EP1285213B1 - Microstructured heat exchanger and method for producing the same - Google Patents

Microstructured heat exchanger and method for producing the same Download PDF

Info

Publication number
EP1285213B1
EP1285213B1 EP01935996A EP01935996A EP1285213B1 EP 1285213 B1 EP1285213 B1 EP 1285213B1 EP 01935996 A EP01935996 A EP 01935996A EP 01935996 A EP01935996 A EP 01935996A EP 1285213 B1 EP1285213 B1 EP 1285213B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
graphite
hollow fibre
fibre structure
microstructured heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01935996A
Other languages
German (de)
French (fr)
Other versions
EP1285213A1 (en
Inventor
Norbert Breuer
Peter Satzger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1285213A1 publication Critical patent/EP1285213A1/en
Application granted granted Critical
Publication of EP1285213B1 publication Critical patent/EP1285213B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/22Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/02Constructions of heat-exchange apparatus characterised by the selection of particular materials of carbon, e.g. graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2260/00Heat exchangers or heat exchange elements having special size, e.g. microstructures
    • F28F2260/02Heat exchangers or heat exchange elements having special size, e.g. microstructures having microchannels

Definitions

  • the invention relates to a microstructure heat exchanger and a method for producing such a microstructure heat exchanger according to the preamble of the independent claims.
  • the cooling of electronic components has hitherto been predominantly by solid-state heat conduction through the housing or external Heatsink.
  • the payable performance is through the thermal conductivity, the wall thicknesses and the specific Surface of the components used limited. If one fluid-cooled heat exchanger begins to occur at the Cooling electronic components the problem of thermal Coupling of the heat exchanger to this component. moreover are fluid-cooled heat exchangers far more expensive than Heat exchangers based on conventional concepts.
  • a cooling element in which one or more cooling coils embedded in a carbon derivative environment such as graphite.
  • a carbon derivative environment such as graphite.
  • the metallic cooling coils in a pasty carbon mass embedded which is then solidified by strong heating, so that the cooling coils is enclosed by a graphite matrix.
  • Object of the present invention is the preparation of a Microstructure heat exchanger, on the one hand a good thermal Coupling to the component to be cooled allows, and on the other hand is cheap to produce, as well as the provision a suitable, simple manufacturing process.
  • the microstructure heat exchanger according to the invention and the inventive Method has over the prior art the advantage that it is thus possible in a simple manner a large number of small tubes or hollow fibers within a hollow fiber structure parallel to switch, and so on Due to the resulting large heat exchanger surface a high Transfer or dissipate heat output.
  • Next is advantageous that through the use of graphite as a matrix body a particularly good thermal coupling or thermal conductivity the microstructure heat exchanger according to the invention given is.
  • the used Hollow fiber structure in a variety of variants or structures produced, and therefore in a particular case in a simpler Adaptable to the particular task.
  • the production process according to the invention is characterized Simplicity and versatility in terms of the manufacturable Microstructure heat exchanger off. It is next for both graphite and other elastic or by Presses plastically malleable materials suitable simultaneously have a good thermal conductivity.
  • the hollow fiber structure used a particular regular arrangement of metallic Is tubes that are gas permeable or liquid permeable with a common supply line and a common discharge line in connection.
  • a matrix body is particularly advantageous is a graphite body pressed together, preferably before graphite foils made of expanded graphite into which the particular metallic hollow fiber structure during pressing has been embedded. It can be advantageous both unstructured, d. H. flat graphite foils are used, as well as graphite foils, which before pressing with a the arrangement of the tubes of the hollow fiber structure corresponding Negative structuring have been provided.
  • thermal coupling of a to be cooled Component to the matrix body it is also advantageous if this is formed flat in the form of a plate, and by pressing against the cooling member thermally conductive with this is connected.
  • This compression is due to the elasticity or plastic formability of the graphite body used especially simple, and there are also possible bumps balanced on the cooling component, which in addition to an improved thermal coupling leads.
  • a thermal Conductive paste for example in the form of a on the flat Graphite body applied conductive layer, are used.
  • Figure 1 a metallic hollow fiber structure
  • Figure 2a the compression of these Hollow fiber structure with two graphite foils
  • Figure 2b the after the compression of Figure 2a obtained matrix body with integrated hollow fiber structure
  • Figure 3 shows a microstructure heat exchanger in the form of a plate with an applied Cooling plate.
  • the invention is initially based on a metallic hollow fiber structure 10 as described in the application DE 199 10 985.0 in similar form has been described. Insofar should on details dispensed with the manufacturing process.
  • FIG. 1 shows first a hollow fiber structure 10 according to FIG the application DE 199 10 985.0 has been produced.
  • This has a plurality of mutually parallel metallic tubes 13, the gas-permeable or fluid-continuous with a common supply line 12 and a common discharge line 11 are in communication.
  • the tubes 13 and the supply line 12 and the discharge line 11 consist for example of nickel.
  • the wall thickness the tubes 13 of the hollow fiber structure 10 according to FIG. 1 is between 100 nm and 50 microns, especially 500 nm to 5 ⁇ m.
  • the mean distance of the tubes 13 of the hollow fiber structure 10 according to Figure 1 is usually between 5 microns and 10 mm, in particular between 20 microns and 200 microns.
  • microstructure heat exchanger 5 To get from the microstructure of Figure 1 now a microstructure heat exchanger 5, are initially two graphite foils 14 prepared from previously expanded graphite, between which the hollow fiber structure 10 is arranged. This will be explained with the aid of FIG. 2a.
  • the hollow fiber structure 10 is further preferably so between placed the graphite foils 14 that the tubes 13th lie between the sheets 14, while the discharge line 11th and the supply line 12 is not covered by the graphite foils 14 becomes.
  • the hollow fiber structure is provided 10 first between two lightly pressed graphite foils 14 to arrange expanded graphite, and then these two graphite foils 14 together with the Hollow fiber structure 10 to press.
  • this pressing is due to the elasticity and plastic formability the graphite foils 14 no additional binder required.
  • the after pressing resulting matrix body 15 in the form of a plate is shown in Figure 2b.
  • two flat graphite foils 14 according to FIG. 2a may also be at least one of these two Graphite sheets before pressing with one of the arrangement of Tubes 13 of the hollow fiber structure 10 corresponding negative structuring be provided.
  • the negative structuring at least one of the graphite foils 14 may be, for example by a corresponding embossing with one of the hollow fiber structure 10 corresponding pressure structure or a corresponding Stamp done.
  • microstructure heat exchanger according to the invention 5 according to the illustrated embodiment not even on a fluid guide or gas guide according to FIG 1 restricted.
  • FIG. 3 explains how with the produced matrix body 15 a cooling of a cooling component in the form of a cooling plate 17 takes place.
  • the cooling plate 17 by a suitable Contact pressure with the matrix body 15 compressed, wherein the cooling plate 17 thermally coupled to the matrix body 15 becomes.
  • the good thermal coupling results here again by the elasticity and thermal conductivity of the used Graphite.
  • the electrical connections then preferably on the surface facing away from the matrix body 15 are located.
  • the thermal coupling between matrix body 15 and Cooling plate 17 also be provided that on the matrix body 15 applied a layer of a thermal conductive paste 16 becomes.
  • cooling can be achieved by the use of fluids or gases such as air, water or a refrigerant.
  • the fluid is, for example, by a with the supply line 12 related pump or gas for example, by a with the supply line 12 in connection standing fan through the microstructure heat exchanger 5 guided.
  • microstructure heat exchanger 5 d. H. within the matrix body 15 embedded hollow fiber structure 10, an evaporation of a Make liquid, so that, for example, a cooling in the microstructure heat exchanger 5 according to the principle of Heat pipe takes place.

