EP1191630A1 - Lentille divergente à dôme pour ondes hyperfréquences et antenne comportant une telle lentille - Google Patents

Lentille divergente à dôme pour ondes hyperfréquences et antenne comportant une telle lentille Download PDF

Info

Publication number
EP1191630A1
EP1191630A1 EP01402282A EP01402282A EP1191630A1 EP 1191630 A1 EP1191630 A1 EP 1191630A1 EP 01402282 A EP01402282 A EP 01402282A EP 01402282 A EP01402282 A EP 01402282A EP 1191630 A1 EP1191630 A1 EP 1191630A1
Authority
EP
European Patent Office
Prior art keywords
lens
waveguides
axis
antenna
divergent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01402282A
Other languages
German (de)
English (en)
Inventor
Laurent Martin
Gérard Caille
Agnès Lecompte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel CIT SA
Alcatel Lucent SAS
Original Assignee
Alcatel CIT SA
Alcatel SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel CIT SA, Alcatel SA filed Critical Alcatel CIT SA
Publication of EP1191630A1 publication Critical patent/EP1191630A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2658Phased-array fed focussing structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/288Satellite antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • H01Q15/06Refracting or diffracting devices, e.g. lens, prism comprising plurality of wave-guiding channels of different length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/007Antennas or antenna systems providing at least two radiating patterns using two or more primary active elements in the focal region of a focusing device
    • H01Q25/008Antennas or antenna systems providing at least two radiating patterns using two or more primary active elements in the focal region of a focusing device lens fed multibeam arrays

