EP1239274B1 - Dispositif de mesure analogique d'un couple de torsion, colonne de direction et module le comprenant - Google Patents

Dispositif de mesure analogique d'un couple de torsion, colonne de direction et module le comprenant Download PDF

Info

Publication number
EP1239274B1
EP1239274B1 EP02290541A EP02290541A EP1239274B1 EP 1239274 B1 EP1239274 B1 EP 1239274B1 EP 02290541 A EP02290541 A EP 02290541A EP 02290541 A EP02290541 A EP 02290541A EP 1239274 B1 EP1239274 B1 EP 1239274B1
Authority
EP
European Patent Office
Prior art keywords
signals
torque
measuring
analogue
test body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02290541A
Other languages
German (de)
English (en)
Other versions
EP1239274A1 (fr
Inventor
Pascale Desbiolles
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN SNR Roulements SA
Original Assignee
Societe Nouvelle de Roulements SNR SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Nouvelle de Roulements SNR SA filed Critical Societe Nouvelle de Roulements SNR SA
Publication of EP1239274A1 publication Critical patent/EP1239274A1/fr
Application granted granted Critical
Publication of EP1239274B1 publication Critical patent/EP1239274B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/109Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving measuring phase difference of two signals or pulse trains
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/104Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving permanent magnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/22Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers
    • G01L5/221Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers to steering wheels, e.g. for power assisted steering