Description

Die Erfindung betrifft einen Mikrostruktur-Wärmetauscher und ein Verfahren zur Herstellung eines derartigen Mikrostruktur-Wärmetauschers nach der Gattung der unabhängigen Ansprüche.The invention relates to a microstructure heat exchanger and a method for producing such a microstructure heat exchanger according to the preamble of the independent claims.

Stand der TechnikState of the art

Die Kühlung elektronischer Bauteile erfolgt bisher überwiegend durch Festkörperwärmeleitung über das Gehäuse oder externe Kühlkörper. Die abführbare Leistung ist dabei durch die Wärmeleitfähigkeit, die Wandstärken und die spezifische Oberfläche der eingesetzten Bauteile begrenzt. Sofern man fluidgekühlte Wärmetauscher einsetzt, tritt weiter bei der Kühlung elektronischer Bauteile das Problem der thermischen Ankopplung des Wärmetauschers an dieses Bauteil auf. Zudem sind fluidgekühlte Wärmetauscher bisher deutlich teurer als Wärmetauscher auf Basis herkömmlicher Konzepte.The cooling of electronic components has hitherto been predominantly by solid-state heat conduction through the housing or external Heatsink. The payable performance is through the thermal conductivity, the wall thicknesses and the specific Surface of the components used limited. If one fluid-cooled heat exchanger begins to occur at the Cooling electronic components the problem of thermal Coupling of the heat exchanger to this component. moreover are fluid-cooled heat exchangers far more expensive than Heat exchangers based on conventional concepts.

Ein erster Ansatz zur Realisierung von Mikrostruktur-Wärmetauschern mit definierter Fluidführung durch die Kapillarinnenräume von metallischen Hohlfaserstrukturen ist in der Anmeldung DE 199 10 985.0 vorgeschlagen worden. A first approach to the realization of microstructure heat exchangers with defined fluid guidance through the Kapillarinnenräume of metallic hollow fiber structures is in the application DE 199 10 985.0 has been proposed.

Aus der FR 23 73 498 A1 ist ein Kühlelement bekannt, bei dem eine oder mehrere Kühlschlangen in eine Kohlenstoffderivatumgebung, wie beispielsweise Graphit, eingebettet sind. Bei der Herstellung dieses Kühlelementes werden die metallischen Kühlschlangen in eine pastöse Kohlenstoffmasse eingebettet, die anschließend durch starke Erhitzung verfestigt wird, so dass die Kühlschlangen von einer Graphitmatrix umschlossen ist.From FR 23 73 498 A1 discloses a cooling element is known in which one or more cooling coils embedded in a carbon derivative environment such as graphite. In the preparation of This cooling element, the metallic cooling coils in a pasty carbon mass embedded, which is then solidified by strong heating, so that the cooling coils is enclosed by a graphite matrix.

