EP1247880A2 - Verfahren zur Herstellung von Glycinderivaten und deren Verwendung - Google Patents

Verfahren zur Herstellung von Glycinderivaten und deren Verwendung Download PDF

Info

Publication number
EP1247880A2
EP1247880A2 EP02006731A EP02006731A EP1247880A2 EP 1247880 A2 EP1247880 A2 EP 1247880A2 EP 02006731 A EP02006731 A EP 02006731A EP 02006731 A EP02006731 A EP 02006731A EP 1247880 A2 EP1247880 A2 EP 1247880A2
Authority
EP
European Patent Office
Prior art keywords
acid
compounds
glycine
hydroxyethylammonium
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02006731A
Other languages
English (en)
French (fr)
Other versions
EP1247880A3 (de
EP1247880B1 (de
Inventor
Oliver Dr. Thurmüller
Philipp Dr. Thomuschat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
TH Goldschmidt AG
Goldschmidt GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TH Goldschmidt AG, Goldschmidt GmbH filed Critical TH Goldschmidt AG
Publication of EP1247880A2 publication Critical patent/EP1247880A2/de
Publication of EP1247880A3 publication Critical patent/EP1247880A3/de
Application granted granted Critical
Publication of EP1247880B1 publication Critical patent/EP1247880B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/23Oxidation

Definitions

  • the subject of the invention is a new method of manufacture of glycine derivatives.
  • Glycine derivatives are like betaines known as mild and tolerable substances and are in large quantities for the production of cosmetic preparations Cleaning and care of skin and hair also used.
  • Glycine derivatives are prepared according to the methods known in the art the technology produced by reacting tertiary amines with Part of excess monochloroacetic acid in basic aqueous Solution at elevated temperature.
  • MCA monochloroacetic acid
  • DCA dichloroacetic acid
  • DE-A-39 39 264 relates to a method for lowering the Residual content of free alkylating agent in aqueous solutions amphoteric or zwitterionic surfactants with the mark, that the solutions with ammonia, an amino acid with Treated 2 to 8 carbon atoms or an oligopeptide. Also this post-treatment leaves a residual MCA content and / or DCA in the reaction product. In addition, the Reaction products from ammonia and alkylating agent or Peptide and alkylating agent but produces reaction products which remain as impurities in the process product.
  • the reaction mixtures also contain large amounts of Chloride ions in the form of their alkali or ammonium salts. Therefore they have other disadvantages, such as increasing the viscosity of the end product, impairment of the low temperature stability of formulations and they cannot match a number of others active ingredients.
  • the oxidation of the quaternary amino alcohol to the corresponding one Glycine derivative can in this case by electrochemical oxidation aqueous alkaline solution using coated Nickel electrodes are made.
  • the present invention therefore relates to a method for the production of glycine derivatives by oxidation of ⁇ -hydroxyethylammonium compounds by electrolysis of a aqueous alkaline solution, which is characterized that using oxidation with nickel oxide hydroxide coated anodes is carried out.
  • the process is characterized by exceptional environmental friendliness because there are no environmentally harmful by-products incurred and on the other hand on the use of highly toxic Chloroacetic acid can be dispensed with.
  • the electrolysis is carried out in such a way that the aqueous electrolyte is electrolyzed on electrodes coated with nickel oxide hydroxide.
  • the electrodes can be coated using customary methods, such as the method proposed by HJ Schfer.
  • a Ni (OH) 2 layer is first cathodically deposited on the later anode from a Ni salt solution and then anodically converted to NiO (OH) in alkaline solution (J. Kaulen, HJ Schfer, Tetrahedron, 1982, 38, 3299).
  • Nickel metal other materials are used on which the activated nickel oxide hydroxide layer adheres like Monel, stainless steel, graphite or vitreous carbon.
  • the cathode can be any, usually in the Electrochemical material used for the manufacture of cathodes exist, such as precious metals, stainless steel or nickel.
  • the electrolytic cell can be made of any, against electrolyte and There are reactant-resistant materials such as alkali-resistant Glass, porcelain, polyethylene, rubber or stainless steel.
  • the cell type can be divided or undivided, the latter is preferred because a reduction in the desired electrolysis product need not be feared.
  • the process according to the invention can be carried out continuously or batchwise be carried out, preferably discontinuously is worked.
  • the electrolysis system from an aqueous solution of the ⁇ -Hydroxyethylammonium compound with a pH preferably of over 12.
  • the alkalinity of the solutions is usually caused by alkali metal hydroxides (preferably NaOH and KOH).
  • the lye necessary for the neutralization of the resulting acid is gradually added, slightly less than that theoretically necessary amount is added so that the pH the solution obtained after the electrolysis is complete at about 9 lies.
  • Appropriate levels of ⁇ -hydroxyethylammonium compound alkaline solution are between 1 and 30 wt .-%, preferably between 20 and 30% by weight.
  • the electrolysis temperature is usually 20 to 80 ° C, preferably about 70 ° C.
  • the electrolyzed solution is, for example brought to pH 6 to 7 with phosphoric acid, concentrated and the residue with a suitable solvent extracted.
  • a suitable solvent e.g. Alcohols (ethanol, isopropanol) suitable.
  • the extract obtained is freed from the solvent and delivers the pure betaines.
  • Betaines are to be obtained. They usually interfere with the synthesis of salts, however, so that on a Extraction can be dispensed with.
  • ⁇ -hydroxyethylammonium compounds used in accordance with the invention can by the methods known in this field by reacting amines with ethylene oxide in an acidic solution can be produced (EP-A-0 098 802).
  • the radical R a is preferably derived from natural fatty acids, such as caprylic acid, capric acid, 2-ethylhexanoic acid, lauric acid, myristic acid, palmitic acid, palmitoleic acid, isostearic acid, stearic acid, hydroxystearic acid (ricinoleic acid), dihydroxystearic acid, oleic acid, linoleic acid, petroselic acid, araidic acid, elaidic acid, elaidic acid Behenic acid and erucic acid, gadoleic acid and the technical mixtures resulting from the pressure splitting of natural fats and oils, such as oleic acid, linoleic acid, linolenic acid and in particular rapeseed oil fatty acid, soybean oil fatty acid, sunflower oil fatty acid, tall oil fatty acid. In principle, all fatty acids with a similar chain distribution are suitable.
  • natural fatty acids such as caprylic acid, capric acid
  • the iodine number is the amount of iodine, which from 100 g Connection for the saturation of the double bonds added becomes.
  • C 8/18 coconut or palm fatty acids Partially hardened C 8/18 coconut or palm fatty acids, rapeseed oil fatty acids, sunflower oil fatty acids, soybean oil fatty acids and tall oil fatty acids with iodine numbers in the range from approx. 80 to 150 and in particular technical C 8/18 coconut fatty acids are used, where appropriate a selection of cis / trans isomers, such as C 16/18 fatty acid cuts rich in elaidic acid, can be advantageous.
  • They are commercially available products and are offered by various companies under their respective trade names.
  • the solution again has a pH of 8 to 9 and 4 ml of saturated NaOH solution are again added.
  • a current of 0.5 A is then set and electrolyzed for a further 7.5 h.
  • the solution obtained has a pH of 8 to 9.
  • the reaction was checked by means of TLC chromatography and ESI mass spectrometry.
  • the electrolysis discharge is carried out with phosphoric acid pH is adjusted from 6 to 7 and concentrated.
  • the residue is extracted with isopropanol and the extract obtained freed from the solvent. As a product you get a yellow-brown solid.
  • Example 2 The experiment was carried out analogously to Example 1.
  • 2-hydroxyethyl (dimethyl) 3-undecylcarboxamidopropylammonium x 0.5 C 2 O 4 H - was used as the starting material.
  • oxalate is first oxidized to CO 2 , which reacts to carbonate under the alkaline conditions and only then oxidizes the ammonium alcohol to the corresponding glycine derivative.
  • the correspondingly larger amount of NaOH required was added to the solution from the start.
  • Example 2 The experiment was carried out analogously to Example 1.
  • 105 ml of a 2.7% solution of an ammonium mixture (based on the coconut fatty acid cut), which contained 2-hydroxyethyl (dimethyl) 3-undecylcarboxamidopropylammonium x 0.5 H 2 PO 4 - as the main component, for 3 h electrolyzed at 2.0 A.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Cosmetics (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