Definitions

  • the invention relates to a device for measuring the torsion torque applied to a rotating shaft, a method for measuring the torque by means of such a device, a steering column and a module comprising such a device.
  • It aims for example the measurement of the torsion torque applied to a steering column of a vehicle via the steering wheel.
  • steering column conventionally means a tubular element, fixed to the vehicle body, under the dashboard, which guides and supports the transmission shaft connected to the steering wheel.
  • This steering wheel is then a manual control member, connected to the steering wheels and used by the driver to steer the vehicle.
  • the invention also relates to decoupled steering columns. Unlike conventional steering columns, the decoupled steering columns are not associated with a steering box transforming the circular motion of the steering wheel into angular displacement of the connecting rod which causes the steering wheels.
  • This simulation can be fun object, related to learning in driving schools or even linked to an interactive driving simulation for the needs of car manufacturers.
  • Measuring the torque applied to the steering wheel is therefore essential to ensure a good simulation, in real time.
  • the torque measurement on the steering wheel shaft is also very important in power steering or power steering.
  • the triggering of the assistance depends in particular on the torque applied by the driver on the steering wheel.
  • the torsion torque measuring device used in the servodrives emits a signal indicative of the steering torque exerted by the driver on the steering wheel and thus on the transmission shaft of the steering column of the vehicle.
  • This signal is conventionally sent to a steering assistance computer that triggers the assistance, for example by ordering an electric motor, in the case of an electric power steering.
  • the invention can also be applied to other fields such as that of the transmission of forces, for example to the wheels of a vehicle, or the control of the braking of said vehicle by means of the measurement of the applied torque.
  • Torsion torque measuring devices are already known which use strain gages glued to a test body.
  • This type of technology has the disadvantage of requiring a turning passage which, for reasons of space and reliability, is not desirable in particular for measuring the torque applied to a steering column of a vehicle.
  • detecting the angular offset of two magnetic field generators with respect to detector members makes it possible to deliver an analog signal proportional to the applied torque.
  • This type of analog magnetic technology has a number of disadvantages, in particular related to the permanent control of the air gap on a lathe in order to maintain the measurement accuracy and to the temperature compensation of the output signal which requires a measurement system differential.
  • the document EP-0 284 508 discloses a torque measuring device which uses two magnetic encoders respectively associated with the vicinity of each end of a torsion bar.
  • the signals of the first encoder are detected by a pair of sensors while the signals of the second encoder are detected by a sensor.
  • the signals thus obtained are processed by a microprocessor so as to obtain the applied torque.
  • this document proposes the use of a high pass filter but this solution is not entirely satisfactory because, by eliminating the low frequency signals, it does not have sufficient efficiency.
  • the device described in the document EP-0 284 508 by making a time difference of the detected signals, does not make it possible to obtain the torque applied when the speed of rotation is zero.
  • the invention therefore aims to remedy these drawbacks by proposing in particular a device for measuring the torsion torque applied to a rotating shaft whose output signal can be made independent on the one hand of the amplitude of the read magnetic field and therefore air gap variations and secondly the decay of the magnetic field due to temperature, while being reliable and suitable for a severe automotive-type environment.
  • the invention provides a steering column comprising a torque measurement device described above, wherein the test body is integrated in the column.
  • the invention proposes a module for measuring the torsion torque applied to a rotating shaft, said module comprising a device described above and means for associating said module with respectively two parts of the shaft, said tree being devoid of test body.
  • the invention proposes a module for measuring the torsion torque applied to a rotating shaft, said module comprising a device described above and means for associating said module with respectively one end of the shaft and the member applying the torque, said shaft being devoid of test body.
  • FIGS. 1 to 3 show a device for measuring the torsion torque applied to a rotating shaft of the type comprising a test body 1 deformable in torsion under the action of the torque applied to said shaft.
  • the rotating shaft is a steering column 2 of a vehicle on which a steering torque is exerted by the driver using the steering wheel.
  • test body 1 capable of transmitting the torque applied by deforming elastically under the action of said pair.
  • the measurement of the torque exerted can then be addressed, in particular in the form of an electrical signal, to a steering assistance calculator which triggers the assistance, for example by means of an electric motor in the case of an electric power steering.
  • the test body 1 is typically in the form of a torsion bar whose diameter is smaller compared to that of the shaft because, in linear isotropic elasticity, the torque exerted in pure torsion on a solid cylindrical bar of circular section varies for a given material, depending on the fourth power of the diameter of the bar, fixed torsion angle.
  • the torsion bar 1 disposed coaxially with the shaft, is of cylindrical section.
  • the arrangement of the torsion bar 1 and / or the geometry of its section may be provided differently.
  • the test body 1 has a first 3 and a second end 4 which, under the effect of the torque applied on the shaft, move in rotation in conjunction with the shaft but with an angular offset of one with respect to the other.
  • a device comprising a first 5 and a second magnetic pulse generating means 6 or encoders which are provided at the respective neighborhoods of the first 3 and the second end of the test body 1.
  • the pulse generating means 5, 6 are respectively formed of a multipole ring of synthetic material loaded with ferrite particles formed of a plurality of contiguous domains with direction of inverse magnetization of a given domain with respect to the two domains which are contiguous to it.
  • the processing device 9 can be integrated in a control computer of at least one function of the vehicle, for example electric power steering or trajectory control.
  • the sensors 7, 8 comprise, for example, at least two sensitive elements or a strip of sensitive elements chosen from Hall effect probes, magnetoresistors, giant magnetoresistances, said sensitive elements being placed at a distance from the gap of the generator means. magnetic pulses 5, 6.
  • the sensors 7, 8 are each capable of delivering an analog signal S1 and an analog signal C1 in quadrature, for example the sensors may comprise either two sensitive elements angularly spaced apart by an interval of n + 0.5n (n being the length of a magnet) (see FR-2 599 794 ), or a plurality of aligned sensitive elements as described in the application FR-2 792 403 .
  • the sensors 7, 8 may also be able to measure the normal and tangential components of the delivered field.
  • the delivered signals can be considered to be of sinusoidal shape, of the same amplitude, centered on the same average value and in quadrature. compared to each other. Moreover, they have a period function of the number N of pole pairs, ie 2 ⁇ / N mechanical.
  • the electronic processing device 9 can be provided for, from these signals, and in known manner for example from the document FR-2 769 087 , delivering the relative or absolute position of at least one of the encoders 5, 6 and therefore of the associated tree, with respect to a fixed structure.
  • an interpolator increasing the resolution of the angular output signals such as that described in the document FR-A-2,754,063 , can be used.
  • This position can then be used, alone or in combination with the measurement of the applied torque, in a vehicle safety system, such as an anti-skid system, anti-lock, anti-roll or a navigation aid system.
  • a vehicle safety system such as an anti-skid system, anti-lock, anti-roll or a navigation aid system.
  • corresponds to the phase shift related to the torsion angle of the bar and A1s ( ⁇ ), A1c ( ⁇ ), A2s ( ⁇ ), A2c ( ⁇ ) are the respective amplitudes of the signals.
  • the amplitudes A1s ( ⁇ ), A1c ( ⁇ ), A2s ( ⁇ ), A2c ( ⁇ ) depend on the polar length seen, that is to say on the positioning tolerance of the sensors 7, 8 opposite the encoders 5, 6.
  • the amplitude of the signals S1, C1 and that of the signals S2, C2 are equalized, for example by in-situ programming of the EEPROM, ZENER ZAPPING or equivalent type, which makes it possible to adjust the amplitudes at best after placement of the sensors 7, 8.
  • the amplitudes A1s ( ⁇ ), A1c ( ⁇ ), A2s ( ⁇ ) and A2c ( ⁇ ) vary in in addition depending on the angle ⁇ .
  • a sensor 7, 8 comprising a plurality of aligned sensitive elements and to process the output signals as described in the application FR-2 792 403 . Indeed, an effect of average of the signals detected by the sensitive elements is thus obtained, which makes it possible to greatly reduce the variation over one round of the amplitudes A1s ( ⁇ ), A1c ( ⁇ ), A2s ( ⁇ ) and A2c ( ⁇ ).
  • the output signal which is the tangent of the torsion angle of the bar 1, thus allows a direct measurement of the torque applied to the shaft.
  • the torque measurement obtained is insensitive to variations in airgap or to the decrease of the magnetic field due to the temperature.
  • the device is able to deliver the value of the torque even when the shaft is not rotating.
  • the tangent function can be approximated to a line for small deformation angles, it is possible to dimension the torsion bar 1 so that the output signal is substantially linear as a function of the applied torque.
  • the torsion bar 1 can be dimensioned so that the output signal leaves this linear zone so that, when the vehicle is stopped, the electric power steering system provides a larger torque for a torque applied by the driver substantially stronger.
  • the magnetic pulse generating means 5, 6 may be indexed during magnetization and during assembly of the device.
  • the magnetization quality of the encoders 5, 6 may be such that the period lengths vary throughout the encoders 5, 6 due in particular to a centering defect of the magnetization head.
  • the device 9 makes it possible, on the one hand, to phase these faults electronically and on the other hand to obtain electronically a zero output signal under zero torque.
  • this embodiment makes it possible to avoid precise mechanical positioning of the sensors 7, 8 in front of the encoders 5, 6.
  • this can be done either analogically using electronic operators or digitally using an analog / digital converter of the signals and a microprocessor.
  • test body 1 made in the form of a cylindrical piece having a zone of reduced diameter 10, is associated with two parts of the column 11.
  • test body 1 can be integrated in the column 2 in the form of a zone of reduced diameter integrally with it.
  • the steering column 2 is associated on the one hand with a steering wheel and on the other hand with a steering box, for example a rack, transforming the circular movement of the steering wheel into angular displacement of the connecting rod which causes the steering wheels.
  • a steering box for example a rack
  • a first annular piece 12 bearing on an axial surface 13 the first coder 5 is associated with the steering column 1 in the vicinity of a first end 3 of the test body 1.
  • a second annular piece 15 carrying, on an axial surface 16 opposite to the first encoder 5, the second encoder 6 is associated on the steering column 2 in the vicinity of a second end 4 of the test body 1.
  • the positioning of the second part 15 with respect to the first part 12 is carried out by bearing the second part 15 on a washer 18 arranged in a housing 19 provided in the first part 12, said washer 18 being substantially in the same axial plane. that the surface 13 carrying the first encoder 5.
  • the second part 15 comprises an axial threaded housing 20 intended to receive a screw which, by cooperating with a clamping ring 21, makes it possible on the one hand to make the second part 15 integral in rotation with the column 2 and on the other hand to axially locking the assembly formed of the two parts 12, 15 carrying the encoders 5, 6.
  • the shape of the two supports 14, 17 is provided with axial recesses so that the two encoders 5, 6 are substantially in the same axial plane and axially close to each other.
  • the two coders 5, 6 can be associated respectively with one end of the test body 1.
  • the column 2 is arranged so as to be able to rotate in a fixed sheath 22, for example formed of a hollow tube.
  • the sensors 7, 8 are associated with this sheath, for example by clipping a support 23 carrying them, at a gap distance respectively of an encoder 5, 6 so as to axially detect the delivered field.
  • the processing device 9 is provided at a distance from the sheath 22, for example at a central computer of the vehicle, to deliver a signal proportional to the applied torque.
  • test body 1 in particular by its geometry and / or by the nature of the material that composes it, is arranged to transmit the rotational movement by undergoing an elastic torsion under the action of this pair.
  • the geometry and / or the nature of the material constituting the test body 1 are designed so that over the entire normal use area of the steering column 2, on the one hand, the torsion does not exceed the elastic limit of the material and on the other hand the angular offset is detectable by the processing device 9 used.
  • the sensors 7, 8, by measuring the angular position of each of the encoders 5, 6, make it possible to obtain the value of the torque as explained above.
  • FIG. 3 represents a measurement module of the torsion torque 24 applied to a rotating shaft, said module 24 comprising a torque measuring device as described above.
  • the module 24 is intended to be inserted, possibly removably, between two parts of an assembly to which the torque to be measured is applied.
  • the module 24, whose general structure identical to that of column 2 described above will not be detailed, further comprises association means 25, 26 of said module 24 with this set.
  • the module 24 is intended to be integrated between two parts of a steering column 2, said column 2 being devoid of test body 1.
  • the module 24 is intended to be integrated between a steering column 2 and a steering wheel, said column 2 being devoid of test body 1.
  • the association means 25, 26 represented in FIG. 3, two in number, are each formed of an annular piece 27 whose surface 28 is grooved, said parts 27 extending respectively on either side of the module 24.
  • each piece 27 is provided on one end of a cylindrical part 29 of substantially the same diameter as that of the column 2 and the other end is integral with the test body 1.
  • the assembly formed of the test body 1 and the association means 25, 26 is monobloc.
  • the column portion 2 and / or the member applying the torque can be secured respectively to these two corrugated annular pieces 27, in particular by force-fitting, so that the assembly thus formed is able on the one hand to transmit the couple and secondly to measure it.
  • Such a module 24 has the advantage of being compact and forming an independent assembly that can be associated, possibly removably, to an assembly on which a torque to be transmitted and measured is applied.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Power Steering Mechanism (AREA)
  • Steering Controls (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