Aus der EP 0 572 187 A2 ist bekannt, einen Wärmetauscher dadurch zu erzeugen, dass eine Reihe von Rohren, die ein Kühlmedium transportieren sollen, zwischen zwei Plastikelementen derart eingeschlossen werden, dass die Plastikelemente die Rohre umschließen und im wesentlichen die äußere Form der Rohre annehmen. Zwischen den einzelnen Rohren werden die Plastikelemente miteinander verbunden, so dass sich eine zusammenhängende Struktur ergibt, die der Fixierung der einzelnen Rohre dient. Um die Plastikelemente an die Form der Rohre anzupassen, werden bei einem in der EP 0 572 187 A2 offenbarten Herstellungsverfahren für einen solchen Wärmetauscher sowohl die Rohre, als auch die Plastikelemente erhitzt, so dass das weiche Plastikmaterial um die Rohrstruktur herumfließt bzw. auf die Rohrstruktur aufgeschrumpft wird. From EP 0 572 187 A2 it is known to produce a heat exchanger in that a row of pipes intended to transport a cooling medium, enclosed between two plastic elements in such a way be that the plastic elements surround the tubes and essentially the outer Take shape of the pipes. Between the individual pipes, the plastic elements become interconnected connected, so that a coherent structure results, the fixation of the serves individual tubes. In order to adapt the plastic elements to the shape of the tubes, are at a in EP 0 572 187 A2 disclosed manufacturing method for such a heat exchanger both the pipes and the plastic elements are heated so that the soft plastic material around the Pipe structure flows around or shrunk onto the pipe structure.

Aufgabe der vorliegenden Erfindung ist die Herstellung eines Mikrostruktur-Wärmetauschers, der einerseits eine gute thermische Ankopplung an das zu kühlende Bauteil ermöglicht, und andererseits günstig zu produzieren ist, sowie die Bereitstellung eines dazu geeigneten, einfachen Herstellungsverfahrens.Object of the present invention is the preparation of a Microstructure heat exchanger, on the one hand a good thermal Coupling to the component to be cooled allows, and on the other hand is cheap to produce, as well as the provision a suitable, simple manufacturing process.

Vorteile der ErfindungAdvantages of the invention

Der erfindungsgemäße Mikrostruktur-Wärmetauscher und das erfindungsgemäße Verfahren hat gegenüber dem Stand der Technik den Vorteil, dass es damit in einfacher Weise möglich ist, eine große Anzahl kleiner Röhrchen bzw. Hohlfasern innerhalb einer Hohlfaserstruktur parallel zu schalten, und damit auf Grund der entstehenden großen Wärmetauscherfläche eine hohe Wärmeleistung zu übertragen bzw. abzuführen. Weiter ist vorteilhaft, dass durch die Verwendung von Graphit als Matrixkörper eine besonders gute thermische Ankoppelung bzw. Wärmeleitfähigkeit des erfindungsgemäßen Mikrostruktur-Wärmetauschers gegeben ist. Darüber hinaus ist die eingesetzte Hohlfaserstruktur in einer Vielzahl von Varianten oder Strukturen herstellbar, und daher im Einzelfall in einfacher Weise an die jeweils gestellte Aufgabe anpassbar.The microstructure heat exchanger according to the invention and the inventive Method has over the prior art the advantage that it is thus possible in a simple manner a large number of small tubes or hollow fibers within a hollow fiber structure parallel to switch, and so on Due to the resulting large heat exchanger surface a high Transfer or dissipate heat output. Next is advantageous that through the use of graphite as a matrix body a particularly good thermal coupling or thermal conductivity the microstructure heat exchanger according to the invention given is. In addition, the used Hollow fiber structure in a variety of variants or structures produced, and therefore in a particular case in a simpler Adaptable to the particular task.

Das erfindungsgemäße Herstellungsverfahren zeichnet sich Einfachheit und Vielseitigkeit hinsichtlich der damit herstellbaren Mikrostruktur-Wärmetauscher aus. Weiter ist es sowohl für Graphit als auch andere elastische bzw. durch Pressen plastisch formbare Werkstoffe geeignet, die gleichzeitig eine gute Wärmeleitfähigkeit aufweisen.The production process according to the invention is characterized Simplicity and versatility in terms of the manufacturable Microstructure heat exchanger off. It is next for both graphite and other elastic or by Presses plastically malleable materials suitable simultaneously have a good thermal conductivity.

Vorteilhafte Weiterbildungen der Erfindung ergeben sich aus der in den Unteransprüchen genannten Maßnahmen. Advantageous developments of the invention will become apparent the measures mentioned in the dependent claims.

So ist besonders vorteilhaft, wenn die eingesetzte Hohlfaserstruktur eine insbesondere regelmäßige Anordnung von metallischen Röhren ist, die gasdurchlässig oder flüssigkeitsdurchlässig mit einer gemeinsamen Zufuhrleitung und einer gemeinsamen Abfuhrleitung in Verbindung stehen.It is particularly advantageous if the hollow fiber structure used a particular regular arrangement of metallic Is tubes that are gas permeable or liquid permeable with a common supply line and a common discharge line in connection.