Definitions

  • the invention relates to a divergent dome lens for waves of the microwave or microwave domain. It also relates to an antenna of telecommunications comprising such a lens, this antenna being mounted on board of a satellite to communicate with terrestrial areas over a wide field of view.
  • the earth In a telecommunication system by orbiting traveling satellites low or medium, the earth is divided into zones or cells, each of which has a diameter of several hundred kilometers and communications between terminals in a zone are carried out via a base station in this zone.
  • the first terminal transmits a signal to the base station, which signal passing through means of communication on board a passing satellite and then the base station transmits, still through from a satellite, communication to the second terminal.
  • the base station For communication between two terminals being in two different zones, one establishes a communication between the two base stations of the two zones, for example by via a terrestrial network.
  • a transmitting or receiving antenna is assigned to a plurality of zones. This antenna must therefore cover a very wide field of view. For example, for a satellite at an altitude of 1,400 km, the field of view is constituted by an angle at the top of 108 ° for a system of telecommunications whose coverage reaches an elevation of 10 °.
  • the antenna must be of the beam scanning type, i.e. the beam of the antenna must constantly move angularly.
  • the difficulty of realization of such an antenna is increased by the fact that its gain must increase in depending on the pointing angle. Indeed, when this angle increases, the distance to the area increases, resulting in attenuation due to distance and crossing of the atmosphere.
  • an antenna comprising, on the one hand, a beam generator with electronic scanning and, on the other hand, a divergent dielectric dome lens to increase the field of the beam generator and correct the gain as a function of the angle of score.
  • This separation between the beam generation function and the field of view increase function with gain correction depending on the pointing angle makes it possible to produce an antenna having an opening angle between 60 and 120 °.
  • the beam generator is made of general using electronic scanning with a limited number of elements Radiant.
  • the dielectric dome divergent lens is made of a material of constant permittivity on which quarter-wave adaptation layers are molded.
  • a dielectric dome lens is, in practice, incompatible with space applications because dielectric materials undergo launching and in space very high mechanical and thermal stresses.
  • such a lens has a high mass, which is also difficult compatible with space applications.
  • the invention overcomes this drawback.
  • the antenna according to the invention comprises a scanning array electronics combined with a divergent dome lens to increase the field of view of the scanning array and it is characterized in that the dome lens comprises a plurality of metal waveguides of variable lengths, the length being the greatest along the axis of the lens and decreasing towards the periphery.
  • Each waveguide constitutes a sensor / transmitter as well as a phase shifter, which allows to realize the divergent lens function.
  • the antenna according to the invention is indeed suitable for space applications.
  • the waveguides can have any cross section such as a circular section, relatively easy to manufacture, a rectangular section or a hexagonal section which confers minimal losses.
  • the dome lens connects directly to a plane network of waveguides constituting the electronically scanned network.
  • the number of grating and lens waveguides is the same and the waveguides of the plane grating and of the dome lens form, for example, a piece in one piece.
  • the invention also relates to a divergent dome lens for waves.
  • microwave which is characterized in that it comprises a plurality of guides wavelengths of variable length, the waveguides having a maximum length along the axis of the dome, the length decreases when the distance to the axis increases.
  • the invention therefore relates to a divergent dome lens for waves.
  • microwave which comprises a plurality of wavelength guides variables, this length being the largest along the axis of the lens and being weaker for waveguides distant from the axis.
  • the axes of the waveguides are all parallel between them and parallel to the axis of the lens.
  • the axes of each of the waveguides converge at a point of the lens axis.
  • the lens has, for example, a form of revolution around an axis
  • all the metal waveguides have the same section, the latter being, for example, circular, rectangular or hexagonal.
  • the invention also relates to a transmitting or receiving antenna for scrolling satellite communication system (s), this antenna being intended forming fixed beams on the ground, all of these beams extending over a total viewing angle between 60 and 120 °, the antenna comprising, on the one hand, a array of electronically scanned radiating elements to form beams corresponding to the various terrestrial areas and, on the other hand, a divergent lens dome to widen the opening of the beams created by the network of elements radiant and give a gain which is minimum along the axis of the antenna and maximum at the periphery of the latter, the diverging lens comprising a plurality of metal waveguides of variable lengths, this length being the largest along the axis of the lens and being weakest for the waveguides away from the axis.
  • the array of radiating elements includes waveguides equal in number to that of the divergent dome lens.
  • the radiating elements of the network of elements each have a waveguide forming a single piece with a waveguide of the divergent dome lens.