  • L'invention concerne un dispositif de mesure du couple de torsion appliqué à un arbre tournant, un procédé pour mesurer le couple au moyen d'un tel dispositif, une colonne de direction ainsi qu'un module comprenant un tel dispositif.
  • Elle vise par exemple la mesure du couple de torsion appliqué sur une colonne de direction d'un véhicule par l'intermédiaire du volant de direction.
  • Par colonne de direction, l'on désigne conventionnellement un élément tubulaire, fixé à la carrosserie du véhicule, sous le tableau de bord, qui guide et supporte l'arbre de transmission relié au volant de direction.
  • Ce volant de direction est alors un organe de commande manuelle, relié aux roues directrices et utilisé par le conducteur pour diriger le véhicule.
  • L'invention concerne également les colonnes de direction découplées. Contrairement aux colonnes de direction conventionnelles, les colonnes de direction découplées ne sont pas associées à un boîtier de direction transformant le mouvement circulaire du volant de direction en déplacement angulaire de la bielle pendante qui provoque le braquage de roues.
  • Tout au contraire, il n'y a pas, pour ces directions découplées, de liaison mécanique directe entre le volant et les roues reposant sur le sol, que le véhicule soit réel ou appartienne à un système de simulation.
  • Cette simulation peut être d'objet ludique, liée à un apprentissage dans les auto-écoles ou bien encore liée à une simulation de conduite interactive pour les besoins de constructeurs automobiles.
  • Dans de tels simulateurs, la restitution d'efforts au niveau du volant grâce à un mécanisme générant un couple résistant sur le volant en fonction du type de véhicule à simuler, équipé ou non d'une direction assistée, doit tenir compte des conditions de roulage à recréer.
  • La mesure du couple appliquée au volant est par conséquent essentielle pour assurer une bonne simulation, en temps réel.
  • La mesure de couple sur l'arbre du volant de direction est également très importante dans les servodirections ou directions assistées.
  • En effet, le déclenchement de l'assistance dépend notamment du couple appliqué par le conducteur sur le volant.
  • Le dispositif de mesure de couple de torsion utilisé dans les servodirections émet un signal indicatif du couple de braquage exercé par le conducteur sur le volant et donc sur l'arbre de transmission de la colonne de direction du véhicule.
  • Ce signal est conventionnellement adressé à un calculateur d'assistance de direction qui déclenche l'assistance, en commandant par exemple un moteur électrique, dans le cas d'une servodirection électrique.
  • L'invention peut également s'appliquer à d'autres domaines comme celui de la transmission d'efforts, par exemple aux roues d'un véhicule, ou au contrôle du freinage dudit véhicule au moyen de la mesure du couple appliqué.
  • On connaît déjà des dispositifs de mesure du couple de torsion qui utilisent des jauges de contraintes collées sur un corps d'épreuve.
  • Ce type de technologie présente l'inconvénient de nécessiter un passage tournant qui, pour des raisons d'encombrement et de fiabilité, n'est pas souhaitable notamment pour la mesure du couple appliqué sur une colonne de direction d'un véhicule.
  • On connaît également d'autres technologies dans lesquelles on mesure l'angle de déformation d'un corps d'épreuve, par exemple par l'intermédiaire d'une variation d'un couplage magnétique ou d'une caractéristique du matériau mis sous tension, ou encore par mesure de deux angles d'entrée et de sortie de la barre de torsion.
  • Par exemple, la détection du décalage angulaire de deux générateurs de champ magnétique par rapport à des organes détecteurs permet de délivrer un signal analogique proportionnel au couple appliqué.
  • Ce type de technologie magnétique analogique présente un certain nombre d'inconvénients, en particulier liés au contrôle permanent de l'entrefer sur un tour afin de conserver la précision de mesure et à la compensation en température du signal de sortie qui nécessite un système de mesure différentielle.
  • Ainsi, dans le cadre des dispositifs analogiques de mesure de couple de l'art antérieur, le contrôle de l'entrefer et des dérives en température complique le montage du fait de l'obligation d'utiliser une mécanique plus encombrante.
  • Par ailleurs, le document EP-0 284 508 décrit un dispositif de mesure de couple qui utilise deux codeurs magnétiques associés respectivement au voisinage de chaque extrémité d'une barre de torsion. Dans ce dispositif, les signaux du premier codeur sont détectés par une paire de capteurs tandis que les signaux du deuxième codeur sont détectés par un capteur. Les signaux ainsi obtenus sont traités par un microprocesseur de sorte à obtenir le couple appliqué.
  • Pour s'affranchir des variations d'entrefer, ce document propose l'utilisation d'un filtre passe haut mais cette solution ne donne pas entièrement satisfaction car, en éliminant que les signaux de basses fréquences, elle ne présente pas une efficacité suffisante.
  • En outre, le dispositif décrit dans le document EP-0 284 508 , en effectuant une différence temporelle des signaux détectés, ne permet pas d'obtenir le couple appliqué lorsque la vitesse de rotation est nulle.
  • L'invention vise donc à remédier à ces inconvénients en proposant notamment un dispositif de mesure du couple de torsion appliqué à un arbre tournant dont le signal de sortie peut être rendu indépendant d'une part de l'amplitude du champ magnétique lu et donc des variations d'entrefer et d'autre part de la décroissance du champ magnétique due à la température, tout en étant fiable et adapté à un environnement sévère de type automobile.
  • Ainsi, il permet de travailler dans une grande plage d'entrefer et évite une mesure différentielle pour compenser les dérives en températures.
  • A cet effet, et selon un premier aspect, l'invention propose un dispositif de mesure du couple de torsion appliqué à un arbre tournant, notamment à une colonne de direction d'un véhicule, ledit dispositif comprenant un corps d'épreuve déformable en torsion sous l'action du couple appliqué sur ledit arbre ainsi qu'un premier et un deuxième moyen générateur d'impulsions magnétiques, dans lequel :
    • le premier moyen est associé au corps d'épreuve au voisinage d'une première extrémité de celui-ci ;
    • le deuxième moyen est associé au corps d'épreuve au voisinage d'une deuxième extrémité de celui-ci ;
    • un premier capteur magnétique analogique fixe par rapport à l'arbre tournant est disposé en regard et à distance d'entrefer du premier moyen, ledit capteur étant apte à délivrer un signal analogique S1 et un signal analogique C1 en quadrature ;
    • un deuxième capteur magnétique analogique fixe par rapport à l'arbre tournant est disposé en regard et à distance d'entrefer du deuxième moyen, ledit capteur étant apte à délivrer un signal analogique S2 et un signal analogique C2 en quadrature ;
    ledit dispositif comprenant en outre :
    • un dispositif électronique de traitement apte, à partir de signaux analogiques d'entrée A, B, C, D qui sont fonctions des signaux S1, C1, S2 et C2, à former le signal de sortie F(A, B, C, D) = ((B*C) - (A*D)) / ((B*D) + (A*C)) qui est fonction du couple exercé sur ledit arbre.
  • Selon un deuxième aspect, l'invention propose un procédé pour mesurer le couple au moyen d'un dispositif de mesure décrit ci-dessus, ledit procédé comprenant les étapes de :
    • mesure des signaux analogiques S1, C1, S2 et C2 ;
    • égalisation de l'amplitude des signaux S1, C1 et de celle des signaux S2, C2 ;
    • formation du signal F(S1, C1, S2, C2).
  • Selon un troisième aspect, l'invention propose un procédé pour mesurer le couple au moyen d'un dispositif de mesure décrit ci-dessus, ledit procédé comprenant les étapes de :
    • mesure des signaux analogiques S1, C1, S2 et C2 ;
    • égalisation de l'amplitude des signaux S1, C1 et de celle des signaux S2, C2 ;
    • application d'un gain G sur les signaux S1 et C1 ou S2 et C2
    • formation des signaux S'N = SN + GCN et C'N = GSN + CN, avec N=1 ou 2 ;
    • formation du signal de sortie F(S'1, C'1, S1, S2) ou F(S1, C1, S'2, C'2).
  • Selon un quatrième aspect, l'invention propose une colonne de direction comprenant un dispositif de mesure de couple de torsion décrit ci-dessus, dans laquelle le corps d'épreuve est intégré à la colonne.
  • Selon un cinquième aspect, l'invention propose un module de mesure du couple de torsion appliqué à un arbre tournant, ledit module comprenant un dispositif décrit ci-dessus et des moyens d'association dudit module avec respectivement deux parties de l'arbre, ledit arbre étant dépourvu de corps d'épreuve.
  • Selon un sixième aspect, l'invention propose un module de mesure du couple de torsion appliqué à un arbre tournant, ledit module comprenant un dispositif décrit ci-dessus et des moyens d'association dudit module avec respectivement une extrémité de l'arbre et l'organe appliquant le couple, ledit arbre étant dépourvu de corps d'épreuve..