Als Matrixkörper eignet sich besonders vorteilhaft ein Graphitkörper aus miteinander verpressten, vorzugsweise zuvor aus expandiertem Graphit hergestellten Graphitfolien, in die die insbesondere metallische Hohlfaserstruktur beim Verpressen eingebettet worden ist. Dabei können vorteilhaft sowohl unstrukturierte, d. h. ebene Graphitfolien eingesetzt werden, als auch Graphitfolien, die vor dem Verpressen mit einer der Anordnung der Röhren der Hohlfaserstruktur entsprechenden Negativstrukturierung versehen worden sind.As a matrix body is particularly advantageous is a graphite body pressed together, preferably before graphite foils made of expanded graphite into which the particular metallic hollow fiber structure during pressing has been embedded. It can be advantageous both unstructured, d. H. flat graphite foils are used, as well as graphite foils, which before pressing with a the arrangement of the tubes of the hollow fiber structure corresponding Negative structuring have been provided.

Hinsichtlich der thermischen Ankopplung eines zu kühlenden Bauteils an den Matrixkörper ist es weiter vorteilhaft, wenn dieser in Form einer Platte flächig ausgebildet ist, und durch Anpressen an das Kühlbauteil wärmeleitend mit diesem verbunden wird. Dieses Verpressen ist auf Grund der Elastizität bzw. plastischen Formbarkeit des eingesetzten Graphitkörpers besonders einfach, und es werden zudem mögliche Unebenheiten am Kühlbauteil ausgeglichen, was zusätzlich zu einer verbesserten thermischen Ankopplung führt. Alternativ oder zusätzlich kann zur Verbesserung der thermischen Ankopplung bzw. zur Verbesserung der Wärmeleitung zwischen dem Graphitkörper und dem zu kühlenden Bauteil auch eine thermische Leitpaste, beispielsweise in Form einer auf den flächigen Graphitkörper aufgebrachten Leitschicht, eingesetzt werden.With regard to the thermal coupling of a to be cooled Component to the matrix body, it is also advantageous if this is formed flat in the form of a plate, and by pressing against the cooling member thermally conductive with this is connected. This compression is due to the elasticity or plastic formability of the graphite body used especially simple, and there are also possible bumps balanced on the cooling component, which in addition to an improved thermal coupling leads. alternative or additionally, to improve the thermal coupling or to improve the heat conduction between the Graphite body and the component to be cooled also a thermal Conductive paste, for example in the form of a on the flat Graphite body applied conductive layer, are used.

Zeichnungendrawings

Die Erfindung wird anhand der Zeichnungen und der nachfolgenden Beschreibung näher erläutert. Es zeigt Figur 1 eine metallische Hohlfaserstruktur, Figur 2a das Verpressen dieser Hohlfaserstruktur mit zwei Graphitfolien, Figur 2b den nach dem Verpressen gemäß Figur 2a erhaltenen Matrixkörper mit integrierter Hohlfaserstruktur und Figur 3 einen Mikrostruktur-Wärmetauscher in Form einer Platte mit aufgebrachter Kühlplatte.The invention will be apparent from the drawings and the following Description explained in more detail. It shows Figure 1 a metallic hollow fiber structure, Figure 2a, the compression of these Hollow fiber structure with two graphite foils, Figure 2b the after the compression of Figure 2a obtained matrix body with integrated hollow fiber structure and Figure 3 shows a microstructure heat exchanger in the form of a plate with an applied Cooling plate.

Ausführungsbeispieleembodiments

Die Erfindung geht zunächst aus von einer metallischen Hohlfaserstruktur 10 wie sie in der Anmeldung DE 199 10 985.0 in ähnlicher Form beschrieben worden ist. Insofern soll auf Details zum Herstellungsprozess verzichtet werden.The invention is initially based on a metallic hollow fiber structure 10 as described in the application DE 199 10 985.0 in similar form has been described. Insofar should on details dispensed with the manufacturing process.

Die Figur 1 zeigt zunächst eine Hohlfaserstruktur 10 die gemäß der Anmeldung DE 199 10 985.0 hergestellt worden ist. Diese weist eine Vielzahl von parallel zueinander angeordneten metallischen Röhren 13 auf, die gasdurchgängig oder flüssigkeitsdurchgängig mit einer gemeinsamen Zufuhrleitung 12 und einer gemeinsamen Abfuhrleitung 11 in Verbindung stehen. Die Röhren 13 und die Zufuhrleitung 12 bzw. die Abfuhrleitung 11 bestehen beispielsweise aus Nickel. Die Wandstärke der Röhren 13 der Hohlfaserstruktur 10 gemäß Figur 1 liegt zwischen 100 nm und 50 µm, insbesondere 500 nm bis 5 µm. Der mittlere Abstand der Röhren 13 der Hohlfaserstruktur 10 gemäß Figur 1 liegt üblicherweise zwischen 5 µm und 10 mm, insbesondere zwischen 20 µm und 200 µm.FIG. 1 shows first a hollow fiber structure 10 according to FIG the application DE 199 10 985.0 has been produced. This has a plurality of mutually parallel metallic tubes 13, the gas-permeable or fluid-continuous with a common supply line 12 and a common discharge line 11 are in communication. The tubes 13 and the supply line 12 and the discharge line 11 consist for example of nickel. The wall thickness the tubes 13 of the hollow fiber structure 10 according to FIG. 1 is between 100 nm and 50 microns, especially 500 nm to 5 μm. The mean distance of the tubes 13 of the hollow fiber structure 10 according to Figure 1 is usually between 5 microns and 10 mm, in particular between 20 microns and 200 microns.