  • the waveguides of the network of elements radiant are extended, opposite the waveguides of the divergent lens, by one or more sections for filtering means.
  • the antenna which will be described in relation to the figures is intended to be installed on board a telecommunications satellite which is part of a constellation of satellites traveling in orbit at an altitude of approximately 1,400 km.
  • This antenna is intended to communicate with terrestrial zones 10 1 , 10 2 , 10 3 , 10 4 , 10 5 (FIG. 1) each having a diameter of approximately 700 km, these zones being fixed to the ground.
  • each transmit and receive beam permanently corresponds to the fixed area on the ground despite the displacement of the satellite.
  • the array 12 allows electronic scanning and also makes it possible to create a plurality of beams to communicate with the zones 10 1 ... 10 5 , while the dome lens 14 makes it possible to widen the field of view up to an angle d '' approximately 120 ° so that the beam can cover all of the zones 10 1 to 10 5 .
  • the beam obtained along the axis 16 of the dome lens is relatively narrow while it has a larger opening section when moving away from the axis ,.
  • the antenna is more directive when one moves away from the axis, which makes it possible to correctly cover the zones distant from the axis such as the zone 10 5 in FIG. 1.
  • the diverging lens allows a higher gain when one moves away from the axis 16.
  • each beam forming network 20 i performs a permanent electronic scan so that the beam constantly reaches the zone to which it is assigned.
  • Each of these beam forming networks provides the radiating elements 22 1 , 22 2 , ..., 22 n with a signal having an amplitude and a phase calculated so that the overall beam corresponds to the desired result.
  • each network 20 i has as many outputs as radiating elements.
  • the outputs intended for the same radiating element 22 i of these networks 20 i are connected to a respective input of an adder, or combiner, 24 1 , 24 2 , ..., 24 n and the output of each adder is transmitted to the 'corresponding radiating element via an amplifier 26 i and a filter 28 i .
  • the network 12 comprises a thick metal plate 30 in which the radiating elements comprise simple through circular holes 32 1 , 32 2 , etc. This radiating network is particularly simple to manufacture.
  • a thick metal plate is also provided, but the radiating elements include holes of rectangular section 34 1 , 34 2 , etc.
  • the plate openings thick are hexagonal, allowing better radiation efficiency radiant elements.
  • the presence of the dome lens allows, at given performances, to considerably reduce the total number of radiating elements in the active network. This reduction is at least a factor of 10. It also allows a reduction overall dimensions of the antenna.
  • the number of radiating elements of the network is advantageously reduced to a hundred, for example a hexagonal network with 127 radiant elements.
  • the diverging lens 14 is constituted by a plurality of waveguides formed of metallic elements having variable lengths, this length being the longest along the axis of revolution 16 of the dome formed by the lens and the weakest at the periphery 40 (FIGS. 5 and 6). It is the different lengths of the various waveguides which allow realize the phase shifts necessary for the dome lens to constitute a divergent lens.
  • the axes of all waveguides are parallel to each other and parallel to the axis of revolution 16 while in the embodiment of the invention which is shown in Figure 6, the axes of the various waveguides converge at a point located on axis 16 and in the plane of network 12.
  • the lens divergent dome 14 has a plurality of length waveguides different. This lens forms a single piece with the elements radiant 22 and the filtering means 28.
  • each waveguide 44 i has three sections 46 i , 48 i , and 50 i .
  • the first section 46 i constitutes the part of the waveguide assigned to the divergent lens 14, the second section 48 i constitutes the radiating network 12, and the third section 50 i corresponds to a filtering means for a reception antenna (or resignation).
  • Such an antenna formed of metal waveguides is of a particularly simple implementation. In particular, it suffices to provide holes in a metallic structure.
  • the axes 54 i of the various waveguides converge at a point 56 on the axis 16 of the dome lens and lying in a plane of the network 12 of radiating elements.
  • the typical number of holes forming a guide lens is a few hundreds.
  • the outer surface of the lens 14 has the shape of an ellipsoid of revolution around the axis 16.
  • the various waveguides 44 i ( Figure 5) or 56 i ( Figure 6) are arranged around the axis 16 so that in section through a plane perpendicular to this axis, the axes of the various waveguides are distributed regularly over a series of concentric circles centered on axis 16.
  • the waveguide lens according to the invention can be used for other applications than the one described above.
  • the diverging lens at plurality of waveguides is not necessarily used in combination with a electronic scanning network.
  • it is useful whenever it is necessary to obtain a wide field of view with increased gain when we move away from the axis.
  • It can, for example, be used for payload telemetry in order to control the satellite.
  • the lens has smaller dimensions than the lens dimensions known for the same application.
  • This lens is, by example, associated with a simple radiant horn. It helps focus energy in directions away from the antenna axis, for example up to at least 63 °. The gain levels at 63 ° are higher than the antennas allow conventionally used for this type of application (trap horn or reflector form).

