EP1188845A1 - Nickelbasislegierung für die Hochtemperaturtechnik - Google Patents

Nickelbasislegierung für die Hochtemperaturtechnik Download PDF

Info

Publication number
EP1188845A1
EP1188845A1 EP01890180A EP01890180A EP1188845A1 EP 1188845 A1 EP1188845 A1 EP 1188845A1 EP 01890180 A EP01890180 A EP 01890180A EP 01890180 A EP01890180 A EP 01890180A EP 1188845 A1 EP1188845 A1 EP 1188845A1
Authority
EP
European Patent Office
Prior art keywords
nickel
based alloy
weight
elements
alloy according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01890180A
Other languages
English (en)
French (fr)
Other versions
EP1188845B1 (de
Inventor
Markus Dr. Speidel
Josef Dipl-Ing. Bernauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Boehler Edelstahl GmbH
Original Assignee
Boehler Edelstahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boehler Edelstahl GmbH filed Critical Boehler Edelstahl GmbH
Priority to AT01890180T priority Critical patent/ATE301730T1/de
Publication of EP1188845A1 publication Critical patent/EP1188845A1/de
Application granted granted Critical
Publication of EP1188845B1 publication Critical patent/EP1188845B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/053Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 30% but less than 40%

Definitions

  • the invention relates to a creep-resistant, corrosion-resistant nickel-based alloy for Applications in high temperature technology.
  • a nickel-based alloy with the short name NiCr 7030 accordingly DIN material number 2.4658 is considered heat-resistant and is used for heating conductors, Furnace components and the like used. Although such a material depends on Silicon and aluminum content has good oxidation resistance, this shows however low strength and low creep properties as well as high Creep values at operating temperatures around 1000 ° C.
  • DE-C-4411228 discloses a high-temperature nickel base alloy become.
  • This highly heat-resistant, oxidation-resistant, massively embroidered, warm and cold-formable nickel-based alloy essentially consists of (in Mass%) 0.001 to 0.15 carbon, 0.10 to 3.0 nitrogen, 25.0 to 30.0 chromium, more than 0.3 to 1.2 nitrogen, 0.001 to 0.01 boron, 0.01 to 0.5 yttrium, cerium, Lanthanum, hafnium and tantalum, individually or in combination, the rest nickel with one Proportion of at least 64.0%. Due to the carbon content one can Mixed crystal strengthening can be achieved, the main effective elements However, the above alloy in terms of high temperature properties Chromium and nitrogen. Chromium and nitrogen form chromium nitrides, which are the Improve creep rupture strength, with nitrogen additionally Solid crystal strengthening provides. With the alloy according to DE-C-4411228 significantly improved creep rupture strength and heat resistance values appear reachable.
  • the object of the present invention is to overcome this defect eliminate and an improved nickel base alloy for To create high temperature applications.
  • the elements of groups 4, 5 and 6 are in the essential titanium (Ti), zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb), tantalum (Ta), molybdenum (Mo) and tungsten (W) have a solid solution strengthening and have different activities related to non-metallic elements Carbon and nitrogen.
  • Ti titanium
  • Zr zirconium
  • hafnium Hf
  • V vanadium
  • Nb tantalum
  • Mo molybdenum
  • W tungsten
  • Ta and Nb form thermally highly stable Nitrides, on the other hand, is the nitrogen affinity of the strong carbide formers Mo and W low.
  • a degree of solidification can be determined by the carbon content and the content of strong carbide formers can be adjusted. For example, if Low carbon content of the alloy, the strong carbide-forming elements increasingly installed in the crystal lattice of the mixed crystals and brace it.
  • Another decisive advantage of the alloy according to the invention is that the elements mentioned above, in particular the elements Mo and W, shift the peritectic conversion of the II phase to higher temperatures by substitution of Cr atoms and thereby stabilize the II precipitates under conditions of use is effected.
