EP1238130A1 - Fibrous material comprising fibers made from linear, isotactic polymers - Google Patents

Fibrous material comprising fibers made from linear, isotactic polymers

Info

Publication number
EP1238130A1
EP1238130A1 EP00965558A EP00965558A EP1238130A1 EP 1238130 A1 EP1238130 A1 EP 1238130A1 EP 00965558 A EP00965558 A EP 00965558A EP 00965558 A EP00965558 A EP 00965558A EP 1238130 A1 EP1238130 A1 EP 1238130A1
Authority
EP
European Patent Office
Prior art keywords
fibrous web
web material
present
article
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00965558A
Other languages
German (de)
English (en)
French (fr)
Inventor
Bernhard Rieger
Mike Orroth
Gian De Belder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Priority to EP00965558A priority Critical patent/EP1238130A1/en
Publication of EP1238130A1 publication Critical patent/EP1238130A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4291Olefin series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/56Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the present invention relates to fibrous web materials such as nonwoven materials used for example in hygienic articles. Specifically, the present invention relates to elastic fibrous web materials.
  • Fibrous materials and in particular nonwoven web materials comprising olefinic polymers are well known in the art and enjoy widespread usage throughout the industry. Typical areas of application of such fibrous web material include for example hygienic articles and in particular disposable absorbent articles. Fibrous web materials made from commonly used polyolefins such as PP, PE, PS, PIB have a number of useful properties. They are bio-compatible and food compatible, chemically stabile, inert, non toxic materials. However, most of them have poor mechanical properties including insufficient strength/tear resistance, insufficient stretchability/elasticity and the like.
  • the third approach proposed in the prior art to provide elastic properties to such fibrous web materials is to exploit the formation of hetero-phases which reinforce the bulk material by forming a physical net.
  • the block-co-polymerization of two or more different monomers has been used leading to polymeric backbones comprising blocks with different Tg. This results in micro-phase separation in the bulk with formation of reinforcing crystalline domains of one co-polymer linked with each other by flexible chains of the second co-polymer.
  • conventional polymeric web materials carry a wide variety of inherent disadvantages including but not being limited to insufficient strength/tear resistance, insufficient stretchability/elasticity, not being bio-compatible, not being food compatible, comprising heteroatoms such as chlorine and hence leading to toxic residues when burnt, and the like.
  • the present invention provides a fibrous web material comprising a plurality of fibers.
  • the fibrous web material is characterized in that the fibers comprise a polyolefinic homopolymer having a an isotacticity of less than 60% of [mmmm] pentad concentration.
  • the present invention further provides a method for manufacturing fibers from the aforementioned polymeric material comprising a step of processing the polymeric material selected from the group of wet spinning, dry spinning, melt spinning, semi dry spinning (solvent evaporation or sedimentation), and combinations thereof.
  • the present invention further provides a method for manufacturing a fibrous web material comprising the steps of providing fibers of the aforementioned polymeric material and of combining the fibers into a web material.
  • the present invention further provides a method for stabilizing a fibrous web material according to the present invention comprising the steps of providing a fibrous web material and of stabilizing step the fibrous web material.
  • the present invention provides fibrous web materials comprising polyolefinic homopolymers.
  • polyolefinic homopolymer refers to those polyolefins which comprise only one phase of molecules all of which exhibiting a similar stereochemical configuration. For example, blends of atactic and isotactic polymers where the two phases have polymerized simultaneously are excluded when this term is used.
  • homopolymer includes copolymers where all molecules exhibit a similar stereochemical configuration.
  • the polyolefinic homopolymer of the present invention may comprise linear isotactic polymers having a structure of one or several C 3 to C 20 olefinic monomers, having an isotacticity of less than 60%, preferably less than 55%, more preferably less than 50%, and most preferably less than 45% of [mmmm] pentad concentration, and having an isotacticity of more 15%, preferably more than 20%, more preferably more than 25%, and most preferably more than of [mmmm] pentad concentration.
  • the polyolefinic homopolymer is polypropylene.
  • the isotacticity of the homopolymers may be reduced compared to the isotactic polypropylenes of the prior art due to a statistic distribution of stereoscopic errors in the polymer chain.