Um aus der Mikrostruktur gemäß Figur 1 nun einen Mikrostruktur-Wärmetauscher 5 herzustellen, werden zunächst zwei Graphitfolien 14 aus zuvor expandiertem Graphit vorbereitet, zwischen denen die Hohlfaserstruktur 10 angeordnet wird. Dies wird mit Hilfe der Figur 2a erläutert. To get from the microstructure of Figure 1 now a microstructure heat exchanger 5, are initially two graphite foils 14 prepared from previously expanded graphite, between which the hollow fiber structure 10 is arranged. This will be explained with the aid of FIG. 2a.

Unter expandiertem Graphit wird dabei flockenartiger Graphit verstanden, der eine typische Schüttdichte von ca. 2 g/l bis 200 g/l aufweist, und der beispielsweise aus mit Säure getränkten Graphitplättchen, sogenanntem Graphitsalz, gebildet wurde, die bei hohen Temperaturen von beispielsweise 1200°C schockartig expandiert worden sind.Under expanded graphite becomes flake-like graphite which has a typical bulk density of about 2 g / l to 200 g / l and, for example, soaked in acid Graphite platelet, so-called graphite salt formed was at high temperatures of, for example, 1200 ° C have been expanded in a shocking manner.

Die Hohlfaserstruktur 10 wird weiter bevorzugt derart zwischen den Graphitfolien 14 platziert, dass die Röhren 13 zwischen den Folien 14 liegen, während die Abfuhrleitung 11 und die Zufuhrleitung 12 nicht von den Graphitfolien 14 bedeckt wird.The hollow fiber structure 10 is further preferably so between placed the graphite foils 14 that the tubes 13th lie between the sheets 14, while the discharge line 11th and the supply line 12 is not covered by the graphite foils 14 becomes.

Im Einzelnen ist gemäß Figur 2a vorgesehen, die Hohlfaserstruktur 10 zunächst zwischen zwei leicht gepressten Graphitfolien 14 aus expandiertem Graphit anzuordnen, und anschließend diese beiden Graphitfolien 14 gemeinsam mit der Hohlfaserstruktur 10 zu verpressen. Bei diesem Verpressen ist auf Grund der Elastizität und der plastischen Formbarkeit der Graphitfolien 14 kein zusätzlicher Binder erforderlich. Zudem gewährleistet die Elastizität der eingesetzten Graphitfolien 14 eine besonders gute thermische Ankoppelung der Röhren 13 an die Graphitfolien 14, so dass sich eine sehr effektive Wärmezufuhr bzw. Wärmeabfuhr aus dem nach dem Verpressen der Graphitfolien 14 mit der Hohlfaserstruktur 10 entstandenen Matrixkörper 15 ergibt. Der nach dem Verpressen entstandene Matrixkörper 15 in Form einer Platte ist dabei in Figur 2b dargestellt.In detail, according to FIG. 2a, the hollow fiber structure is provided 10 first between two lightly pressed graphite foils 14 to arrange expanded graphite, and then these two graphite foils 14 together with the Hollow fiber structure 10 to press. In this pressing is due to the elasticity and plastic formability the graphite foils 14 no additional binder required. In addition, ensures the elasticity of the used Graphite foils 14 a particularly good thermal coupling the tubes 13 to the graphite foils 14, so that a very effective heat supply or heat removal from the after Pressing the graphite foils 14 with the hollow fiber structure 10 resulting matrix body 15 results. The after pressing resulting matrix body 15 in the form of a plate is shown in Figure 2b.

Alternativ zu dem Verpressen von zwei ebenen Graphitfolien 14 gemäß Figur 2a kann ebenso mindestens einer dieser beiden Graphitfolien vor dem Verpressen mit einer der Anordnung der Röhren 13 der Hohlfaserstruktur 10 entsprechenden Negativstrukturierung versehen werden. Auf diese Weise ist das Verpressen mit geringerer Presskraft möglich, und es verringert sich die Gefahr von durch das Verpressen an der Hohlfaserstruktur 10 entstehenden Schäden. Die Negativstrukturierung mindestens einer der Graphitfolien 14 kann beispielsweise durch ein entsprechendes Prägen mit einer der Hohlfaserstruktur 10 entsprechenden Druckstruktur bzw. einem entsprechenden Stempel erfolgen.Alternatively to the pressing of two flat graphite foils 14 according to FIG. 2a may also be at least one of these two Graphite sheets before pressing with one of the arrangement of Tubes 13 of the hollow fiber structure 10 corresponding negative structuring be provided. In this way, the pressing is possible with less pressing force, and it reduces the danger of by pressing on the hollow fiber structure 10 resulting damages. The negative structuring at least one of the graphite foils 14 may be, for example by a corresponding embossing with one of the hollow fiber structure 10 corresponding pressure structure or a corresponding Stamp done.

Es ist offensichtlich, dass sich das vorgestellte Herstellungsverfahren für weitgehend beliebige Hohlfaserstrukturen 10 und neben Graphit auch für andere Matrixkörper bzw. Folien als Matrixteilkörper vor dem Verpressen eignet; die sowohl elastisch sind bzw. plastisch formbar sind, als auch eine für Wärmetauscher ausreichend gute Wärmeleitfähigkeit aufweisen.It is obvious that the presented manufacturing process for almost any hollow fiber structures 10 and in addition to graphite for other matrix body or films suitable as a matrix part body before pressing; both are elastic or plastically malleable, as well a sufficient heat conductivity for heat exchangers exhibit.