Verfahren zur Herstellung von Glycinderivaten, welches dadurch gekennzeichnet ist, dass β-Hydroxyethylammonium-Verbindungen elektrochemisch zu den entsprechenden Säuren oxidiert werden.

Description

Gegenstand der Erfindung ist ein neues Verfahren zur Herstellung von Glycinderivaten. Glycinderivate wie Betaine sind als milde und verträgliche Substanzen bekannt und werden in großen Mengen zur Herstellung von kosmetischen Präparaten zur Reinigung und Pflege von Haut und Haaren mitverwendet.
Glycinderivate werden nach den Verfahren gemäß bekanntem Stand der Technik hergestellt durch Umsetzung tertiärer Amine mit zum Teil überschüssiger Monochloressigsäure in basischer wässriger Lösung bei erhöhter Temperatur.
Es wurden in der Vergangenheit große Anstrengungen unternommen, Glycinderivate herzustellen, die frei sind von Verunreinigungen, welche Hautreizungen verursachen können oder in sonstiger Weise aus toxikologischen und physiologischen Gründen unerwünscht sind.
Hierzu zählen insbesondere die verfahrensbedingten Restmengen an Verbindungen mit organisch gebundenem Chlor, wie Monochloressigsäure (MCA) und insbesondere Dichloressigsäure (DCA) oder deren Salze, welche mit der eingesetzten Chloressigsäure in das Endprodukt eingebracht werden.
Versuche, den Gehalt an diesen Verbindungen durch verlängerte Reaktionszeiten oder Erhöhung der pH-Werte zu reduzieren, führten zu keiner wesentlichen Verringerung. Die Anwendung von pH-Werten oberhalb ca. 10 bringt insbesondere bei erhöhten Temperaturen um oder oberhalb 100 °C das Risiko einer zunehmenden Zersetzung mit sich (DE-B-29 26 479, EP-B-0 557 835).
Die DE-A-39 39 264 betrifft ein Verfahren zur Erniedrigung des Restgehaltes an freiem Alkylierungsmittel in wässrigen Lösungen amphoterer oder zwitterionischer Tenside mit dem Kennzeichen, dass man die Lösungen mit Ammoniak, einer Aminosäure mit 2 bis 8 C-Atomen oder einem Oligopeptid nachbehandelt. Auch durch diese Nachbehandlung verbleibt ein Restgehalt an MCA und/oder DCA im Reaktionsprodukt. Zusätzlich werden durch die Umsetzungsprodukte aus Ammoniak und Alkylierungsmittel oder Peptid und Alkylierungsmittel aber Reaktionsprodukte erzeugt, welche als Verunreinigungen im Verfahrensprodukt verbleiben.
Weiterhin enthalten die Reaktionsmischungen große Mengen an Chloridionen in Form ihrer Alkali- oder Ammoniumsalze. Daher weisen sie weitere Nachteile auf, wie Erhöhung der Viskosität des Endproduktes, Beeinträchtigung der Tieftemperaturstabilität von Formulierungen und sie können nicht mit einer Anzahl weiterer aktiver Ingredienzien formuliert werden.
Weiterhin sind sie aufgrund des Chloridionen-Gehaltes zu aggressiv für die Reinigung korrosionsempfindlicher metallischer Untergründe wie sie insbesondere in der elektronischen Industrie eingesetzt werden.
Es gab daher eine Reihe von Versuchen, diese Salze zu entfernen wie beispielsweise durch Lösungsmittelextraktion wie in der JP-A-759981984 beschrieben oder durch Elektrodialyse gemäß EP-A-0 269 940. Abgesehen davon, dass keine vollständige Entfernung der Chloridionen erreicht werden kann, sind diese Verfahren durch die erforderlichen zusätzlichen Stufen aufwendig und ökonomisch unvorteilhaft.
Es gibt zahlreiche Verfahren, die die Oxidation von Alkoholen zu Carbonsäuren gestatten. Neben den klassischen Verfahren der Oxidation im Labormaßstab mittels Schwermetalloxiden (z.B. KMnO4) existieren auch Verfahren, die im technischen Maßstab durchgeführt werden können, wie die Oxidation durch NO2 (US-A-5 856 470), durch Nitriloxide (US-A-5 179 218), durch O2 unter Edelmetallkatalyse (DE-39 29 063) oder auch elektrochemisch (EP-A-0 199 413, DE-A-34 43 303).