  • D'autres objets et avantages de l'invention apparaîtront au cours de la description qui suit, faite en référence aux dessins annexés, dans lesquels :
    • la figure 1 est un schéma fonctionnel d'un dispositif de mesure du couple de torsion appliqué à un arbre tournant suivant l'invention ;
    • la figure 2 est une vue partielle et en coupe longitudinale d'une colonne de direction intégrant un dispositif de mesure du couple de torsion qui lui est appliqué ;
    • la figure 3 est une vue partielle et en coupe longitudinale d'un module de mesure de couple de torsion appliqué à un arbre tournant.
  • Sur les figures 1 à 3 est représenté un dispositif de mesure du couple de torsion appliqué à un arbre tournant du type comprenant un corps d'épreuve 1 déformable en torsion sous l'action du couple appliqué sur ledit arbre.
  • Dans un exemple particulier (voir figure 2), l'arbre tournant est une colonne de direction 2 d'un véhicule sur laquelle un couple de braquage est exercé par le conducteur à l'aide du volant de direction.
  • Lorsque l'on veut connaître ce couple de braquage, il est connu de prévoir un corps d'épreuve 1 apte à transmettre le couple appliqué en se déformant élastiquement sous l'action dudit couple.
  • La mesure du couple exercé peut alors être adressée, notamment sous la forme d'un signal électrique, à un calculateur d'assistance de direction qui déclenche l'assistance, par exemple par l'intermédiaire d'un moteur électrique dans le cas d'une servodirection électrique.
  • Le corps d'épreuve 1 se présente typiquement sous la forme d'une barre de torsion de diamètre amoindri par rapport à celui de l'arbre car, en élasticité linéaire isotrope, le couple exercé en torsion pure sur une barre cylindrique pleine de section circulaire varie pour un matériau donné, en fonction de la puissance quatrième du diamètre de la barre, à angle de torsion fixé.
  • Par conséquent, le fait de réaliser une zone de section réduite permet, sous l'effet du couple appliqué, de concentrer et d'amplifier les déformations en torsion sur ladite zone de sorte à en faire une zone de mesure privilégiée pour la valeur du couple.
  • Dans les modes de réalisation représentés sur les figures, la barre de torsion 1, disposée coaxialement à l'arbre, est de section cylindrique. Toutefois, en fonction des contraintes d'utilisation, la disposition de la barre de torsion 1 et/ou la géométrie de sa section peuvent être prévues différemment.
  • Le corps d'épreuve 1 présente une première 3 et une deuxième 4 extrémité qui, sous l'effet du couple appliqué sur l'arbre, se déplacent en rotation conjointement à l'arbre mais avec un décalage angulaire de l'une par rapport à l'autre.
  • On souhaite mesurer ce décalage angulaire afin de calculer, par des moyens électroniques prenant en compte la nature du corps d'épreuve 1, le couple appliqué sur l'arbre.
  • A cet effet, on utilise un dispositif comprenant un premier 5 et un deuxième 6 moyen générateur d'impulsions magnétiques ou codeurs qui sont prévus aux voisinages respectifs de la première 3 et de la deuxième 4 extrémité du corps d'épreuve 1.
  • Dans un exemple de réalisation (voir figure 1), les moyens générateurs d'impulsions 5, 6 sont formés respectivement d'un anneau multipolaire en matériau synthétique chargé de particules de ferrite formé d'une pluralité de domaines contigus à direction d'aimantation inversée d'un domaine donné par rapport aux deux domaines qui lui sont contigus.
  • Le dispositif comprend en outre :
    • un premier capteur magnétique analogique 7 fixe par rapport à l'arbre tournant qui est disposé en regard et à distance d'entrefer du premier codeur 5 ;
    • un deuxième capteur magnétique analogique 8 fixe par rapport à l'arbre tournant qui est disposé en regard et à distance d'entrefer du deuxième codeur 6 ; et
    • un dispositif électronique de traitement 9 des signaux issus desdits capteurs 7, 8.
  • Le dispositif de traitement 9 peut être intégré dans un calculateur de commande d'au moins une fonction du véhicule, par exemple de direction assistée électrique ou de contrôle de trajectoire.
  • Les capteurs 7, 8 comprennent par exemple au moins deux éléments sensibles ou une barrette d'éléments sensibles choisis parmi les sondes à effet Hall, les magnétorésistances, les magnétorésistances géantes, lesdits éléments sensibles étant placés à distance d'entrefer du moyen générateur d'impulsions magnétiques 5, 6.
  • De façon connue, les capteurs 7, 8 sont aptes à délivrer chacun un signal analogique S1 et un signal analogique C1 en quadrature, par exemple les capteurs peuvent comprendre soit deux éléments sensibles écartés angulairement par un intervalle de n + 0,5n (n étant la longueur d'un aimant) (voir FR-2 599 794 ), soit une pluralité d'éléments sensibles alignés tel que décrit dans la demande FR-2 792 403 . Les capteurs 7, 8 peuvent également être aptes à mesurer les composantes normales et tangentielles du champ délivré.
  • Les capteurs 7, 8 étant disposés à une distance suffisante des moyens générateurs d'impulsions magnétiques 5, 6, on peut considérer que les signaux délivrés sont de forme sinusoïdale, de même amplitude, centrés sur la même valeur moyenne et en quadrature l'un par rapport à l'autre. De plus, ils ont une période fonction du nombre N de paire de pôle, soit 2π/N mécaniques.
  • Le dispositif électronique de traitement 9 peut être prévu pour, à partir de ces signaux, et de façon connue par exemple du document FR-2 769 087 , délivrer la position relative ou absolue d'au moins un des codeurs 5, 6 et donc de l'arbre associé, par rapport à une structure fixe.
  • En variante, un interpolateur augmentant la résolution des signaux de sortie angulaire, tel que celui décrit dans le document FR-A-2 754 063 , peut être utilisé.
  • La valeur de cette position, notamment dans le cas où elle est absolue, peut alors être utilisée, seule ou en combinaison avec la mesure du couple appliqué, dans un système de sécurité d'un véhicule, tel qu'un système anti-patinage, anti-blocage, anti-roulis ou encore un système d'aide à la navigation.
  • On décrit ci-dessous deux modes de traitement des signaux dans le dispositif électronique 9.
  • Dans un premier mode de traitement, et dans le cas où les codeurs 5, 6 sont parfaitement indexés l'un par rapport à l'autre, c'est à dire que sous couple nul les signaux S1 et S2, respectivement C1 et C2, sont en phase, les signaux s'écrivent : S 1 = A 1 s θ * sin θ ;
    Figure imgb0001
    C 1 = A 1 c θ * cos θ ;
    Figure imgb0002
    S 2 = A 2 s θ * sin θ + δ ;
    Figure imgb0003
    C 2 = A 2 c θ * cos θ + δ .
    Figure imgb0004
  • Où δ correspond au déphasage lié à l'angle de torsion de la barre et A1s(θ), A1c(θ), A2s(θ), A2c(θ) sont les amplitudes respectives des signaux.
  • Les amplitudes A1s(θ), A1c(θ), A2s(θ), A2c(θ) dépendent de la longueur polaire vue, c'est-à-dire de la tolérance de placement des capteurs 7, 8 face aux codeurs 5, 6.
  • Préalablement au traitement des signaux, on égalise l'amplitude des signaux S1, C1 et celle des signaux S2, C2, par exemple par programmation in situ de type EEPROM, ZENER ZAPPING ou équivalent ce qui permet d'ajuster au mieux les amplitudes après le placement des capteurs 7, 8.
  • Dans le cas où l'entrefer varie sur un tour à cause des défauts du matériau ou de la planéité des codeurs 5, 6, les amplitudes A1s(θ), A1c(θ), A2s(θ) et A2c(θ) varient en outre en fonction de l'angle θ.
  • Pour s'affranchir de ces variations, on peut utiliser un capteur 7, 8 comprenant une pluralité d'éléments sensibles alignés et traiter les signaux de sortie tel que décrit dans la demande FR-2 792 403 . En effet, on obtient ainsi un effet de moyenne des signaux détectés par les éléments sensibles qui permet de diminuer fortement la variation sur un tour des amplitudes A1s(θ), A1c(θ), A2s(θ) et A2c(θ).
  • Après égalisation des amplitudes, on forme à l'aide du dispositif de traitement 9 le signal : F S 1 , C 1 , S 2 , C 2 = C 1 * S 2 - S 1 * C 2 / C 1 * C 2 + S 1 * S 2
    Figure imgb0005
  • En développant le calcul et en simplifiant par les amplitudes qui sont égales, on obtient : F S 1 , C 1 , S 2 , C 2 = tan δ
    Figure imgb0006
  • Le signal de sortie, qui est la tangente de l'angle de torsion de la barre 1, permet donc une mesure directe du couple appliqué sur l'arbre.
  • De plus, le signal de sortie étant indépendant de l'amplitude des signaux d'entrée, la mesure de couple obtenue est insensible aux variations d'entrefer ou à la décroissance du champ magnétique due à la température.
  • En outre, la mesure de couple étant effectuée par traitement spatial des signaux, le dispositif est capable de délivrer la valeur du couple même lorsque l'arbre n'est pas en rotation.
  • Par ailleurs, la fonction tangente pouvant être approximée à une droite pour des angles de déformation faibles, il est possible de dimensionner la barre de torsion 1 de sorte que le signal de sortie soit sensiblement linéaire en fonction du couple appliqué.