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

L'invention concerne une lentille divergente à dôme (14) pour des ondes hyperfréquences. Elle comporte une pluralité de guides d'onde (44i) de longueurs variables, cette longueur étant la plus importante selon l'axe (16) de la lentille et étant plus faible pour les guides d'onde éloignés de l'axe. Les axes des guides d'onde sont, par exemple, tous parallèles entre eux et parallèles à l'axe (16) de la lentille. <IMAGE>

Description

L'invention est relative à une lentille divergente à dôme pour des ondes du domaine des hyperfréquences ou micro-ondes. Elle concerne aussi une antenne de télécommunication comprenant une telle lentille, cette antenne étant montée à bord d'un satellite pour communiquer avec des zones terrestres selon un large champ de vue.
Dans un système de télécommunication par satellites défilants à orbite basse ou moyenne, la terre est divisée en zones ou cellules dont chacune présente un diamètre de plusieurs centaines de kilomètres et les communications entre terminaux d'une zone s'effectuent par l'intermédiaire d'une station de base dans cette zone. Autrement dit, pour établir une communication entre deux terminaux d'une même zone, le premier terminal émet un signal vers la station de base, ce signal transitant par l'intermédiaire de moyens de communication à bord d'un satellite défilant et ensuite, la station de base transmet, toujours par l'intermédiaire d'un satellite, la communication au second terminal. Pour la communication entre deux terminaux se trouvant dans deux zones différentes, on établit une communication entre les deux stations de base des deux zones, par exemple par l'intermédiaire d'un réseau terrestre.
Étant donné qu'à bord d'un satellite il faut minimiser le poids et l'encombrement, il est préférable qu'une antenne d'émission ou de réception soit affectée à une pluralité de zones. Cette antenne doit donc couvrir un très large champ de vue. Par exemple, pour un satellite à l'altitude de 1 400 km, le champ de vue est constitué par un angle au sommet de 108° pour un système de télécommunication dont la couverture atteint une élévation de 10°.
En outre, comme le satellite est défilant et que les zones sont fixes au sol, l'antenne doit être du type à balayage de faisceaux, c'est-à-dire que le faisceau de l'antenne doit constamment se déplacer angulairement. Enfin, la difficulté de réalisation d'une telle antenne est accrue par le fait que son gain doit croítre en fonction de l'angle de pointage. En effet, quand cet angle augmente, la distance à la zone augmente, ce qui entraíne une atténuation due à la distance et à la traversée de l'atmosphère.
Pour satisfaire à ces exigences, on a déjà proposé une antenne comportant, d'une part, un générateur de faisceaux à balayage électronique et, d'autre part, une lentille divergente à dôme diélectrique pour augmenter le champ de vue du générateur de faisceaux et corriger le gain en fonction de l'angle de pointage. Cette séparation entre la fonction de génération des faisceaux et la fonction d'augmentation du champ de vue avec correction de gain en fonction de l'angle de pointage permet de réaliser une antenne ayant un angle d'ouverture compris entre 60 et 120°. En outre, le générateur de faisceaux est réalisé en général à l'aide d'un balayage électronique ayant un nombre limité d'éléments rayonnants. La lentille divergente à dôme diélectrique est constituée en un matériau de permittivité constante sur lequel sont moulées des couches d'adaptation quart-d'onde.
Mais une lentille à dôme diélectrique est, en pratique, incompatible avec des applications spatiales car les matériaux diélectriques subissent au lancer et dans l'espace des contraintes mécaniques et thermiques très élevées. En outre, une telle lentille présente une masse élevée, ce qui est aussi difficilement compatible avec des applications spatiales.
L'invention remédie à cet inconvénient.
Ainsi, l'antenne conforme à l'invention comporte un réseau à balayage électronique associé à une lentille divergente à dôme pour augmenter le champ de vue du réseau à balayage et elle est caractérisée en ce que la lentille à dôme comporte une pluralité de guides d'onde métalliques de longueurs variables, la longueur étant la plus importante selon l'axe de la lentille et diminuant vers la périphérie.
Chaque guide d'onde constitue un capteur/émetteur ainsi qu'un déphaseur, ce qui permet de réaliser la fonction de lentille divergente. Comme un guide d'onde est constitué par de simples parois métalliques, l'antenne selon l'invention est bien adaptée aux applications spatiales.
Les guides d'onde peuvent avoir une section quelconque telle qu'une section circulaire, relativement aisée à fabriquer, une section rectangulaire ou une section hexagonale qui confère des pertes minimales.
Dans un mode de réalisation, la lentille à dôme se raccorde directement à un réseau plan de guides d'onde constituant le réseau à balayage électronique. Dans ce cas, le nombre de guides d'onde du réseau et de la lentille est le même et les guides d'onde du réseau plan et de la lentille à dôme forment, par exemple, une pièce d'un seul tenant.
L'invention concerne aussi une lentille à dôme divergente pour des ondes hyperfréquences qui est caractérisée en ce qu'elle comprend une pluralité de guides d'onde de longueurs variables, les guides d'onde ayant une longueur maximale selon l'axe du dôme, la longueur diminuant quand la distance à l'axe augmente.