Aus Arbeiten von H.-J. Schäfer ist es bekannt (Übersicht: Topics in Current Chemistry, 1987, 142, 102 bis 129), dass primäre Alkohole durch Elektrolyse in alkalischer Lösung unter Verwendung von mit Nickeloxidhydroxid NiO(OH) beschichteten Anoden und von Stahl-Kathoden mit Ausbeuten zwischen 46 und 99 % der Theorie (d. Th.) zu den entsprechenden Carbonsäuren oxidiert werden können. Die Oxidation erfolgt dabei hauptsächlich nach einem indirekten Anodenprozess, bei dem der Alkohol durch das Nickeloxidhydroxid mit 3wertigem Nickel zur Carbonsäure oxidiert wird, wobei das NiO(OH) zu Nickeloxid oder Nickelhydroxid mit 2wertigem Nickel reduziert wird. Durch Elektronenentzug an der Anode geht das 2wertige Nickel anschließend wieder in das 3wertige Nickel über.
Über die elektrochemische Oxidation von Alkoholen, die über eine Ethylengruppe an einen quartären positiv geladenen Stickstoff gebunden sind, wird in der genannten Arbeit nicht berichtet.
In dem Bestreben, die Nachteile des Standes der Technik zu überwinden und ein Verfahren bereitzustellen, welches die Herstellung von Glycinderivaten ermöglicht, wurde nun gefunden, dass dieses Ziel durch die Oxidation quartärer Aminoalkohole erreicht wird. Überraschenderweise stört der quartäre, positiv geladene Stickstoff den Oxidationsprozess nicht, und es können weder Oxidationsprodukte des Stickstoffs, wie N-Oxide, noch Abbauprodukte nach Hoffmann nachgewiesen werden. Glycinderivate, die auf diese Weise hergestellt werden, sind frei von anorganischem Chlor und organisch gebundenem Chlor, wie insbesondere Monochloressigsäure, Dichloressigsäure und deren Salzen.
Die Oxidation des quartären Aminoalkohols zum entsprechenden Glycinderivat kann dabei durch elektrochemische Oxidation in wässriger alkalischer Lösung unter Verwendung beschichteter Nickelelektroden erfolgen.
Gegenstand der vorliegenden Erfindung ist daher ein Verfahren zur Herstellung von Glycinderivaten durch Oxidation von β-Hydroxyethylammonium-Verbindungen durch Elektrolyse einer wässrigen alkalischen Lösung, das dadurch gekennzeichnet ist, dass die Oxidation unter Verwendung von mit Nickeloxidhydroxid beschichteten Anoden durchgeführt wird.
Das Verfahren zeichnet sich durch außerordentliche Umweltfreundlichkeit aus, da zum einen keine umweltbelastenden Nebenprodukte anfallen und zum anderen auf den Einsatz der hochtoxischen Chloressigsäure verzichtet werden kann. Daneben wird direkt ein Produkt frei von anorganischem Chlor erhalten, so dass auf eine technisch aufwendige Abtrennung der Chloridionen verzichtet werden kann.
Nach dem elektrochemischen Verfahren werden Ausbeuten durchweg größer 80 % d. Th. erhalten. Die Elektrolyse wird im Prinzip so durchgeführt, dass der wässrige Elektrolyt an mit Nickeloxidhydroxid beschichteten Elektroden elektrolysiert wird. Die Beschichtung der Elektroden kann dabei nach üblichen wie z.B. nach dem von H.J. Schäfer vorgeschlagenen Verfahren erfolgen. Im Prinzip wird dabei aus einer Ni-Salzlösung zunächst kathodisch eine Ni(OH)2-Schicht auf der späteren Anode abgeschieden und dann anodisch in alkalischer Lösung in NiO(OH) überführt (J. Kaulen, H.J. Schäfer, Tetrahedron, 1982, 38, 3299).
Als mit NiO(OH) zu beschichtende Anodenmaterialien können außer Nickelmetall auch andere Materialien verwendet werden, auf welchen die aktivierte Nickeloxidhydroxidschicht haftet, wie Monel, rostfreier Stahl, Graphit oder glasartiger Kohlenstoff.
Die Kathode kann aus einem beliebigen, üblicherweise in der Elektrochemie für die Herstellung von Kathoden verwendeten Material bestehen, wie etwa Edelmetallen, Edelstahl oder Nickel.
Die Elektrolysezelle kann aus beliebigem, gegen Elektrolyt und Reaktanden beständigem Material bestehen, wie alkalibeständiges Glas, Porzellan, Polyethylen, Kautschuk oder Edelstahl.
Der Zelltyp kann geteilt oder ungeteilt sein, wobei letzteres bevorzugt wird, da eine Reduktion des gewünschten Elektrolyseproduktes nicht befürchtet werden muß.