  • Suivant une autre réalisation, et notamment dans une application de type direction assistée variable, la barre de torsion 1 peut être dimensionnée pour que le signal de sortie sorte de cette zone linéaire afin que, à l'arrêt du véhicule, la direction assistée électrique fournisse un couple plus important pour un couple appliqué par le conducteur sensiblement plus fort.
  • Dans un exemple particulier, les moyens générateurs d'impulsions magnétiques 5, 6 peuvent être indexés lors de l'aimantation et lors du montage du dispositif.
  • En effet, la qualité de magnétisation des codeurs 5, 6 peut être telle que les longueurs de période varient tout au long des codeurs 5, 6 dû notamment à un défaut de centrage de la tête d'aimantation.
  • Un moyen de s'affranchir de ces défauts consiste à indexer les codeurs 5, 6 tant à l'aimantation qu'au montage afin que les défauts soit en phase et qu'ils ne viennent donc plus influer sur la qualité du signal de sortie.
  • Dans un deuxième mode de traitement, le dispositif 9 permet d'une part de mettre en phase ces défauts de manière électronique et d'autre part d'obtenir électroniquement un signal de sortie nul sous couple nul.
  • En effet, une indexation mécanique des codeurs 5, 6 permet, dans la plupart des cas, de ne résoudre que partiellement le problème de réglage du zéro du dispositif 9.
  • Une solution simple pour résoudre ce problème est, après un positionnement mécanique grossier des capteurs 7, 8 face aux codeurs 5, 6, d'utiliser les signaux :
  • S'1 = S1 + GC1 et C'1 = GS1 + C1 dans lequel G est un gain programmable in situ.
  • De façon équivalente, et qui ne sera pas décrite plus avant ici, on peut utiliser les signaux S'2 = S2 + GC2 et C'2 = GS2 + C2.
  • Les signaux S'1 et C'1 sont déphasés par rapport aux signaux S1 et C1 d'un angle φ qui est fonction du gain G puisque tan(φ) = - G.
  • Ainsi, par programmation in situ du gain G, il est possible de modifier l'angle φ de sorte à annuler la fonction F(S'1, C'1, S2, C2) sous couple nul.
  • Après implantation du dispositif et avant son utilisation, il est donc possible de programmer le gain G de sorte à obtenir un signal F(S'1, C'1, S2, C2) qui soit d'une part nul sous couple nul et d'autre part fonction de couple appliqué comme exposé dans le cadre du premier mode de réalisation.
  • En utilisant un déphasage électronique, cette réalisation permet d'éviter un positionnement mécanique précis des capteurs 7, 8 devant les codeurs 5, 6.
  • Dans les deux modes de traitement présentés ci-dessus, celui-ci peut être réalisé soit de façon analogique en utilisant des opérateurs électroniques soit de façon numérique en utilisant un convertisseur analogique / numérique des signaux et un microprocesseur.
  • En relation avec la figure 2, on décrit ci-dessous un mode de réalisation d'une colonne de direction 2 comprenant un dispositif de mesure tel que décrit ci-dessus.
  • Le corps d'épreuve 1, réalisé sous la forme d'une pièce cylindrique présentant une zone de diamètre amoindri 10, est associé à deux parties de la colonne 11.
  • En variante, le corps d'épreuve 1 peut être intégré à la colonne 2 sous la forme d'une zone de diamètre amoindri venue de matière avec elle.
  • La colonne de direction 2 est associée d'une part à un volant de direction et d'autre part à un boîtier de direction, par exemple une crémaillère, transformant le mouvement circulaire du volant de direction en déplacement angulaire de la bielle pendante qui provoque le braquage des roues.
  • Une première pièce annulaire 12 portant sur une surface axiale 13 le premier codeur 5 est associé à la colonne de direction 1 au voisinage d'une première extrémité 3 du corps d'épreuve 1.
  • L'association de la première pièce 12 sur la colonne 2 est réalisée à l'aide d'un premier support annulaire 14 emmanché sur ladite colonne 2.
  • Une deuxième pièce annulaire 15 portant, sur une surface axiale 16 opposée au premier codeur 5, le deuxième codeur 6 est associé sur la colonne de direction 2 au voisinage d'une deuxième extrémité 4 du corps d'épreuve 1.
  • L'association de la deuxième pièce 15 sur la colonne 2 est réalisée à l'aide d'un deuxième support annulaire 17, de forme complémentaire au premier 14, qui est emmanché sur ladite colonne 2.
  • Le positionnement de la deuxième pièce 15 par rapport à la première 12 est réalisé par mise en appui de la deuxième pièce 15 sur une rondelle 18 disposée dans un logement 19 prévu dans la première pièce 12, ladite rondelle 18 étant sensiblement dans le même plan axial que la surface 13 portant le premier codeur 5.
  • La deuxième pièce 15 comprend un logement axial taraudé 20 destiné à recevoir une vis qui, en coopérant avec une bague de serrage 21, permet d'une part de rendre la deuxième pièce 15 solidaire en rotation de la colonne 2 et d'autre part de bloquer axialement l'ensemble formé des deux pièces 12, 15 portant les codeurs 5, 6.
  • Pour des raisons de compacité, la forme des deux supports 14, 17 est prévue avec des décrochements axiaux de sorte que les deux codeurs 5, 6 soient sensiblement dans le même plan axial et proches axialement l'un de l'autre.
  • En variante (non représentée), les deux codeurs 5, 6 peuvent être associés respectivement à une extrémité du corps d'épreuve 1.
  • La colonne 2 est disposée de sorte à pouvoir tourner dans une gaine fixe 22, par exemple formée d'un tube creux. Les capteurs 7, 8 sont associés à cette gaine, par exemple par clipsage d'un support 23 les portant, à distance d'entrefer respectivement d'un codeur 5, 6 de sorte à pouvoir détecter axialement le champ délivré.
  • Le dispositif de traitement 9 est prévu à distance de la gaine 22, par exemple au niveau d'un calculateur central du véhicule, pour délivrer un signal proportionnel au couple appliqué.
  • Lorsqu'un couple est appliqué sur la colonne de direction 2 par l'intermédiaire du volant, celle-ci le transmet au boîtier de direction en tournant d'un certain angle.
  • Le corps d'épreuve 1, notamment par sa géométrie et/ou par la nature du matériau qui le compose, est agencé pour transmettre le mouvement de rotation en subissant une torsion élastique sous l'action de ce couple.
  • De cette torsion, il résulte que les extrémités 3, 4 du corps d'épreuve 1, et donc les moyens qui leur sont associées, se déplacent en rotation conjointement avec la colonne mais avec un décalage angulaire de l'un par rapport à l'autre, ledit décalage croissant de façon proportionnelle avec l'intensité du couple.
  • La géométrie et/ou la nature du matériau composant le corps d'épreuve 1 sont prévues pour que, sur toute la zone d'utilisation normale de la colonne de direction 2, d'une part la torsion ne dépasse pas la limite élastique du matériau et d'autre part le décalage angulaire soit détectable par le dispositif de traitement 9 utilisé.
  • Les capteurs 7, 8, en mesurant la position angulaire de chacun des codeurs 5, 6, permettent d'obtenir la valeur du couple comme exposé ci-dessus.
  • La figure 3 représente un module de mesure du couple de torsion 24 appliqué à un arbre tournant, ledit module 24 comprenant un dispositif de mesure de couple tel que décrit ci-dessus.
  • Le module 24 est destiné à être inséré, éventuellement de façon amovible, entre deux parties d'un ensemble sur lequel est appliqué le couple à mesurer.
  • A cet effet, le module 24, dont la structure générale identique à celle de la colonne 2 décrite précédemment ne sera pas détaillée, comprend en outre des moyens d'association 25, 26 dudit module 24 avec cet ensemble.
  • Selon une première variante, le module 24 est destiné à être intégré entre deux parties d'une colonne de direction 2, ladite colonne 2 étant dépourvue de corps d'épreuve 1.
  • Selon une deuxième variante, le module 24 est destiné à être intégré entre une colonne de direction 2 et un volant de direction, ladite colonne 2 étant dépourvue de corps d'épreuve 1.
  • Les moyens d'association 25, 26 représentés sur la figure 3, au nombre de deux, sont formés chacun d'une pièce annulaire 27 dont la surface 28 est cannelée, lesdites pièces 27 s'étendant respectivement de part et d'autre du module 24. Par exemple (voir figure 3), chaque pièce 27 est prévue sur une extrémité d'une pièce cylindrique 29 de diamètre sensiblement identique à celui de la colonne 2 et dont l'autre extrémité est venue de matière avec le corps d'épreuve 1. Suivant cette réalisation, l'ensemble formé du corps d'épreuve 1 et des moyens d'association 25, 26 est monobloc.
  • La partie de colonne 2 et/ou l'organe appliquant le couple peuvent être rendus solidaires respectivement de ces deux pièces annulaires cannelées 27, notamment par emmanchement à force, de sorte que l'ensemble ainsi formé soit apte d'une part à transmettre le couple et d'autre part à le mesurer.
  • Un tel module 24 présente l'avantage d'être compact et de former un ensemble indépendant qui peut être associé, éventuellement de façon amovible, à un ensemble sur lequel un couple devant être transmis et mesuré est appliqué.