  • stereoscopic error refers to a stereoscopic sequence characterized by a [mrrm] pentad.
  • the central monomer has a stereo configuration opposed to the other four monomers in this pentad.
  • the pentad concentration is at least [p (l-p)] q p (1-p) with q being 0.8, more preferably q being 0.6, yet more preferably q being 0.4, yet more preferably q being 0.2, most preferably q being 0.1.
  • the [rmrm] pentad concentration is below 6%, more preferably below 5%, yet more preferably below 4%, yet more preferably below 3%, most preferably below 2.5%.
  • the homopolymer of the present invention may include sequences of atactic and isotactic blocks of polymer.
  • the mean molecular weight M w of the polymer is above 100000 g/mol, more preferably above 200000 g/mol, yet more preferably above 250000 g/mol, yet more preferably more than 300000 g/mol, most preferably more than 350000 g/mol.
  • the glass temperature T g is between -50 and +30 °C.
  • the glass temperature is below 10°C, more preferably below 5°C, yet more preferably below 0°C, most preferably below -6°C.
  • the melt temperature of the polymer is obtained after heating the sample 150°C and subsequently cooling the polymer to -50°C.
  • the polyolefinic polymers exhibit a semi-crystalline structure.
  • the structure contains elastic amorphous areas of nano-scale-size reinforced with self arranged crystalline domains of nano-crystals.
  • the formation of brittle macro-crystalline material from the polymer is achieved by introducing the defects into the polymeric backbone. Isolated monomer units with opposite stereo configuration have been used as the defects, i.e. single stereo errors.
  • Suitable polymers and a process for manufacturing such polymers are described in PCT patent application EP99/02379 incorporated herein by reference.
  • a catalyst combination suitable for the preparation of such polymers is described in PCT patent application EP99/02378 incorporated herein by reference.
  • the process of PCT patent application EP99/02378 is carried out by temperatures of less than 30°C, more preferably less than 25°C, yet more preferably less than 20°C, most preferably less than 15°C to increase the molecular weight of the resulting polymer.
  • the polymerization is preferably carried out in liquid monomer such as in liquid propene.
  • the catalyst is preferably used in combination with the boron activators mentioned in PCT patent application EP99/02378.
  • homopolymers for the fibers of the present invention since during manufacture of homopolymers the batch to batch variability is greatly reduced in comparison to multi phase polymers where the phases are polymerized in a single reaction.
  • the polymers used in manufacturing the fiber materials of the present invention have a distinctive rubber-elastic plateau in their stress strain curves.
  • the polymers used for the fiber of the present invention are bio-compatible may be burnt without toxic residues since they contain no heteroatoms such as chlorine. The further do not contain toxic monomer residues.
  • the fiber materials of the present invention have been found to be able exhibit superior softness.
  • the fiber material has a Shore hardness on the A scale of less than 30, more preferably, of less than 25, yet more preferably of less than 20, yet more preferably of less than 15, most preferably of less than 10.
  • the softness of the fiber material of the present invention can be increased by manufacturing the fiber by reducing the isotacticity ([mmmm] pentad concentration).
  • the fiber material has been found to exhibit increased temperature stability compared to prior art fiber materials. This is partly due to the fact that for the fibers of the present invention a homopolymer is used and is partly due to the high molecular weight of the homopolymer.
  • the fiber material of the present invention has a melting point of at least 100°C, more preferably of at least 110°C, more preferably of at least 120°C, most preferably of at least 130°C.
  • the melt temperature of the polymer is obtained after heating the sample 150°C and subsequently cooling the polymer to -50°C. Higher melting point may be achieved my blending the homopolymer for example with conventional isotactic polymer such as polypropylene.
  • the fiber of the present invention have been found to be stretchable as well as elastic.
  • the stretchability of the fiber versus its elastic behavior can be adjusted by means of the tacticity of the homopolymer of the present invention.
  • the fiber material of the present invention has been found to be stretchable without tearing to at least 500% of its original length, more preferably 1000% of its original length, yet more preferably to at least 1500% of its original length, most preferably to at least 2000% of its original length.
  • the fiber material of the present invention preferably recovers within 10 minutes after being stretched and held for 1 minute to 500% of its original length back to less than 300% its original length, preferably less than 200% its original length, most preferably less than 150% of its original length.