  • the addition of Mo does not result in volume changes even at high operating temperatures, which improves the high-temperature corrosion resistance because there is no initiation to flake off parts of the chrome spinel surface layer.
  • Carbon with a content of more than 0.0015 wt .-% promotes the nitride and Carbonitride formation, but withdraws at a content of greater than 0.6 wt .-% Alloy too large amounts of carbide-forming elements, which one Counteracts matrix consolidation. Carbon contents of 0.16 are preferred up to 0.5% by weight.
  • the ratio value nitrogen - to carbon content in the Alloy in the range of 0.5 to 5.5, preferably 1.0 to 4.0, optionally 1.0 up to 3.0, are particularly effective and stable Carbonitride precipitates formed and an efficient solid solution strengthening reached.
  • Chromium contents in% by weight of 25 to 30 are preferred High temperature corrosion, it is important that the material at least 0.03 wt .-% Al and contains at least 0.4 wt .-% Si. Levels higher than 3.0% by weight of Al lead to disadvantageous excretion behavior, stress cracks and one Coarse grain formation and contents higher than 3.0% Si deteriorate the Hot formability of the alloy.
  • the corrosion resistance at high temperatures can be increased if the material with elements of group 3 of the periodic table, that is Scandium (Sc), yttrium (Y) lanthanum (La) and lantanide up to a concentration of 0.15% by weight is alloyed.
  • the contents are between 0.01 and 0.12% by weight. prefers.
  • Nickel-based alloys with a composition according to the invention can with the help of pressure metallurgy, in which the liquid melt to solidification it is kept under high pressure (e.g. DESU process) or be produced by powder metallurgy.
  • pressure metallurgy in which the liquid melt to solidification it is kept under high pressure (e.g. DESU process) or be produced by powder metallurgy.
  • PM technology first a metal powder with the desired content of metallic elements prepared, then this powder via the gas phase at elevated temperature embroidered on and hot isostatically pressed.
  • the cast or sintered block is usually deformed after one Homogenization of the material at 1250 ° C with forming at 1200 ° C. Grain sizes from 35 to 80 ⁇ m and nitride precipitates with a Diameters of 1 to 5 ⁇ m created in the material.
  • the transition temperature of the II phase is determined by a Presence of elements of groups 4,5 and 6 (except Cr) increased.
  • Tab. 1 are the determined dissolution and formation temperatures, the composition of the II phase and that of the - mixed crystal for a Mo-free Ni-Cr-N alloy and for those with a Mo content of 4 and 8% by weight and one with 4% by weight W specified.
  • concentrations of 8% by weight Mo and 0.7% by weight N are for example, both temperature values for a ⁇ ⁇ ⁇ conversion above 1300 ° C.
  • the II phase has a reduced chromium content of 45% by weight with a molybdenum concentration of 11% by weight. With a reduced nickel concentration, the ⁇ mixed crystal has increased chromium values of 29% by weight and a molybdenum content of 6.5% by weight. Influence of the molybdenum and tungsten content on the interval of the ⁇ + Cr 2 N transition temperature ⁇ T (dilatometer - examinations) Chemical composition [wt.
  • Table 2 shows the chemical composition of the invention Alloys (alloys 1 to 5) and comparative alloys (alloys 6 to 9).
  • Table 3 shows the mechanical properties of the alloys at 800 ° C. at 1000 ° C and at 1100 ° C.
  • the resistance to high temperature corrosion was improved in the alloys according to the invention by approximately 16% (alloy 3 by more than 22%) compared to those in the prior art.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Soft Magnetic Materials (AREA)
  • Chemically Coating (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Steel (AREA)
  • Contacts (AREA)

