácido nucleico, vetor e célula hospedeira
AR085404A1 (es) 2011-02-28 2013-09-25 Hoffmann La Roche Proteinas de union a antigeno
MX2016003593A (es) 2013-10-11 2016-06-02 Hoffmann La Roche Anticuerpos de cadena ligera variable comun intercambiada de dominio multiespecifico.
JP6721590B2 (ja) * 2014-12-03 2020-07-15 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 多重特異性抗体

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69233528T2 (de) * 1991-11-25 2006-03-16 Enzon, Inc. Verfahren zur Herstellung von multivalenten antigenbindenden Proteinen
GB9221657D0 (en) * 1992-10-15 1992-11-25 Scotgen Ltd Recombinant bispecific antibodies
AUPO591797A0 (en) * 1997-03-27 1997-04-24 Commonwealth Scientific And Industrial Research Organisation High avidity polyvalent and polyspecific reagents
AU9262598A (en) * 1997-08-18 1999-03-08 Innogenetics N.V. Interferon-gamma-binding molecules for treating septic shock, cachexia, immune diseases and skin disorders
EP1049787B1 (de) * 1998-01-23 2004-11-24 Vlaams Interuniversitair Instituut voor Biotechnologie Mehrzweck-antikörperderivate

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO0185795A1 *

Also Published As

Publication number Publication date
WO2001085795A1 (de) 2001-11-15
AU6028501A (en) 2001-11-20
DE10021678A1 (de) 2002-04-18

Similar Documents

Publication Publication Date Title
DE69633175T2 (de) Multimere proteine
DE60124912T2 (de) Multimerische, einzelkettige, Tandem-Fv-Antikörper
JP3803790B2 (ja) 新規なダイアボディ型二重特異性抗体
EP1444268B1 (de) Bispezifisches anti-cd28 antikörper-molekül
US20040220388A1 (en) Novel heterodimeric fusion proteins
EP0994904B1 (de) Aminosäuresequenzen zur therapie und prophylaxe von erkrankungen durch (clostridium difficile) toxine
AU3410093A (en) Monomeric and dimeric antibody-fragment fusion proteins
EP1206555B1 (de) Fv-antikörper-konstrukte mit bindungsstellen für einen cd16-rezeptor und ein cd30-oberflächenprotein
KR20130041968A (ko) 디술피드 안정화 ― Fv 단편을 포함하는 이중특이적 항체
EP1566442A2 (de) Herstellung und Verwendung von Genbanken menschlicher Antikörper("Human-Antikörper-Bibliotheken")
AU680685B2 (en) Retargeting antibodies
EP1287036A1 (de) Trivalente antikörperkonstrukte mit disulfid-brücken stabilisierten variablen regionen
EP3505536A1 (de) Antikörper gegen das prostata-spezifische stammzellantigen und dessen verwendung
DE102017115966A1 (de) Polypeptidmolekül mit verbesserter zweifacher Spezifität
JP2005333993A (ja) 新規なダイアボディ型二重特異性抗体
WO1995017509A1 (de) Bakterien zur herstellung stabiler fusionsproteine und verfahren zu deren nachweis
EP1090927A1 (de) Polypeptide (scFv) zur Detektion und Elimination CA19-9 antigen positiver Zellen
WO2001081423A1 (de) Antikörper gegen natives gp96, deren herstellung und verwendung
EP1315760A2 (de) Endoglin spezifisches polypeptid, seine herstellung und verwendung
WO2012017069A1 (de) Linkerpeptid und seine verwendung in fusionsproteinen
EP2600882B1 (de) ANTIKÖRPER GEGEN 6-SULFO LacNAc POSITIVE HUMANE DENDRITISCHE ZELLEN UND DEREN VERWENDUNG
DE10063048A1 (de) Einzelketten-Antikörper mit verbesserter Stabilität
WO2004018685A2 (de) Aktive fusionsproteine und verfahren zu ihrer herstellung
DE112017005457T5 (de) Fc-bereich von aglykosylierten antikörpern zur krebsbehandlung
EP1092769B1 (de) Polypeptid-Tag's für den Nachweis und die Aufreinigung von Polypeptiden

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021205

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20041102

17Q First examination report despatched

Effective date: 20041102

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070904