Claims (16)

  1. Dispositif de mesure du couple de torsion appliqué à un arbre tournant, notamment à une colonne de direction (2) d'un véhicule, ledit dispositif comprenant un corps d'épreuve (1) déformable en torsion sous l'action du couple appliqué sur ledit arbre ainsi qu'un premier et un deuxième moyen générateur d'impulsions magnétiques (5, 6), dans lequel :
    - le premier moyen (5) est associé au corps d'épreuve (1) au voisinage d'une première extrémité (3) de celui-ci ;
    - le deuxième moyen (6) est associé au corps d'épreuve (1) au voisinage d'une deuxième extrémité (4) de celui-ci ;
    - un premier capteur magnétique analogique (7) fixe par rapport à l'arbre tournant est disposé en regard et à distance d'entrefer du premier moyen (5), ledit capteur (7) étant apte à délivrer un signal analogique S1 et un signal analogique C1 en quadrature ;
    - un deuxième capteur magnétique analogique (8) fixe par rapport à l'arbre tournant est disposé en regard et à distance d'entrefer du deuxième moyen (6), ledit capteur (8) étant apte à délivrer un signal analogique S2 et un signal analogique C2 en quadrature ;
    ledit dispositif étant caractérisé en ce qu'il comprend en outre :
    - un dispositif électronique de traitement (9) apte, à partir de signaux analogiques d'entrée A, B, C, D qui sont fonctions des signaux S1, C1, S2 et C2, à former le signal de sortie F(A, B, C, D) = ((B*C) - (A*D)) / ((B*D) + (A*C)) qui est fonction du couple exercé sur ledit arbre.
  2. Dispositif selon la revendication 1, caractérisé en ce que les signaux A, B, C et D sont respectivement égaux aux signaux S1, C1, S2 et C2.
  3. Dispositif selon la revendication 1, caractérisé en ce que le dispositif électronique de traitement (9) comprend en outre des moyens d'application d'un gain réglable G sur les signaux S1 et C1 ou S2 et C2 et des moyens de formation des signaux S'N = SN + GCN et C'N = GSN + CN, avec N =1 ou 2, les signaux A, B, C et D étant respectivement égaux aux signaux S'1, C'1, S2 et C2 ou aux signaux S1, C1, S'2 et C'2.
  4. Dispositif selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le dispositif de traitement (9) comprend des opérateurs électroniques aptes à délivrer les signaux de sortie.
  5. Dispositif selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le dispositif de traitement (9) comprend un convertisseur analogique / numérique des signaux et un microprocesseur apte à délivrer les signaux de sortie.
  6. Dispositif selon l'une quelconque des revendications 1 à 5, caractérisé en ce que les capteurs magnétiques (7, 8) comprennent au moins deux éléments sensibles choisis parmi les sondes à effet Hall, les magnétorésistances, les magnétorésistances géantes.
  7. Dispositif selon la revendication 6, caractérisé en ce que les capteurs magnétiques (7, 8) comprennent une pluralité d'éléments sensibles alignés.
  8. Dispositif selon l'une quelconque des revendications 1 à 7, caractérisé en ce que les moyens générateurs d'impulsions (5, 6) sont formés respectivement d'un anneau multipolaire en matériau synthétique chargé de particules de ferrite formé d'une pluralité de domaines contigus à direction d'aimantation inversée d'un domaine donné par rapport aux deux domaines qui lui sont contigus.
  9. Dispositif selon l'une quelconque des revendications 1 à 8, caractérisé en ce qu'il délivre en outre la position angulaire de l'arbre tournant.
  10. Procédé pour mesurer le couple au moyen d'un dispositif de mesure selon l'une quelconque des revendications 2 à 9, caractérisé en ce qu'il comprend les étapes de :
    - mesure des signaux analogiques S1, C1, S2 et C2 ;
    - égalisation de l'amplitude des signaux S1, C1 et de celle des signaux S2, C2;
    - formation du signal F(S1, C1, S2, C2).
  11. Procédé pour mesurer le couple au moyen d'un dispositif de mesure selon l'une quelconque des revendications 3 à 9, caractérisé en ce qu'il comprend les étapes de :
    - mesure des signaux analogiques S1, C1, S2 et C2 ;
    - égalisation de l'amplitude des signaux S1, C1 et de celle des signaux S2, C2;
    - application d'un gain G sur les signaux S1 et C1 ou S2 et C2
    - formation des signaux S'N = SN + GCN et C'N = GSN + CN, avec N=1 ou 2 ;
    - formation du signal de sortie F(S'1, C'1, S1, S2) ou F(S1, C1, S'2, C'2).
  12. Procédé selon la revendication 11, caractérisé en ce qu'il comprend une étape préalable de détermination de la valeur du gain G de sorte que le signal de sortie soit nul sous couple nul.
  13. Procédé selon l'une quelconque des revendications 10 à 12, caractérisé en ce que l'égalisation de l'amplitude des signaux est réalisée par programmation in situ de type EEPROM, ZENER ZAPPING ou équivalent.
  14. Colonne de direction (2) comprenant un dispositif de mesure de couple de torsion selon l'une quelconque des revendications 1 à 9, caractérisée en ce que le corps d'épreuve (1) est intégré à la colonne (2).
  15. Module de mesure du couple de torsion (24) appliqué à un arbre tournant, ledit module (24) comprenant un dispositif selon l'une quelconque des revendications 1 à 9 et des moyens d'association (25, 26) dudit module (24) avec respectivement deux parties de l'arbre, ledit arbre étant dépourvu de corps d'épreuve (1).
  16. Module de mesure du couple de torsion (24) appliqué à un arbre tournant, ledit module (24) comprenant un dispositif selon l'une quelconque des revendications 1 à 9 et des moyens d'association (25, 26) dudit module (24) avec respectivement une extrémité de l'arbre et l'organe appliquant le couple, ledit arbre étant dépourvu de corps d'épreuve (1).
EP02290541A 2001-03-09 2002-03-05 Dispositif de mesure analogique d'un couple de torsion, colonne de direction et module le comprenant Expired - Lifetime EP1239274B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0103256 2001-03-09
FR0103256A FR2821931B1 (fr) 2001-03-09 2001-03-09 Dispositif de mesure analogique d'un couple de torsion, colonne de direction et module le comprenant