Insofern ist der erfindungsgemäße Mikrostruktur-Wärmetauscher 5 gemäß dem erläuterten Ausführungsbeispiel auch nicht auf eine Fluidführung bzw. Gasführung gemäß Figur 1 eingeschränkt.In this respect, the microstructure heat exchanger according to the invention 5 according to the illustrated embodiment not even on a fluid guide or gas guide according to FIG 1 restricted.

Die Figur 3 erläutert wie mit dem hergestellten Matrixkörper 15 eine Kühlung eines Kühlbauteiles in Form einer Kühlplatte 17 erfolgt. Dazu wird die Kühlplatte 17 durch einen geeigneten Anpressdruck mit dem Matrixkörper 15 verpresst, wobei die Kühlplatte 17 thermisch an den Matrixkörper 15 angekoppelt wird. Die gute thermische Ankopplung ergibt sich dabei wieder durch die Elastizität und Wärmeleitfähigkeit des eingesetzten Graphites. An Stelle der Kühlplatte 17 kann im Übrigen auch ein elektronisches Leistungsbauteil wie beispielsweise ein Transistor oder ein integrierter Schaltkreis vorgesehen sein, dessen elektrische Anschlüsse sich dann vorzugsweise auf der dem Matrixkörper 15 abgewandten Oberfläche befinden. Weiter kann gemäß Figur 3 zur Verbesserung der thermischen Ankopplung zwischen Matrixkörper 15 und Kühlplatte 17 auch vorgesehen sein, dass auf dem Matrixkörper 15 eine Schicht aus einer thermischen Leitpaste 16 aufgebracht wird. Die Verwendung derartiger Leitpasten ist jedoch in vielen Fällen nicht erwünscht, da sie einerseits eine kleinere thermische Leitfähigkeit als Graphit aufweisen, und andererseits vielfach viskos sind, so dass sie in Langzeitstabilitätstests gelegentlich zum Verfließen neigen.FIG. 3 explains how with the produced matrix body 15 a cooling of a cooling component in the form of a cooling plate 17 takes place. For this, the cooling plate 17 by a suitable Contact pressure with the matrix body 15 compressed, wherein the cooling plate 17 thermally coupled to the matrix body 15 becomes. The good thermal coupling results here again by the elasticity and thermal conductivity of the used Graphite. In place of the cooling plate 17 may otherwise also an electronic power device such as a transistor or an integrated circuit be provided, the electrical connections then preferably on the surface facing away from the matrix body 15 are located. Next, according to Figure 3 for improvement the thermal coupling between matrix body 15 and Cooling plate 17 also be provided that on the matrix body 15 applied a layer of a thermal conductive paste 16 becomes. However, the use of such conductive pastes is not desirable in many cases, since on the one hand a have lower thermal conductivity than graphite, and, on the other hand, are often viscous, allowing them to be used in long-term stability tests occasionally tend to flow.

Zur Wärmezufuhr bzw. zur Wärmeabfuhr aus dem Mikrostruktur-Wärmetauscher 5 eignen sich eine Vielzahl von Konzepten. So kann eine Kühlung beispielsweise durch Einsatz von Fluiden oder Gasen wie Luft, Wasser oder einem Kältemittel erfolgen. Dabei wird das Fluid beispielsweise durch eine mit der Zufuhrleitung 12 in Verbindung stehenden Pumpe oder das Gas beispielsweise durch ein mit der Zufuhrleitung 12 in Verbindung stehendes Gebläse durch den Mikrostruktur-Wärmetauscher 5 geführt.For heat supply or for heat removal from the microstructure heat exchanger 5 are a variety of concepts. So For example, cooling can be achieved by the use of fluids or gases such as air, water or a refrigerant. In this case, the fluid is, for example, by a with the supply line 12 related pump or gas for example, by a with the supply line 12 in connection standing fan through the microstructure heat exchanger 5 guided.

Weiter ist es ebenso möglich, innerhalb des Mikrostruktur-Wärmetauschers 5; d. h. innerhalb der in dem Matrixkörper 15 eingebetteten Hohlfaserstruktur 10, eine Verdampfung einer Flüssigkeit vorzunehmen, so dass beispielsweise eine Kühlung in dem Mikrostruktur-Wärmetauscher 5 nach dem Prinzip des Wärmerohres erfolgt.Further, it is also possible within the microstructure heat exchanger 5; d. H. within the matrix body 15 embedded hollow fiber structure 10, an evaporation of a Make liquid, so that, for example, a cooling in the microstructure heat exchanger 5 according to the principle of Heat pipe takes place.

In diesem Fall erübrigt sich der Einsatz einer Pumpe, da die Umwälzung des Kühlmittels rein durch Schwerkraft oder beispielsweise durch Kapillarkräfte in einer dochtartigen Struktur erfolgen kann, die beispielsweise in die Zufuhrleitung 12 integriert ist.In this case, the use of a pump, since the Circulation of the coolant purely by gravity or for example by capillary forces in a wicked Structure can be made, for example, in the supply line 12 is integrated.