Das erfindungsgemäße Verfahren kann kontinuierlich oder diskontinuierlich durchgeführt werden, wobei bevorzugterweise diskontinuierlich gearbeitet wird. Bei dieser Arbeitsweise besteht das Elektrolysesystem aus einer wässrigen Lösung der β-Hydroxyethylammonium-Verbindung mit einem pH-Wert vorzugsweise von über 12. Die Alkalität der Lösungen wird in der Regel durch Alkalihydroxide (vorzugsweise NaOH und KOH) bewirkt. Die für die Neutralisation der entstehenden Säure notwendige Lauge wird nach und nach zugegeben, wobei etwas weniger als die theoretisch notwendige Menge zugesetzt wird, so dass der pH-Wert der nach Abschluss der Elektrolyse erhaltenen Lösung bei etwa 9 liegt.
Zweckmäßige Gehalte an β-Hydroxyethylammonium-Verbindung der alkalischen Lösung liegen zwischen 1 und 30 Gew.-%, vorzugsweise zwischen 20 und 30 Gew.-%.
Die Elektrolysetemperatur beträgt normalerweise 20 bis 80 °C, vorzugsweise etwa 70 °C.
Es ist weiterhin zweckmäßig, die Elektrolyse mit einer höheren als der theoretisch erforderlichen Strommenge durchzuführen, vorzugsweise der 1,5- bis 3fachen Strommenge.
Nach beendeter Elektrolyse wird die elektrolysierte Lösung beispielsweise mit Phosphorsäure auf pH 6 bis 7 gebracht, eingeengt und der Rückstand mit einem geeigneten Lösungsmittel extrahiert. Hierfür sind z.B. Alkohole (Ethanol, Isopropanol) geeignet. Der erhaltene Extrakt wird vom Lösungsmittel befreit und liefert die reinen Betaine.
Die Extraktion ist nur dann erforderlich, wenn die salzfreien Betaine erhalten werden sollen. Üblicherweise stören die bei der Synthese anfallenden Salze jedoch nicht, so dass auf eine Extraktion verzichtet werden kann.
Die erfindungsgemäß mitverwendeten β-Hydroxyethylammonium-Verbindungen können nach den auf diesem Gebiet bekannten Verfahren durch Umsetzung von Aminen mit Ethylenoxid in saurer Lösung hergestellt werden (EP-A-0 098 802).
Als β-Hydroxyethylammonium-Verbindungen sind alle Verbindungen verwendbar, welche mindestens eine quartäre Aminogruppe und mindestens eine OH-Gruppe, vorzugsweise der Formeln (I) und/oder (II) und/oder (III) enthalten
Figure 00070001
Figure 00070002
in welcher die Reste
R
unabhängig voneinander Alkylreste mit 1 bis 3 C-Atomen und/oder -CH2-CH2-OH sein kann und
n,m,o
Werte zwischen 1 bis 5, vorzugsweise 1 bis 3, insbesondere 1 sein können, und
R1
ein gegebenenfalls Heteroatome, inbesondere Sauerstoff- und/oder Stickstoffatome enthaltender Alkylrest oder der Rest Ra-[C(O)-NH-(CH2) q]r- mit q = 1 bis 6, vorzugsweise 2 oder 3, und r = 0 oder 1, ist.
Erfindungsgemäß bevorzugt sind Verbindungen, in denen die freien Valenzen der allgemeinen Formel (I) gebunden sind an den Rest Ra-C(O)-NH, wobei Ra ein gegebenenfalls substituierter Alkyl- oder Alkenylrest mit 7 bis 21 C-Atomen oder ein gegebenenfalls substituierter Alkyl- oder Alkenylrest mit 1 bis 22 C-Atomen, vorzugsweise mit 7 bis 17 C-Atomen, sein kann und die Reste R unabhängig voneinander Alkylreste mit 1 bis 3 C-Atomen sein können; oder, wenn r = 0 ist, Ra ein Alkyl- oder Alkenylrest mit 8 bis 22 C-Atomen sein kann; Valenzen der allgemeinen Formeln (I) bis (III) gebunden sind an einen gegebenenfalls substituierten Alkyl- oder Alkenylrest mit 1 bis 22 C-Atomen, vorzugsweise mit 8 bis 18 C-Atomen oder an den Rest Ra-C(O)-[NH-(CH2)z]y- in dem Ra die oben angegebene Bedeutung hat, und z,y unabhängig voneinander Zahlen von 1 bis 3 sein können; in denen die freien Valenzen der allgemeinen Formel (IV) gebunden sind an den Rest Ra, mit der oben angegebenen Bedeutung.
Der Rest Ra leitet sich bevorzugt von natürlichen Fettsäuren ab, wie Caprylsäure, Caprinsäure, 2-Ethylhexansäure, Laurinsäure, Myristinsäure, Palmitinsäure, Palmitoleinsäure, Isostearinsäure, Stearinsäure, Hydroxystearinsäure (Ricinolsäure), Dihydroxystearinsäure, Ölsäure, Linolsäure, Petroselinsäure, Elaidinsäure, Arachinsäure, Behensäure und Erucasäure, Gadoleinsäure sowie die bei der Druckspaltung natürlicher Fette und Öle anfallenden technischen Mischungen, wie Ölsäure, Linolsäure, Linolensäure und insbesondere Rapsölfettsäure, Sojaölfettsäure, Sonnenblumenölfettsäure, Tallölfettsäure. Geeignet sind prinzipiell alle Fettsäuren mit ähnlicher Kettenverteilung.