Publications (2)

Publication Number Publication Date
EP1239274A1 EP1239274A1 (fr) 2002-09-11
EP1239274B1 true EP1239274B1 (fr) 2008-01-23

Family

ID=8860947

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02290541A Expired - Lifetime EP1239274B1 (fr) 2001-03-09 2002-03-05 Dispositif de mesure analogique d'un couple de torsion, colonne de direction et module le comprenant

Country Status (7)

Country Link
US (1) US6837116B2 (fr)
EP (1) EP1239274B1 (fr)
JP (1) JP4387082B2 (fr)
AT (1) ATE384936T1 (fr)
BR (1) BR0200642A (fr)
DE (1) DE60224738T2 (fr)
FR (1) FR2821931B1 (fr)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMO20010110A1 (it) * 2001-05-29 2002-11-29 G S Srl Unipersonale Procedimento per la calibrazione di un sensore per la misura dell'angolo di inclinazione di una ruota di un autoveicolo
JP2004020370A (ja) * 2002-06-17 2004-01-22 Matsushita Electric Ind Co Ltd トルク検出装置
US20060118351A1 (en) * 2002-08-26 2006-06-08 Nsk Ltd. Electric power steering apparatus
FR2862382B1 (fr) * 2003-11-18 2006-06-02 Roulements Soc Nouvelle Systeme capteur de couple absolu de torsion et module le comprenant
FR2884918B1 (fr) * 2005-04-22 2007-08-10 Skf Ab Dispositif et procede de mesure de couple de torsion.
US7237444B2 (en) * 2005-06-29 2007-07-03 Freudenberg-Nok General Partnership Torque cell for determining a torque load on a rotary member
FR2902699B1 (fr) 2006-06-26 2010-10-22 Skf Ab Dispositif de butee de suspension et jambe de force.
FR2906587B1 (fr) 2006-10-03 2009-07-10 Skf Ab Dispositif de galet tendeur.
FR2908512B1 (fr) 2006-11-15 2009-02-27 Skf Ab Dispositif de detection de couple transmis par un arbre.
FR2913081B1 (fr) 2007-02-27 2009-05-15 Skf Ab Dispositif de poulie debrayable
JP2008256456A (ja) * 2007-04-03 2008-10-23 Shimano Inc 捩れ検出用スリーブ部材及びそれを用いたトルク検出装置
FR2918451A1 (fr) * 2007-07-05 2009-01-09 Skf Ab Dispositif de mesure du couple de torsion
US8672086B2 (en) * 2007-08-02 2014-03-18 Marine Canada Acquisition Inc. Torque sensor type power steering system with solid steering shaft and vehicle therewith
US8970208B2 (en) 2010-02-11 2015-03-03 Sri International Displacement measurement system and method using magnetic encodings
JP5220792B2 (ja) * 2010-03-30 2013-06-26 株式会社ホンダロック トルクセンサ
JP5720935B2 (ja) * 2011-02-08 2015-05-20 株式会社ジェイテクト トルク検出装置
JP5652656B2 (ja) * 2011-02-08 2015-01-14 株式会社ジェイテクト トルク検出装置
US9057652B2 (en) 2011-02-08 2015-06-16 Jtekt Corporation Torque detecting apparatus
JP5652655B2 (ja) * 2011-02-08 2015-01-14 株式会社ジェイテクト トルク検出装置
JP6098513B2 (ja) * 2012-10-23 2017-03-22 日本精工株式会社 トルク検出装置、電動パワーステアリング装置及び車両
WO2016208712A1 (fr) * 2015-06-26 2016-12-29 日本精工株式会社 Appareil de détection d'angle relatif, capteur de couple, appareil de direction à assistance électrique, et véhicule
EP3290886B1 (fr) * 2015-06-26 2020-11-25 NSK Ltd. Appareil de détection d'angle relatif, capteur de couple, appareil de direction à assistance électrique, et véhicule
JP2017015696A (ja) * 2015-06-26 2017-01-19 日本精工株式会社 相対角度検出装置、トルクセンサ、電動パワーステアリング装置及び車両
JP6108009B2 (ja) * 2015-08-26 2017-04-05 日本精工株式会社 相対角度検出装置、トルクセンサ、電動パワーステアリング装置及び車両
EP3112833B1 (fr) * 2015-07-03 2018-05-09 Honeywell International Inc. Systèmes et procédés de mesure de couple sur un arbre rotatif
US10843562B2 (en) 2019-04-05 2020-11-24 Ka Group Ag Steering system for a vehicle having a magnetic paddle shift system
FR3133080B1 (fr) 2022-02-25 2024-05-31 Ntn Snr Roulements Procédé de réalisation d’un codeur
FR3133081B1 (fr) 2022-02-25 2024-03-15 Ntn Snr Roulements Système de détermination d’un couple
FR3137656A1 (fr) 2022-07-07 2024-01-12 Ntn-Snr Roulements Système de détermination d’un couple appliqué entre deux organes tournants
FR3137655A1 (fr) 2022-07-07 2024-01-12 Ntn-Snr Roulements Système de détermination d’un couple appliqué entre deux organes tournants
FR3137654A1 (fr) 2022-07-07 2024-01-12 Ntn-Snr Roulements S ystème de détermination d’un couple appliqué entre deux organes tournants
FR3139111A1 (fr) 2022-08-29 2024-03-01 Ntn-Snr Roulements Système de détermination d’un couple appliqué entre deux organes tournants
FR3140169A1 (fr) 2022-09-23 2024-03-29 Ntn-Snr Roulements Procédé de détermination d’un couple appli qué entre deux organes tournant
FR3140674A1 (fr) 2022-10-11 2024-04-12 Ntn-Snr Roulements Système de détermination d’un couple entre deux organes tournants
FR3142252A1 (fr) 2022-11-18 2024-05-24 Ntn-Snr Roulements Système de détermination d’un couple appliqué entre deux organes