  • the fiber of the present invention has been found to exhibit a low compressive set.
  • the fiber of the present invention recovers within 10 minutes after a compression to 50% of its original thickness for 1 minute to at least 60% of its original thickness, more preferably at least 70% of its original thickness, yet more preferably to at least 80% of its original thickness, yet more preferably to at least 90% of its original thickness, most preferably to at least 95% of its original thickness.
  • the compressibility of the fiber of the present invention can be adjusted by increasing the tacticity of the homopolymer or by blending the low tacticity homopolymer with conventional isotactic polymer such as polypropylene.
  • the fiber of the present invention has been found to exhibit a relative low tackiness at room temperature due to the high molecular weight of the polymer.
  • Various additives may be added to the homopolymer of the present invention to change the properties of the polymer such as is well known in the art.
  • Fibers suitable for the web materials of the present invention may be mono fibers or the may comprise filaments.
  • the amount of the low isotacticity homopolymer of the present invention present in the fiber of the present invention needs to be reduced in order to accelerate crystallization of the fibers after spinning.
  • the fiber of the present invention comprises less than 80% of the low isotacticity homopolymer, more preferably less than 60%, yet more preferably less than 40%, most preferably less than 30%.
  • a high isotacticity polymer having a broader molecular weight distribution may be used in order to accelerate crystallization times.
  • the addition of the low isotacticity homopolymer of the present invention reduces the requires forces, pressures, or torques respectively to process the polymer.
  • fibrous web material according to the present invention there are known in the art a wide variety of suitable methods to manufacture fibrous web material according to the present invention from fibers including but not being limited to meltblowing, spunbonding, carding, air laying, wet laying, weaving, knitting, bailing, and the like.
  • suitable methods for optional stabilization of the fibrous web material of the present invention including but not being limited to hydroentangling, thermo bonding, pressure bonding, air through bonding, needling, resin bonding, combinations thereof, and the like.
  • the article according to the present invention may be a hygienic article.
  • hygienic article refers to articles which are intended to be used in contact with or in proximity to the body of a living being. Such hygienic articles may absorbent or non-absorbent. Such hygienic articles may be disposable or intended for multiple or prolonged use.
  • Such hygienic articles include but are not limited to disposable absorbent article (diapers, sanitary napkins, adult incontinence devices such as briefs, bed mats, wound plasters, underarm sweat pads, and the like), medical supply items (coverings, gowns, drapes, face masks, bandages, body implants, and the like), and other hygienic articles such as toys, bed covers, and the like.
  • disposable absorbent article diapers, sanitary napkins, adult incontinence devices such as briefs, bed mats, wound plasters, underarm sweat pads, and the like
  • medical supply items coverings, gowns, drapes, face masks, bandages, body implants, and the like
  • other hygienic articles such as toys, bed covers, and the like.
  • the article of the present invention may also be a clothing article or a household article including but not being limited to bed covers, underwear, tights, socks, gloves, sport clothing, outdoor clothing, low temperature clothing, shoes and show covers, protective clothing such as for motor biking, blankets, covers, bags, items of furniture, and the like.
  • the fibrous web material according to the present invention may also be used as a construction element in an article.
  • the functionalities of the fibrous web material includes but is not limited to supporting, carrying, fixing, protecting other elements of the article and the like.
  • Such articles include but are not limited to adhesive tapes, protective wraps, complex constructions such as buildings (floor coverings, house wraps, and the like), cars, household appliances, horticultural and agricultural constructions (geotextiles), and the like.
  • the article of the present invention may further a membrane such as in filters, car batteries, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Nonwoven Fabrics (AREA)
  • Artificial Filaments (AREA)
  • Orthopedics, Nursing, And Contraception (AREA)
  • Invalid Beds And Related Equipment (AREA)
EP00965558A 1999-10-08 2000-10-02 Fibrous material comprising fibers made from linear, isotactic polymers Withdrawn EP1238130A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP00965558A EP1238130A1 (en) 1999-10-08 2000-10-02 Fibrous material comprising fibers made from linear, isotactic polymers