Der Gehalt dieser Fettsäuren bzw. Fettsäureester an ungesättigten Anteilen wird - soweit dies erforderlich ist - durch die bekannten katalytischen Hydrierverfahren auf eine gewünschte Jodzahl eingestellt oder durch Abmischung von vollhydrierten mit nichthydrierten Fettkomponenten erzielt.
Die Jodzahl, als Maßzahl für den durchschnittlichen Sättigungsgrad einer Fettsäure, ist die Jodmenge, welche von 100 g der Verbindung zur Absättigung der Doppelbindungen aufgenommen wird.
Vorzugsweise werden teilgehärtete C8/18-Kokos- bzw. Palmfettsäuren, Rapsölfettsäuren, Sonnenblumenölfettsäuren, Sojaölfettsäuren und Tallölfettsäuren, mit Jodzahlen im Bereich von ca. 80 bis 150 und insbesondere technische C8/18-Kokosfettsäuren eingesetzt, wobei gegebenenfalls eine Auswahl von cis/trans-Isomeren, wie elaidinsäurereiche C16/18-Fettsäureschnitte von Vorteil sein können. Sie sind handelsübliche Produkte und werden von verschiedenen Firmen unter deren jeweiligen Handelsnamen angeboten.
Die Verbindungen der allgemeinen Formeln (I) bis (III) werden wie nachfolgend beschrieben elektrochemisch zu den entsprechenden Säuren oxidiert.
Beispiel 1:
An einer Netzelektrode (60,5 cm2, Nickelnetz mit NiO(OH) beschichtet) und einer Kathode (Zylinder, Ø 1,7 cm, 7 cm hoch, rostfreier Edelstahl) wurden in einer 150-ml-Becherglaszelle mit Rückflusskühler 105 ml einer 27 %igen Lösung von 2-Hydroxyethyl(dimethyl)3-undecylcarboxamidopropylammonium x 0,5 H2PO4 -, die 4,2 g NaOH enthielt, für 7 h bei einer Stromstärke von 2,0 A elektrolysiert. Dabei stieg der pH-Wert binnen 5 h auf 8 bis 9 an, und es wurden 4 ml gesättigte NaOH-Lösung zugesetzt. Anschließend wurde die Stromstärke auf 1,0 A eingestellt und für weitere 7 h elektrolysiert. Nach dieser Zeit weist die Lösung wiederum einen pH-Wert von 8 bis 9 auf, und es werden erneut 4 ml gesättigte NaOH-Lösung zugesetzt. Anschließend wird eine Stromstärke von 0,5 A eingestellt und für weitere 7,5 h elektrolysiert. Die erhaltene Lösung weist einen pH-Wert von 8 bis 9 auf. Die Reaktionskontrolle erfolgte mittels DC-Chromatographie und ESI-Massenspektrometrie.
Der Elektrolyseaustrag wird mit Phosphorsäure auf einen pH-Wert von 6 bis 7 eingestellt und eingeengt. Der Rückstand wird mit Isopropanol extrahiert und der erhaltene Extrakt vom Lösungsmittel befreit. Als Produkt erhält man einen gelb-braunen Feststoff.
Analytik
Ausbeute: 23,3 g (91 % d. Th.)
13C-NMR (100 MHz, CDCl3): δ = 13,67 (CH3), 22,24 bis 31,48 (CH2), 35,86 und 35,87 (CH2CONH und CONHCH2), 50,32 (N+(CH3)2), 62,12 (CH2N+), 63,98 (N+ CH2COO-), 167,09 (COO-), 174,06 (CONH) ppm.
Beispiel 2:
Der Versuch wurde analog zu Beispiel 1 durchgeführt. Im Unterschied zu Beispiel 1 wurde 2-Hydroxyethyl(dimethyl)3-undecylcarboxamidopropylammonium x 0,5 C2O4H- als Edukt verwendet. Während der Oxidation wird zunächst Oxalat zu CO2 oxidiert, das unter den alkalischen Bedingungen zu Carbonat reagiert und erst anschließend der Ammoniumalkohol zum entsprechenden Glycinderivat oxidiert. Die entsprechend größere notwendige Menge an NaOH wurde der Lösung von Anfang an zugesetzt.
Analytik
Ausbeute: 20,28 g (82 % d. Th.)
13C-NMR (100 MHz, CDCl3) : δ = 13,39 (CH3), 21,95 bis 31,18 (CH2), 35,55 (br, CH2CONH und CONHCH2), 50,15 (N+(CH3)2), 61,77 (CH2N+), 63,73 (N+ CH2COO-), 165,81 (COO-), 173,65 (CONH) ppm.
Beispiel 3:
Der Versuch wurde analog zu Beispiel 1 durchgeführt. Im Unterschied zu Beispiel 1 wurden 105 ml einer 2,7 %igen Lösung eines Ammoniumgemisches (zugrunde liegt der Kokosfettsäureschnitt), das als Hauptkomponente das 2-Hydroxyethyl(dimethyl)3-undecylcarboxamidopropylammonium x 0,5 H2PO4 - enthielt, für 3 h bei 2,0 A elektrolysiert.
Analytik
Ausbeute: 2,35 g (96 % d. Th.)
13C-NMR (100 MHz, CDCl3) : δ = 13,69 (CH3), 22,24 bis 31,48 (CH2), 35,84 und 35,87 (CH2CONH und CONHCH2), 50,41 (N+(CH3)2), 62,23 (CH2N+), 64,31 (N+ CH2COO-), 166,14 (COO-), 173,93 (CONH) ppm.
MS (ESI) : m/z = 365 (M+ +Na, 100 %).