L'invention concerne donc une lentille divergente à dôme pour des ondes hyperfréquences qui comporte une pluralité de guides d'onde de longueurs variables, cette longueur étant la plus importante selon l'axe de la lentille et étant plus faible pour les guides d'onde éloignés de l'axe.
Dans une réalisation, les axes des guides d'onde sont tous parallèles entre eux et parallèles à l'axe de la lentille.
En variante, les axes de chacun des guides d'onde convergent en un point de l'axe de la lentille.
La lentille présente, par exemple, une forme de révolution autour d'un axe
De préférence, tous les guides d'onde métalliques ont une même section, cette dernière étant, par exemple, circulaire, rectangulaire ou hexagonale.
L'invention concerne aussi une antenne d'émission ou de réception pour système de télécommunication à satellite(s) défilant(s), cette antenne étant destinée à former des faisceaux fixes au sol, l'ensemble de ces faisceaux s'étendant sur un angle de vue total compris entre 60 et 120°, l'antenne comprenant, d'une part, un réseau d'éléments rayonnants à balayage électronique pour former des faisceaux correspondants aux diverses zones terrestres et, d'autre part, une lentille divergente à dôme pour élargir l'ouverture des faisceaux créés par le réseau d'éléments rayonnants et conférer un gain qui est minimum selon l'axe de l'antenne et maximum à la périphérie de cette dernière, la lentille divergente comportant une pluralité de guides d'onde métalliques de longueurs variables, cette longueur étant la plus importante selon l'axe de la lentille et étant plus faible pour les guides d'onde éloignés de l'axe.
Dans une réalisation, le réseau d'éléments rayonnants comporte des guides d'onde en nombre égal à celui de la lentille divergente à dôme.
Dans un exemple, les éléments rayonnants du réseau d'éléments rayonnants comportent chacun un guide d'onde formant une pièce d'un seul tenant avec un guide d'onde de la lentille divergente à dôme.
Dans ce cas, selon une réalisation, les guides d'onde du réseau d'éléments rayonnants sont prolongés, à l'opposé des guides d'onde de la lentille divergente, par une ou plusieurs sections pour des moyens de filtrage.
D'autres caractéristiques et avantages de l'invention apparaítront avec la description de certains de ses modes de réalisation, celle-ci étant effectuée en se référant aux dessins ci-annexés sur lesquels :
  • La figure 1 représente le globe terrestre et quelques zones fixes pour un système de télécommunication auquel s'applique l'antenne selon l'invention,
  • La figure 2 est un schéma d'une antenne d'émission installée à bord d'un satellite de façon à établir les communications avec les zones terrestres représentées sur la figure 1,
  • Les figures 3 et 4 sont des schémas de modes de réalisation de parties d'une antenne conforme à l'invention,
  • La figure 5 est un schéma d'ensemble d'une antenne de réception selon l'invention,
  • La figure 6 est un schéma d'une lentille divergente à dôme conforme à l'invention, et
  • La figure 7 est un schéma visant à expliquer certaines propriétés d'une lentille divergente en forme de dôme.
  • L'antenne que l'on va décrire en relation avec les figures est destinée à être installée à bord d'un satellite de télécommunication qui fait partie d'une constellation de satellites défilants en orbite à une altitude d'environ 1 400 km. Cette antenne est destinée à communiquer avec des zones terrestres 101, 102, 103, 104, 105 (figure 1) ayant chacune un diamètre de 700 km environ, ces zones étant fixes au sol.
    Étant donné que le satellite est défilant, on fait appel à une antenne à balayage électronique de façon que chaque faisceau d'émission et de réception corresponde en permanence à la zone fixe au sol malgré le déplacement du satellite.
    Ainsi, comme montré sur la figure 2, on prévoit, de façon en soi connue, un réseau 12 d'éléments rayonnants associé à une lentille divergente à dôme 14.
    Le réseau 12 permet le balayage électronique et permet aussi de créer une pluralité de faisceaux pour communiquer avec les zones 101 ... 105, tandis que la lentille à dôme 14 permet d'élargir le champ de vue jusqu'à un angle d'environ 120° afin que le faisceau puisse couvrir l'ensemble des zones 101 à 105. En outre, comme montré sur la figure 7, le faisceau obtenu selon l'axe 16 de la lentille à dôme est relativement étroit tandis qu'il présente une plus grande section d'ouverture quand on s'éloigne de l'axe,. Ainsi, l'antenne est plus directive quand on s'éloigne de l'axe, ce qui permet de couvrir correctement les zones éloignées de l'axe telle que la zone 105 sur la figure 1. De plus, la lentille divergente permet un gain supérieur quand on s'éloigne de l'axe 16. Ainsi, on compense, par cette augmentation de gain, pour les zones 105 les plus éloignées de l'antenne, l'atténuation supérieure due à une plus grande distance et à une plus grande atténuation atmosphérique.
    Pour l'excitation du réseau d'éléments rayonnants 12, on prévoit, de façon classique, pour former les faisceaux destinés aux zones 101 à 105, des réseaux formateurs de faisceaux 201, 202, ..., 205. Chaque réseau formateur de faisceau 20i effectue un balayage électronique permanent de façon que le faisceau atteigne constamment la zone à laquelle il est affecté.