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP99120174 1999-10-08
EP99120174 1999-10-08
EP00965558A EP1238130A1 (en) 1999-10-08 2000-10-02 Fibrous material comprising fibers made from linear, isotactic polymers
PCT/US2000/027134 WO2001027372A1 (en) 1999-10-08 2000-10-02 Fibrous material comprising fibers made from linear, isotactic polymers

Publications (1)

Publication Number Publication Date
EP1238130A1 true EP1238130A1 (en) 2002-09-11

Family

ID=8239171

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00965558A Withdrawn EP1238130A1 (en) 1999-10-08 2000-10-02 Fibrous material comprising fibers made from linear, isotactic polymers

Country Status (9)

Country Link
EP (1) EP1238130A1 (ja)
JP (1) JP2003511578A (ja)
KR (1) KR100488224B1 (ja)
CN (1) CN1399693A (ja)
AU (1) AU780580B2 (ja)
BR (1) BR0014601A (ja)
CA (1) CA2386034A1 (ja)
MX (1) MXPA02003513A (ja)
WO (1) WO2001027372A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101596051B1 (ko) 2007-06-26 2016-02-19 이데미쓰 고산 가부시키가이샤 탄성 부직포, 그의 제조방법 및 상기 탄성 부직포를 사용한 섬유 제품
US20110236683A1 (en) * 2008-08-12 2011-09-29 Idemitsu Kosan Co., Ltd. Method for producing polypropylene elastic fiber and polypropylene elastic fiber

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5594080A (en) * 1994-03-24 1997-01-14 Leland Stanford, Jr. University Thermoplastic elastomeric olefin polymers, method of production and catalysts therefor
US5888607A (en) * 1997-07-03 1999-03-30 Minnesota Mining And Manufacturing Co. Soft loop laminate and method of making
US6265512B1 (en) * 1997-10-23 2001-07-24 3M Innovative Company Elastic polypropylenes and catalysts for their manufacture
DE19816154A1 (de) * 1998-04-09 1999-10-21 Bernhard Rieger Lineare isotaktische Polymere, Verfahren zu ihrer Herstellung und deren Verwendung sowie eine Katalysatorkombination

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0127372A1 *

Also Published As

Publication number Publication date
MXPA02003513A (es) 2002-08-20
CN1399693A (zh) 2003-02-26
AU7625700A (en) 2001-04-23
JP2003511578A (ja) 2003-03-25
AU780580B2 (en) 2005-04-07
KR20020041453A (ko) 2002-06-01
BR0014601A (pt) 2002-06-11
WO2001027372A1 (en) 2001-04-19
CA2386034A1 (en) 2001-04-19
KR100488224B1 (ko) 2005-05-10

Similar Documents

Publication Publication Date Title
CA2586907C (en) Polymer blends and nonwoven articles therefrom
EP2161360B1 (en) Elastic nonwoven fabric, process for producing the same, and textile product comprising the elastic nonwoven fabric
JP5697997B2 (ja) エチレン/α−オレフィンインターポリマーから作製される繊維及び布地
JP5973920B2 (ja) スパンボンド不織布の製造方法及びスパンボンド不織布
MX2008002376A (es) Capas no tejidas, sopladas en fusion, a base de propileno, y estructuras mixtas.
EP2638190B1 (en) Bicomponent fibers and methods for making them
EP2671993B1 (en) Nonwoven fabric and textile product
KR20200058449A (ko) 개선된 탄성 성능을 갖는 이성분 섬유, 및 이의 부직포
KR20170134652A (ko) 프로필렌계 엘라스토머 조성물을 포함하는 스펀본드 패브릭 및 이의 제조 방법
JP2003522853A (ja) ポリプロピレン繊維
US6800572B1 (en) Fibrous material comprising fibers made from linear isotactic polymers
AU780580B2 (en) Fibrous material comprising fibers made from linear, isotactic polymers
KR101127652B1 (ko) 좁은 분자량 분포를 갖는 폴리프로필렌 블렌드
KR20020081336A (ko) 폴리프로필렌 섬유
AU780540B2 (en) Coating material comprising linear, isotactic polymers
US6727003B1 (en) Coating material comprising linear isotactic polymers
US6746780B1 (en) Bodies of polymeric material comprising linear, isotactic polymers
WO2001027189A1 (en) Film web material comprising linear or branched, isotactic polymers
WO2001027169A1 (en) Bodies of polymeric material comprising linear, isotactic polymers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020419

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ORROTH, MIKE

Inventor name: DE BELDER, GIAN

Inventor name: RIEGER, BERNHARD

17Q First examination report despatched

Effective date: 20041223

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060221