Claims (6)

  1. Verfahren zur Herstellung von Glycinderivaten, dadurch gekennzeichnet, dass die Hydroxylgruppen von β-Hydroxyethylammonium-Verbindungen elektrochemisch zu den entsprechenden Säuren oxidiert werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die wässrigen Lösungen von β-Hydroxyethylammonium-Verbindungen elektrochemisch unter Verwendung von mit Nickeloxidhydroxid beschichteten Elektroden zu den entsprechenden Säuren oxidiert werden.
  3. Verfahren nach den Ansprüchen 1 bis 2, dadurch gekennzeichnet, dass die β-Hydroxyethylammoniumverbindungen bei pH-Werten im Bereich von 8 bis 14 oxidiert werden.
  4. Glycinverbindungen, frei von organisch gebundenem Halogen und/oder Halogenidionen, dadurch hergestellt, dass die Hydroxylgruppen von β-Hydroxyethylammonium-Verbindungen elektrochemisch zu den entsprechenden Säuren oxidiert werden.
  5. Glycinverbindungen, frei von organisch gebundenem Halogen und/oder Halogenidionen, hergestellt gemäß den Ansprüchen 2 bis 3.
  6. Verwendung der gemäß Ansprüche 1 bis 3 hergestellten Glycinverbindungen zur Herstellung von tensidischen Zubereitungen.
EP02006731A 2001-04-06 2002-03-23 Verfahren zur Herstellung von Glycinderivaten Expired - Lifetime EP1247880B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10117222A DE10117222B4 (de) 2001-04-06 2001-04-06 Verfahren zur Herstellung von Glycinderivaten
DE10117222 2001-04-06