Gleichfalls bietet sich an, auch den Rücktransport eines entstehenden Kondensates durch ein bereits in die Mikrostruktur-Wärmetauscher 5 integriertes Wärmerohr zu realisieren.Likewise, offers itself, even the return transport of a resulting condensate through an already in the microstructure heat exchanger 5 integrated heat pipe to realize.

Claims (15)

  1. Microstructured heat exchanger having at least one hollow fibre structure (10), through which a liquid or a gas flows, and at least one matrix body (15), which surrounds the hollow fibre structure (10) at least in regions, the matrix body (15) being a graphite body, characterized in that the matrix body (15) is a graphite body formed from pressed graphite.
  2. Microstructured heat exchanger according to Claim 1, characterized in that the matrix body is a graphite body formed from sheets (14) of expanded graphite which have been pressed together.
  3. Microstructured heat exchanger according to Claim 2, characterized in that the graphite sheets (14) which have been pressed together are elastically and/or plastically formable and are between 250 µm and 3 mm thick.
  4. Microstructured heat exchanger according to Claim 1 or 2, characterized in that the matrix body (15) is of areal design and is between 500 µm and 5 mm thick.
  5. Microstructured heat exchanger according to Claim 1, characterized in that the hollow fibre structure (10) is a metallic hollow fibre structure.
  6. Microstructured heat exchanger according to Claim 5, characterized in that the hollow fibre structure (10) is an arrangement of tubes (13) which are in gas-permeable or liquid-permeable communication with at least one feed line (12) and at least one discharge line (11).
  7. Microstructured heat exchanger according to Claim 6, characterized in that the tubes (13) are in a regular arrangement.
  8. Microstructured heat exchanger according to Claim 6 or 7, characterized in that the wall thickness of the tubes (13) of the hollow fibre structure (10) is between 100 nm and 50 µm, in particular between 500 nm and 5 µm.
  9. Microstructured heat exchanger according to Claim 6, 7 or 8, characterized in that the mean spacing of the tubes (13) of the hollow fibre structure (10) is between 5 µm and 10 mm, in particular between 20 µm and 200 µm.
  10. Cooling device having a microstructured heat exchanger (5) according to one of the preceding claims, the matrix body (15) being in thermally conductive contact with a cooling component.
  11. Cooling device according to Claim 10, characterized in that the cooling component is a cooling plate (17) or an electronic power component.
  12. Cooling device according to Claim 10 or 11, characterized in that the matrix body (15) of the microstructured heat exchanger (5) is in thermally conductive contact with the cooling component via a thermally conductive paste (16).
  13. Process for producing a microstructured heat exchanger, comprising the process steps of:
    a.) providing a hollow fibre structure (10),
    b.) providing at least one first matrix part-body (14) and at least one second matrix part-body (14), at least one of which is elastically and/or plastically formable and has a good thermal conductivity, and
    c.) pressing the hollow fibre structure (10) and the matrix part-bodies (14) to form the microstructured heat exchanger (5), the matrix part-bodies (14) being shaped to form a matrix body (15) which surrounds the hollow fibre structure (10) at least in regions.
  14. Process according to Claim 13, characterized in that a graphite sheet (14) is used as the first and/or second matrix part-body (14).
  15. Process according to Claim 14, characterized in that the graphite sheet (14) is provided with a negative structuring which corresponds to the hollow fibre structure (10) prior to the pressing operation.
EP01935996A 2000-05-11 2001-04-26 Microstructured heat exchanger and method for producing the same Expired - Lifetime EP1285213B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10022972A DE10022972A1 (en) 2000-05-11 2000-05-11 Micro heat exchanger has a number of parallel metal hollow fiber tubes shrouded by a graphite matrix body for a high heat exchange in a simple unit
DE10022972 2000-05-11
PCT/DE2001/001571 WO2001086221A1 (en) 2000-05-11 2001-04-26 Microstructured heat exchanger and method for producing the same

Publications (2)

Publication Number Publication Date
EP1285213A1 EP1285213A1 (en) 2003-02-26
EP1285213B1 true EP1285213B1 (en) 2005-04-06

Family

ID=7641583

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01935996A Expired - Lifetime EP1285213B1 (en) 2000-05-11 2001-04-26 Microstructured heat exchanger and method for producing the same

Country Status (6)

Country Link
EP (1) EP1285213B1 (en)
JP (1) JP2003533057A (en)
KR (1) KR100758836B1 (en)
DE (2) DE10022972A1 (en)
ES (1) ES2240457T3 (en)
WO (1) WO2001086221A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020167563A3 (en) * 2019-02-05 2020-10-29 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Vascular composite heat exchanger