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0284508A2 (fr) * 1987-03-25 1988-09-28 Consulab Inc. Torsiomètre

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT280656B (de) * 1968-02-19 1970-04-27 H C Hans Dipl Ing Dr Dr List Schaltungsanordnung zur Messung des Verdrehwinkels
DE3112714C1 (de) * 1981-03-31 1982-11-11 Jean Walterscheid Gmbh, 5204 Lohmar Vorrichtung zum Messen und UEberwachen des Antriebes an einem landwirtschaftlichen Anbau- oder Anhaengegeraet
US4533902A (en) * 1983-03-25 1985-08-06 Baker Alan J Precision angle transducer using nonprecision rotors
FR2599794B1 (fr) * 1986-06-10 1991-06-07 Roulements Soc Nouvelle Palier ou roulement a capteur d'informations
US4907460A (en) * 1987-10-30 1990-03-13 Koyo Seiko Co., Ltd. Torque sensor
FR2754063B1 (fr) * 1996-09-30 1998-11-13 Roulements Soc Nouvelle Circuit de multiplication de resolution et de determination de sens de deplacement
FR2769087B1 (fr) * 1997-09-26 2000-01-28 Roulements Soc Nouvelle Capteur numerique de position
FR2792403B1 (fr) * 1999-04-14 2001-05-25 Roulements Soc Nouvelle Capteur de position et/ou de deplacement comportant une pluralite d'elements sensibles alignes
JP3698628B2 (ja) * 2000-09-28 2005-09-21 光洋精工株式会社 トルク検出装置及び舵取装置
FR2816051B1 (fr) * 2000-10-31 2003-02-14 Roulements Soc Nouvelle Dispositif de mesure d'un couple de torsion et module le comprenant

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0284508A2 (fr) * 1987-03-25 1988-09-28 Consulab Inc. Torsiomètre

Also Published As

Publication number Publication date
US6837116B2 (en) 2005-01-04
JP2002350251A (ja) 2002-12-04
BR0200642A (pt) 2002-12-10
DE60224738T2 (de) 2009-01-15
FR2821931A1 (fr) 2002-09-13
US20020166389A1 (en) 2002-11-14
JP4387082B2 (ja) 2009-12-16
DE60224738D1 (de) 2008-03-13
FR2821931B1 (fr) 2003-05-09
EP1239274A1 (fr) 2002-09-11
ATE384936T1 (de) 2008-02-15

Similar Documents

Publication Publication Date Title
EP1239274B1 (fr) Dispositif de mesure analogique d'un couple de torsion, colonne de direction et module le comprenant
EP1053457B1 (fr) Capteur de couple pour arbre tournant
EP0576310B1 (fr) Dispositif de mesure d'un couple de torsion sur un arbre tournant
FR2816051A1 (fr) Dispositif de mesure d'un couple de torsion et module le comprenant
EP3201725B1 (fr) Interface haptique à rendu haptique amélioré
EP0453344B1 (fr) Dispositif de mesure d'un couple sur un arbre
EP1743151B1 (fr) Roulement capteur de deformations comprenant quatre jauges de contraintes
EP1053456B1 (fr) Capteur de couple et colonne de direction pourvue d'un tel capteur
FR2862382A1 (fr) Systeme capteur de couple absolu de torsion et module le comprenant
FR2987113A1 (fr) Dispositif de capteur pour detecter l'angle de rotation d'un composant tournant equipant un vehicule
EP1102995B2 (fr) Roulement equipe d'un dispositif capteur d'informations
WO2008059156A2 (fr) Dispositif de detection de couple transmis par un arbre
WO2016050718A1 (fr) Interface haptique offrant une maîtrise du ressenti haptique amelioree
EP0847520B1 (fr) Dispositif de mesure de couple de torsion d'un arbre tournant
WO2006111667A2 (fr) Dispositif et procede de mesure de couple de torsion
EP1403621B1 (fr) Capteur d'angle absolu
FR2507142A1 (fr) Direction assistee pour vehicules automobiles
EP0325517A1 (fr) Dispositif de mesure d'un couple sur un arbre tournant
EP3660353A1 (fr) Capteur d'effort pour actionneur a cable
EP0517592A1 (fr) Procédé et dispositif d'étalonnage de couplemètre et couplemètre compact adapté au dispositif
WO2023084123A1 (fr) Dispositif de detection de position relative avec coupe-circuit
WO1999024805A1 (fr) Dispositif de mesure d'un couple de torsion sur un element mecanique
EP4343296A1 (fr) Procédé de détermination d'un couple appliqué entre deux organes tournant
FR3142252A1 (fr) Système de détermination d’un couple appliqué entre deux organes
FR2902185A1 (fr) Capteur d'angle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020927

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 60224738

Country of ref document: DE

Date of ref document: 20080313

Kind code of ref document: P

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080123

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080504

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080123

BERE Be: lapsed

Owner name: SNR ROULEMENTS

Effective date: 20080331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080623

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080123

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080123

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080423

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080123

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20081024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080123

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100419

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111001

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60224738

Country of ref document: DE

Effective date: 20111001

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150319

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331