Publications (3)

Publication Number Publication Date
EP1247880A2 true EP1247880A2 (de) 2002-10-09
EP1247880A3 EP1247880A3 (de) 2004-04-14
EP1247880B1 EP1247880B1 (de) 2008-12-24

Family

ID=7680661

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02006731A Expired - Lifetime EP1247880B1 (de) 2001-04-06 2002-03-23 Verfahren zur Herstellung von Glycinderivaten

Country Status (5)

Country Link
US (1) US6663764B2 (de)
EP (1) EP1247880B1 (de)
JP (1) JP2003013270A (de)
AT (1) ATE418629T1 (de)
DE (2) DE10117222B4 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004024991A1 (en) 2002-09-10 2004-03-25 Solvay Sa Organic salts and their use as reagents in electrochemical reactions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE348380C (de) * 1922-02-07 Anilin Fabrikation Ag Verfahren zur Reingewinnung von Betain
US3480665A (en) * 1965-03-22 1969-11-25 Ugine Kuhlmann Method of preparation of betaine hydrate
EP0701999A1 (de) * 1994-09-16 1996-03-20 Th. Goldschmidt AG Verfahren zur Herstellung von Betainen

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB614984A (en) * 1945-09-05 1948-12-30 Roche Products Ltd A process for the manufacture of ª‰-alanine
EP0098802B1 (de) 1982-07-05 1987-11-04 BASF Aktiengesellschaft Verfahren zur Herstellung von quartären Ammoniumsalzen
JPS5975998A (ja) * 1982-10-22 1984-04-28 味の素株式会社 両性界面活性剤の精製法
US4488944A (en) * 1983-10-19 1984-12-18 The Dow Chemical Company Electrocatalytic oxidation of (poly)alkylene glycols
DE3443303A1 (de) 1984-11-28 1986-06-05 Hoechst Ag, 6230 Frankfurt Verfahren zur herstellung von 3-hydroxy-3-methylglutarsaeure
GB8509746D0 (en) 1985-04-16 1985-05-22 Shell Int Research Preparing azetidine derivatives
JPS63130129A (ja) 1986-11-18 1988-06-02 Kao Corp 界面活性剤の製造法
DE3929063A1 (de) 1989-09-01 1991-03-07 Henkel Kgaa Verfahren zur herstellung von alkalisalzen von ethercarbonsaeuren
DE3939264A1 (de) 1989-11-28 1991-05-29 Henkel Kgaa Verfahren zur nachbehandlung amphoterer oder zwitterionischer tenside
ES2066534T3 (es) * 1991-09-19 1995-03-01 Hoechst Ag Procedimiento para la oxidacion de derivados de hidroximetilpiridina en derivados de acido piridincarboxilico.
US5179218A (en) 1991-09-30 1993-01-12 Shell Oil Company Process for the oxidation of alcohols to acids
DE4205880A1 (de) 1992-02-26 1993-09-02 Goldschmidt Ag Th Verfahren zur herstellung von betainen
US5792737A (en) * 1994-11-07 1998-08-11 Th. Goldschmidt Ag Mild, aqueous, surfactant preparation for cosmetic purposes and as detergent
DE19510313A1 (de) 1995-03-22 1996-09-26 Henkel Kgaa Verbessertes Oxidationsverfahren zur Herstellung von Polycarboxylaten aus Polysacchariden

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE348380C (de) * 1922-02-07 Anilin Fabrikation Ag Verfahren zur Reingewinnung von Betain
US3480665A (en) * 1965-03-22 1969-11-25 Ugine Kuhlmann Method of preparation of betaine hydrate
EP0701999A1 (de) * 1994-09-16 1996-03-20 Th. Goldschmidt AG Verfahren zur Herstellung von Betainen