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10220705A1 (en) * 2002-05-10 2003-11-27 Abb Patent Gmbh Device for chemical or biochemical analysis of samples or reagents using water as a solvent
US20040118553A1 (en) * 2002-12-23 2004-06-24 Graftech, Inc. Flexible graphite thermal management devices
JP2006064296A (en) * 2004-08-27 2006-03-09 Sgl Carbon Ag Heat conductive plate formed of expanded graphite and production method therefor
DE102005029051A1 (en) * 2005-06-21 2006-12-28 Sgl Carbon Ag Heat conductive device for heating floor, wall or ceiling of building has heat conductive layer, which is arranged in between the pipe and the part of the plate surface facing towards the pipe
EP1736715A1 (en) * 2005-06-23 2006-12-27 Sgl Carbon Ag Vacuum tube for solar collectors with improved heat transfer
EP2597041A1 (en) * 2011-11-22 2013-05-29 Active Space Technologies GmbH Thermal strap
EP2667102B1 (en) 2012-05-23 2014-12-24 Inotec Gmbh & Co.KG Composite construction element for a floor, wall or ceiling air conditioning device of a building
JP6201458B2 (en) * 2013-06-28 2017-09-27 富士通株式会社 Electronic device and method of manufacturing electronic device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE966473C (en) * 1951-07-22 1957-09-12 Huels Chemische Werke Ag Graphite heat exchanger
FR2373498A1 (en) * 1976-12-09 1978-07-07 Savoie Electrodes Refract Refractory block based on carbon - contg. hollow metal coolers embedded in the carbon, to circulate cooling fluid
JPS6453438A (en) * 1987-08-25 1989-03-01 Actronics Kk Cooler for power semiconductor element
US5079619A (en) * 1990-07-13 1992-01-07 Sun Microsystems, Inc. Apparatus for cooling compact arrays of electronic circuitry
GB9211413D0 (en) * 1992-05-29 1992-07-15 Cesaroni Anthony Joseph Panel heat exchanger formed from tubes and sheets
US5829516A (en) * 1993-12-15 1998-11-03 Aavid Thermal Products, Inc. Liquid cooled heat sink for cooling electronic components
JP3521318B2 (en) * 1994-08-05 2004-04-19 株式会社日立製作所 High heat flux heat receiving plate and method of manufacturing the same
DE69531390T2 (en) * 1994-11-30 2004-05-27 Sumitomo Electric Industries, Ltd. Substrate, semiconductor device, assembly for element mounting
JP3025441B2 (en) * 1996-08-08 2000-03-27 日本原子力研究所 Method for manufacturing first cooling wall of fusion reactor
JP2000082659A (en) * 1998-09-03 2000-03-21 Miura Co Ltd Developing liquid application system and its control method
DE19910985B4 (en) * 1999-03-12 2004-09-02 Robert Bosch Gmbh Process for the production of metallic hollow fibers or hollow fiber structures

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020167563A3 (en) * 2019-02-05 2020-10-29 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Vascular composite heat exchanger

Also Published As

Publication number Publication date
DE10022972A1 (en) 2001-11-22
KR20020037331A (en) 2002-05-18
WO2001086221A1 (en) 2001-11-15
ES2240457T3 (en) 2005-10-16
JP2003533057A (en) 2003-11-05
KR100758836B1 (en) 2007-09-19
EP1285213A1 (en) 2003-02-26
DE50105837D1 (en) 2005-05-12

Similar Documents

Publication Publication Date Title
DE69626662T2 (en) LIQUID-COOLED HEAT SINK FOR COOLING ELECTRONIC COMPONENTS
DE2647758C3 (en) Cooling module for electrical components
DE102006032772B4 (en) Rod assembly with PTC heating elements and preheater containing them
EP0356745B1 (en) Heat transfer device
EP2567423B1 (en) Battery cooling device
DE19653956A1 (en) Flat heat tube device for e.g. IGBT or intelligent power module
EP1285213B1 (en) Microstructured heat exchanger and method for producing the same
EP3378111A1 (en) Battery arrangement
WO2014027018A1 (en) Thermoelectric device
DE112004002839T5 (en) Device for heat transport and method for its production
DE102009000914A1 (en) Evaporator and cooler using such evaporator
DE102012224356A1 (en) Semiconductor device has terminals having planar portions that are extended in direction from interior of semiconductor device to outer side of device
DE102016222630A1 (en) Cooling device and method of manufacturing a cooling device
DE10334130B4 (en) Fuel cell assembly and apparatus for mounting a fuel cell assembly to a housing
DE102007044634B4 (en) High Temperature Polymer Electrolyte Membrane Fuel Cell (HT-PEMFC) including devices for cooling same
DE3922485C1 (en)
DE102012214702A1 (en) Thermoelectric device
DE102009033988A1 (en) Heating device for car, has electrical connections for heating element extended into connection upper part, where connection upper part includes clamping ribs that acts on heat dissipation panel held in upper part at front side
DE4311839A1 (en) Microcooling device for an electronic component
DE10023949C1 (en) Heat exchangers, in particular microstructure heat exchangers
DE102016222629A1 (en) Cooling device and method of manufacturing a cooling device
DE10216157A1 (en) Heat exchanger for heating purposes, especially for motor vehicle, has electrical heating device(s) with two separately controlled heating legs on either side of heating device facing adjacent pipes
AT520693B1 (en) accumulator
DE102007021206A1 (en) Heat sink for semiconductor component, has electrical or electronic component, which is thermally connected with heat sink, and medium is provided, for supplying of coolant by force
DE102017202791A1 (en) Thermoelectric heat exchanger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021211

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB

17Q First examination report despatched

Effective date: 20040408

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50105837

Country of ref document: DE

Date of ref document: 20050512

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050725

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2240457

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20060110

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100324

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20100423

Year of fee payment: 10

Ref country code: FR

Payment date: 20100506

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110426

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20111230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110426

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20120604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110427

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140626

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50105837

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151103