    Chacun de ces réseaux formateurs de faisceaux fournit aux éléments rayonnants 221, 222, ..., 22n un signal ayant une amplitude et une phase calculées pour que le faisceau d'ensemble corresponde au résultat désiré. Autrement dit, chaque réseau 20i comporte autant de sorties que d'éléments rayonnants. Les sorties destinées au même élément rayonnant 22i de ces réseaux 20i sont connectées à une entrée respective d'un additionneur, ou combineur, 241, 242, ..., 24n et la sortie de chaque additionneur est transmise à l'élément rayonnant correspondant par l'intermédiaire d'un amplificateur 26i et d'un filtre 28i.
    Dans un premier mode de réalisation représenté sur la figure 3, le réseau 12 comporte une plaque métallique épaisse 30 dans laquelle les éléments rayonnants comportent de simples trous circulaires traversants 321, 322, etc. Ce réseau rayonnant est particulièrement simple à fabriquer.
    Dans la variante représentée sur la figure 4, on prévoit également une plaque métallique épaisse mais les éléments rayonnants comprennent des trous de section rectangulaire 341, 342, etc.
    Dans une autre variante (non montrée), les ouvertures de la plaque épaisse sont hexagonales, ce qui permet une meilleure efficacité de rayonnement des éléments rayonnants.
    La présence de la lentille dôme permet, à performances données, de réduire considérablement le nombre total d'éléments rayonnants du réseau actif. Cette réduction est d'au moins un facteur 10. Elle permet aussi une réduction globale des dimensions de l'antenne. Le nombre d'éléments rayonnants du réseau est avantageusement réduit à une centaine, par exemple un réseau hexagonal à 127 éléments rayonnants.
    Selon un aspect important de l'invention, la lentille divergente 14 est constituée par une pluralité de guides d'onde formés d'éléments métalliques ayant des longueurs variables, cette longueur étant la plus importante le long de l'axe de révolution 16 du dôme que forme la lentille et la plus faible à la périphérie 40 (figures 5 et 6). Ce sont les longueurs différentes des divers guides d'onde qui permettent de réaliser les déphasages nécessaires pour que la lentille à dôme constitue une lentille divergente.
    Dans le mode de réalisation de l'invention qui est représenté sur la figure 5, les axes de tous les guides d'onde sont parallèles entre eux et parallèles à l'axe de révolution 16 tandis que dans le mode de réalisation de l'invention qui est représenté sur la figure 6, les axes des divers guides d'onde convergent en un point situé sur l'axe 16 et dans le plan du réseau 12.
    On se réfère tout d'abord à la figure 5. Dans cet exemple, la lentille divergente à dôme 14 comporte une pluralité de guides d'onde de longueurs différentes. Cette lentille forme une pièce d'un seul tenant avec les éléments rayonnants 22 et les moyens de filtrage 28.
    De façon plus précise, chaque guide d'onde 44i présente trois sections 46i, 48i, et 50i. La première section 46i constitue la partie du guide d'onde affectée à la lentille divergente 14, la seconde section 48i constitue le réseau rayonnant 12, et la troisième section 50i correspond à un moyen de filtrage pour une antenne de réception (ou d'émission).
    Une telle antenne formée de guides d'onde métalliques est d'une réalisation particulièrement simple. En particulier, il suffit de prévoir des trous dans une structure métallique.
    Dans le mode de réalisation représenté sur la figure 6, les axes 54i des divers guides d'onde convergent en un point 56 sur l'axe 16 de la lentille dôme et se trouvant dans un plan du réseau 12 d'éléments rayonnants.
    Le nombre typique de trous formant une lentille à guide est de quelques centaines.
    Dans tous les modes de réalisation de l'invention qui ont été décrits, la surface extérieure de la lentille 14 présente la forme d'un ellipsoïde de révolution autour de l'axe 16. En outre, les divers guides d'onde 44i (figure 5) ou 56i (figure 6) sont disposés autour de l'axe 16 de façon qu'en section par un plan perpendiculaire à cet axe, les axes des divers guides d'onde sont répartis régulièrement sur une série de cercles concentriques centrés sur l'axe 16.
    La lentille à guides d'onde selon l'invention peut être utilisée pour d'autres applications que celle décrite ci-dessus. En d'autres termes, la lentille divergente à pluralité de guides d'onde n'est pas forcément utilisée en combinaison avec un réseau à balayage électronique. De façon générale, elle est utile à chaque fois qu'il est nécessaire d'obtenir un large champ de vue avec augmentation de gain quand on s'éloigne de l'axe.
    Elle peut, par exemple, être utilisée pour de la télémesure de charges utiles afin de contrôler le satellite.
    Dans ce cas, la lentille présente des dimensions plus faibles que les dimensions des lentilles connues pour la même application. Cette lentille est, par exemple, associée à un simple cornet rayonnant. Elle permet de focaliser l'énergie dans des directions éloignées de l'axe de l'antenne, par exemple jusqu'à au moins 63°. Les niveaux de gain à 63° sont plus élevés que ne le permettent les antennes classiquement utilisées pour ce type d'application (cornet à piège ou réflecteur formé).