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch, Week 198423 Derwent Publications Ltd., London, GB; Class D25, AN 1984-143630 XP002270133 & JP 59 075998 A (AJINOMOTO KK), 28. April 1984 (1984-04-28) *
MOELLER K D: "Synthetic Applications of Anodic Electrochemistry" TETRAHEDRON, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, Bd. 56, Nr. 49, 1. Dezember 2000 (2000-12-01), Seiten 9527-9554, XP004220800 ISSN: 0040-4020 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004024991A1 (en) 2002-09-10 2004-03-25 Solvay Sa Organic salts and their use as reagents in electrochemical reactions
US7767073B2 (en) 2002-09-10 2010-08-03 Solvay S.A. Organic salts and their use as reagents in electrochemical reactions

Also Published As

Publication number Publication date
DE10117222A1 (de) 2002-10-24
JP2003013270A (ja) 2003-01-15
US6663764B2 (en) 2003-12-16
DE10117222B4 (de) 2004-12-30
ATE418629T1 (de) 2009-01-15
US20020157943A1 (en) 2002-10-31
EP1247880A3 (de) 2004-04-14
EP1247880B1 (de) 2008-12-24
DE50213141D1 (de) 2009-02-05

Similar Documents

Publication Publication Date Title
EP2212278B1 (de) Verfahren zur herstellung von acylglycinaten
EP2858622B1 (de) Verwendung von n-methyl-n-acylglucaminen als verdicker in tensidlösungen
EP0012215B1 (de) 2-Hydroxybutansulfonsaures Cholin und dessen Verwendung als Leitsalz
DE3143726A1 (de) Optisch aktive prolin-derivate, verfahren zu ihrer herstellung und ihre verwendung
EP0557835B1 (de) Verfahren zur Herstellung von Betainen
DE10117222B4 (de) Verfahren zur Herstellung von Glycinderivaten
EP0856507B1 (de) Verfahren zur Reinigung von Alpha-, Beta- oder Gamma- substituierten Carbonsäuren durch Elektrodialyse
EP2697190B1 (de) Verfahren zur herstellung von aminopolycarboxylaten ausgehend von aminosäuren
EP1289930B1 (de) Verfahren zur herstellung von 5-aminosalicylsäure
EP0452349B1 (de) Verfahren zur herstellung von amphoteren grenzflächenaktiven imidazolinderivaten
EP2731929B1 (de) Verfahren zur herstellung von acylglycinaten und zusammensetzungen enthaltend derartige verbindungen
DE2045888A1 (de)
DE69900927T2 (de) Verfahren zur Herstellung von 4-(des-dimethylamino)-Tetracyclinen
DE2605650A1 (de) Verfahren zur herstellung von para-isobutyl-phenylessigsaeurederivaten
DE177490C (de)
EP3174849A1 (de) Herstellung von pyrrolidinderivaten
EP0745701A1 (de) Verfahren zur Regenerierung von Kunststoffdiaphragmen
DE2809179A1 (de) Verfahren zur extraktion von pantolacton aus seinen waessrigen loesungen
DE2547386A1 (de) Verfahren zur herstellung von p-benzochinondiketalen
DE2022654B2 (de)
DE2450862B2 (de) Verfahren zur Gewinnung von Gallium und Indium aus wäßriger Lösung
DE1205075B (de) Verfahren zur Herstellung von D-Ribose
DE1620664A1 (de) Verfahren zur Herstellung von Piperidin und seinen Alkylhomologen durch katalytische Hydrierung von Pyridin und dessen Alkylhomologen
DE1909275B1 (de) Verfahren zur kontinuierlichen Herstellung von quaternaeren Ammoniumverbindungen
DE1171415B (de) Verfahren zur elektrochemischen Herstellung von vorzugsweise gesaettigte Perfluorfettsaeurefluoride enthaltenden Gemischen organischer Verbindungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020330

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

RIC1 Information provided on ipc code assigned before grant

Ipc: 7C 25B 3/02 A

Ipc: 7C 07C 229/08 B

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GOLDSCHMIDT GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EVONIK GOLDSCHMIDT GMBH

RTI1 Title (correction)

Free format text: PROCESS FOR THE PREPARATION OF GLYCINE DERIVATIVES

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50213141

Country of ref document: DE

Date of ref document: 20090205

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081224

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081224

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090404

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090324

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090525

BERE Be: lapsed

Owner name: EVONIK GOLDSCHMIDT G.M.B.H.

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081224

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50213141

Country of ref document: DE

Owner name: EVONIK DEGUSSA GMBH, DE

Free format text: FORMER OWNER: EVONIK GOLDSCHMIDT GMBH, 45127 ESSEN, DE

Effective date: 20131024

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20140320 AND 20140326

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: EVONIK DEGUSSA GMBH, DE

Effective date: 20140411

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150320

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150319

Year of fee payment: 14

Ref country code: GB

Payment date: 20150319

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50213141

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160323

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160323

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161001