    Claims (12)

    1. Lentille divergente à dôme pour des ondes hyperfréquences, caractérisée en ce qu'elle comporte une pluralité de guides d'onde (44i, 54i) de longueurs variables, cette longueur étant la plus importante selon l'axe (16) de la lentille et étant plus faible pour les guides d'onde éloignés de l'axe.
    2. Lentille divergente selon la revendication 1, caractérisée en que les axes des guides d'onde sont tous parallèles entre eux et parallèles à l'axe (16) de la lentille.
    3. Lentille divergente selon la revendication 1, caractérisée en ce que les axes (54i) de chacun des guides d'onde (56i) convergent en un point de l'axe (16) de la lentille.
    4. Lentille divergente selon la revendication 1, 2 ou 3, caractérisée en ce qu'elle présente une forme de révolution autour d'un axe (16).
    5. Lentille selon l'une quelconque des revendications précédentes, caractérisée en ce que tous les guides d'onde métalliques ont une même section, cette dernière étant, par exemple, circulaire, rectangulaire ou hexagonale.
    6. Antenne d'émission ou de réception pour système de télécommunication à satellite(s) défilant(s), cette antenne étant destinée à former des faisceaux fixes au sol (101, 102, 103, 104, 105), l'ensemble de ces faisceaux s'étendant sur un angle de vue total compris entre 60 et 120°, l'antenne comprenant, d'une part, un réseau (12) d'éléments rayonnants à balayage électronique pour former des faisceaux correspondants aux diverses zones terrestres et, d'autre part, une lentille(14) divergente à dôme pour élargir l'ouverture des faisceaux créés par le réseau (12) d'éléments rayonnants et conférer un gain qui est minimum selon l'axe de l'antenne et maximum à la périphérie de cette dernière, caractérisée en ce que la lentille divergente comporte une pluralité de guides d'onde métalliques de longueurs variables, cette longueur étant la plus importante selon l'axe (16) de la lentille et étant plus faible pour les guides d'onde éloignés de l'axe.
    7. Antenne selon la revendication 6, caractérisée en ce que les guides d'onde de la lentille divergente à dôme présentent des axes parallèles entre eux et parallèles à l'axe (16) de cette lentille.
    8. Antenne selon la revendication 6, caractérisée en ce que les axes des guides d'onde sont convergents en un point (56) sur l'axe de cette lentille et dans un plan du réseau (12) d'éléments rayonnants.
    9. Antenne selon l'une quelconque des revendications 6 à 8, caractérisée en ce que les guides d'onde de la lentille divergente à dôme ont tous la même section, cette dernière étant, par exemple, circulaire, rectangulaire ou hexagonale.
    10. Antenne selon l'une quelconque des revendications 6 à 9, caractérisée en ce que le réseau d'éléments rayonnants comporte des guides d'onde en nombre égal à celui de la lentille divergente à dôme.
    11. Antenne selon la revendication 10, caractérisée en ce que les éléments rayonnants du réseau (12) d'éléments rayonnants comportent chacun un guide d'onde formant une pièce d'un seul tenant avec un guide d'onde de la lentille divergente à dôme.
    12. Antenne selon la revendication 11, caractérisée en ce que les guides d'onde du réseau d'éléments rayonnants sont prolongés, à l'opposé des guides d'onde de la lentille divergente, par une ou plusieurs sections pour des moyens de filtrage.
    EP01402282A 2000-09-25 2001-09-03 Lentille divergente à dôme pour ondes hyperfréquences et antenne comportant une telle lentille Withdrawn EP1191630A1 (fr)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR0012162 2000-09-25
    FR0012162A FR2814614B1 (fr) 2000-09-25 2000-09-25 Lentille divergente a dome pour ondes hyperfrequences et antenne comportant une telle lentille

    Publications (1)

    Publication Number Publication Date
    EP1191630A1 true EP1191630A1 (fr) 2002-03-27

    Family

    ID=8854634

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP01402282A Withdrawn EP1191630A1 (fr) 2000-09-25 2001-09-03 Lentille divergente à dôme pour ondes hyperfréquences et antenne comportant une telle lentille

    Country Status (5)

    Country Link
    US (1) US6476761B2 (fr)
    EP (1) EP1191630A1 (fr)
    JP (1) JP2002151943A (fr)
    CA (1) CA2356725A1 (fr)
    FR (1) FR2814614B1 (fr)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    ITRM20080674A1 (it) * 2008-12-18 2010-06-19 Space Engineering Spa Antenna a lente discreta attiva aperiodica per coperture satellitari multifascio

    Families Citing this family (10)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JP4090838B2 (ja) * 2002-10-23 2008-05-28 三菱電機株式会社 非静止衛星搭載用アンテナ装置
    JP5034369B2 (ja) * 2006-08-18 2012-09-26 富士通株式会社 無線通信制御方法
    GB0720199D0 (en) * 2007-10-16 2007-11-28 Global View Systems Ltd Wave guide array
    US8130171B2 (en) * 2008-03-12 2012-03-06 The Boeing Company Lens for scanning angle enhancement of phased array antennas
    AU2011214118B2 (en) 2010-02-15 2014-12-11 Bae Systems Plc Antenna system
    WO2019067474A1 (fr) * 2017-09-26 2019-04-04 Trak Microwave Corporation Antenne directrice de faisceau à profil bas dotée d'une lentille divergente intégrée
    US10714836B1 (en) * 2018-02-15 2020-07-14 University Of South Florida Hybrid MIMO architecture using lens arrays
    US11121462B2 (en) * 2018-02-21 2021-09-14 Antenna Research Associates Passive electronically scanned array (PESA)
    KR20190118832A (ko) * 2018-04-11 2019-10-21 삼성전자주식회사 안테나 및 단위 셀 구조
    JP2023516837A (ja) * 2019-12-27 2023-04-21 インテル コーポレイション 無線通信及びレーダ用の組み込みアンテナ構造

    Citations (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB1403769A (en) * 1971-12-20 1975-08-28 Sperry Rand Corp Phased array fed lens antenna
    US4321604A (en) * 1977-10-17 1982-03-23 Hughes Aircraft Company Broadband group delay waveguide lens
    US6018316A (en) * 1997-01-24 2000-01-25 Ail Systems, Inc. Multiple beam antenna system and method

    Family Cites Families (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4156878A (en) * 1978-01-25 1979-05-29 The United States Of America As Represented By The Secretary Of The Air Force Wideband waveguide lens
    US5818395A (en) * 1997-01-16 1998-10-06 Trw Inc. Ultralight collapsible and deployable waveguide lens antenna system

    Patent Citations (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB1403769A (en) * 1971-12-20 1975-08-28 Sperry Rand Corp Phased array fed lens antenna
    US4321604A (en) * 1977-10-17 1982-03-23 Hughes Aircraft Company Broadband group delay waveguide lens
    US6018316A (en) * 1997-01-24 2000-01-25 Ail Systems, Inc. Multiple beam antenna system and method

    Cited By (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    ITRM20080674A1 (it) * 2008-12-18 2010-06-19 Space Engineering Spa Antenna a lente discreta attiva aperiodica per coperture satellitari multifascio
    EP2221919A1 (fr) * 2008-12-18 2010-08-25 Agence Spatiale Européenne Antenne multifaisceaux active a lentille discrete
    US8358249B2 (en) 2008-12-18 2013-01-22 Agence Spatiale Europeenne Multibeam active discrete lens antenna

    Also Published As

    Publication number Publication date
    CA2356725A1 (fr) 2002-03-25
    US6476761B2 (en) 2002-11-05
    FR2814614B1 (fr) 2003-02-07
    FR2814614A1 (fr) 2002-03-29
    US20020036587A1 (en) 2002-03-28
    JP2002151943A (ja) 2002-05-24

    Similar Documents

    Publication Publication Date Title
    EP2564466B1 (fr) Element rayonnant compact a cavites resonantes
    EP0899814B1 (fr) Structure rayonnante
    EP2869400B1 (fr) Répartiteur de puissance compact bipolarisation, réseau de plusieurs répartiteurs, élément rayonnant compact et antenne plane comportant un tel répartiteur
    EP2807702B1 (fr) Formateur multi-faisceaux à deux dimensions, antenne comportant un tel formateur multi-faisceaux et système de télécommunication par satellite comportant une telle antenne
    EP2532046A1 (fr) Antenne plane à balayage pour application mobile terrestre, véhicule comportant une telle antenne et système de télécommunication par satellite comportant un tel véhicule
    FR2810164A1 (fr) Perfectionnement aux antennes source d&#39;emission/reception d&#39;ondes electromagnetiques pour systemes de telecommunications par satellite
    EP3179551B1 (fr) Ensemble d&#39;excitation compact bipolarisation pour un element rayonnant d&#39;antenne et reseau compact comportant au moins quatre ensembles d&#39;excitation compacts
    FR2810163A1 (fr) Perfectionnement aux antennes-sources d&#39;emission/reception d&#39;ondes electromagnetiques
    FR2655204A1 (fr) Antenne-reseau d&#39;alimentation de guides d&#39;onde.
    FR2832868A1 (fr) Satellite de production d&#39;energie et dispositif d&#39;antenne de transmission
    EP1191630A1 (fr) Lentille divergente à dôme pour ondes hyperfréquences et antenne comportant une telle lentille
    FR2760919A1 (fr) Systeme de communication par satellite mobile
    FR2829297A1 (fr) Reseau formateur de faisceaux, vehicule spatial, systeme associe et methode de formation de faisceaux
    FR2518828A1 (fr) Filtre spatial de frequences et antenne comportant un tel filtre
    WO2020043632A1 (fr) Antenne pour emettre et/ou recevoir une onde electromagnetique, et systeme comprenant cette antenne
    CA2808511C (fr) Antenne plane pour terminal fonctionnant en double polarisation circulaire, terminal aeroporte et systeme de telecommunication par satellite comportant au moins une telle antenne
    FR2760133A1 (fr) Antenne resonnante pour l&#39;emission ou la reception d&#39;ondes polarisees
    WO2003065507A1 (fr) Antenne de reception pour couverture multi-faisceaux
    CA2327371C (fr) Source rayonnante pour antenne d&#39;emission et de reception destinee a etre installee a bord d&#39;un satellite
    EP0337841A1 (fr) Antenne boucle large bande à alimentation dissymétrique, notamment antenne pour émission, et antenne réseau formée d&#39;une pluralité de telles antennes
    EP0762534A1 (fr) Procédé d&#39;élargissement du faisceau d&#39;une antenne stérique
    EP2351148B1 (fr) Structure deployable et systeme antennaire a membranes comprenant une telle structure
    EP3075031B1 (fr) Agencement de structures antennaires pour télécommunications par satellites
    WO2023218008A1 (fr) Antenne faible profil à balayage electronique bidimensionnel
    WO2015189134A1 (fr) Antenne plate de telecommunication par satellite

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 20020927

    AKX Designation fees paid

    Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

    18D Application deemed to be withdrawn

    Effective date: 20050401