Abstract

Die Erfindung stellt eine kriechfeste korrosionsbeständige Nickelbasislegierung für eine Anwendung in der Hochtemperaturtechnik dar, bestehend aus in Gew.-% 0,0015: bis 0,60 Kohlenstoff ( C); 0,20: bis 0,90 Stickstoff (N); 22,0: bis 32,0 Chrom (Cr); 5,0: bis 20,0 Elemente der Gruppe 4,5 und 6 des Periodensystems ausgenommen Cr; 0,03: bis 3,0 Aluminium (Al); 0,4: bis 3,0 Silizium (Si) bis 0,15 Elemente der Gruppe 3 des Periodensystems ausgenommen Actinoide bis 0,60 Mangan (Mn) bis 14,8 Eisen ( Fe) bis 0,01 Bor (B) max 0,014 Phosphor (P) max 0,004 Schwefel (S) min 51 Nickel (Ni) und/oder Cobalt (Co) und erschmelzungsbedingte Verunreinigungen.

Description

Die Erfindung betrifft eine kriechfeste korrosionsbeständige Nickelbasislegierung für Anwendungen in der Hochtemperaturtechnik.
An metallische Werkstoffe, insbesondere für Warmarbeitswerkzeuge, für Komponenten von Gasturbinen und Motoren, für Elemente im Ofenbau sowie in der chemischen Industrie, werden in zunehmendem Maße erhöhte mechanische und korrosionschemische Anforderungen bei Einsatztemperaturen von über 900°C gestellt. Der Korrosionsbeanspruchungen wegen, aber auch im Hinblick auf die Festigkeit und die Zeitstandseigenschaften des Werkstoffes eignen sich chromhältige Nickelbasislegierungen gut für einen Einsatz bei höchsten Temperaturen.
Eine Nickelbasislegierung mit der Kurzbezeichnung NiCr 7030 entsprechend DIN-Werkstoffnummer 2.4658 gilt als hitzebeständig und wird für Heizleiter, Ofenbauteile und dergleichen eingesetzt. Obwohl ein derartiger Werkstoff je nach Silizium- und Aluminiumgehalt gute Oxidationsbeständigkeit besitzt, weist dieser jedoch geringe Festigkeit und niedrige Dauerstandseigenschaften sowie hohe Kriechwerte bei Einsatztemperaturen um 1000°C auf.
Aus der DE-C- 4411228 ist eine hochwarmfeste Nickelbasislegierung bekannt geworden. Diese hochwarmfeste, oxidationsbeständige, massiv aufgestickte, warm- und kaltverformbare Nickelbasislegierung besteht im wesentlichen aus ( in Masse-%) 0,001 bis 0,15 Kohlenstoff, 0,10 bis 3,0 Stickstoff, 25,0 bis 30,0 Chrom, mehr als 0,3 bis 1,2 Stickstoff, 0,001 bis 0,01 Bor, 0,01 bis 0,5 Yttrium, Cer, Lanthan, Hafnium und Tantal, einzeln oder in Kombination, Rest Nickel mit einem Anteil von mindestens 64,0 %. Durch den Kohlenstoffgehalt kann zwar eine Mischkristallverfestigung erreicht werden, die hauptsächlich wirksamen Elemente obiger Legierung im Hinblick auf die Hochtemperatureigenschaften sind jedoch Chrom und Stickstoff. Chrom und Stickstoff bilden Chromnitride, welche die Zeitstandsfestigkeit verbessern, wobei Stickstoff zusätzlich eine Mischkristallverfestigung erbringt. Mit der Legierung gemäß DE-C-4411228 erscheinen deutlich verbesserte Zeitstandsfestigkeits- und Warmfestigkeitswerte erreichbar.
Bei den bekannten Nickelbasiswerkstoffen, die in zunehmendem Maße höheren Beanspruchungen ausgesetzt werden, treten im Temperaturbereich zwischen 900°C und 1200°C ein sogenanntes Kriechen des Werkstoffes unter Belastung und eine Verschlechterung der Korrosionsbeständigkeit, insbesondere bei zyklischer Beanspruchung auf. Aufgabe der vorliegenden Erfindung ist es, diesen Mangel zu beseitigen und eine verbesserte Nickelbasislegierung für Hochtemperaturanwendungen zu schaffen.
Diese Aufgabe löst eine kriechfeste korrosionsbeständige Nickelbasislegierung bestehend aus in Gew.-%
0,0015
bis 0,60 Kohlenstoff (C)
0,20
bis 0,90 Stickstoff (N)
22,0
bis 32,0 Chrom (Cr)
5,0
bis 20,0 Elemente der Gruppe 4,5 und 6 des Periodensystems ausgenommen Cr
0,03
bis 3,0 Aluminium (Al)
0,4
bis 3,0 Silizium (Si)
bis 0,15 Elemente der Gruppe 3 des Periodensystems ausgenommen Actinoide
bis 0,60 Mangan (Mn)
bis 14,8 Eisen (Fe)
bis 0,01 Bor (B)
max 0,014 Phosphor (P)
max 0,004 Schwefel (S)
min 51 Nickel (Ni) und/oder Cobalt (Co)
und erschmelzungsbedingte Verunreinigungen.
Die mit der Erfindung erreichten Vorteile sind im wesentlichen darin begründet, daß im Werkstoff bei Temperaturen bis 1200°C ein Korngrenzengleiten durch stabile Ausscheidungen in den Korngrenzenbereichen weitgehend verhindert und eine gesteigerte Mischkristallverfestigung erreicht werden. Weiters ist die Haftfestigkeit der Chrom-Spinelle oder dergleichen Schichten an der Oberfläche erhöht, wodurch eine verbesserte Hochtemperaturkorrosionsbeständigkeit der Teile gegeben ist.
Nachfolgend sollen die Wirkung und Wechselwirkung der Elemente der erfindungsgemäßen Nickelbasislegierung näherbeschrieben werden.
Die Elemente der Gruppe 4,5 und 6 ( ausgenommen Chrom), das sind im wesentlichen Titan (Ti), Zirkonium (Zr), Hafnium (Hf), Vanadin (V), Niob (Nb), Tantal (Ta), Molybdän (Mo) und Wolfram (W) wirken mischkristallverfestigend und besitzen unterschiedliche Aktivitäten bezüglich der nichtmetallischen Elemente Kohlenstoff und Stickstoff. Ta und Nb bilden beispielsweise thermisch hochstabile Nitride, hingegen ist die Stickstoffaffinität der starken Karbidbildner Mo und W gering. Es hat sich gezeigt, daß die Elemente der Gruppe 4,5 und 6 ( ausgenommen Cr) mit einer Konzentration im Werkstoff von mindestens 5, höchstens jedoch 20 Gew.-% teilweise festigkeitssteigernd im Atomgitter der Matrix eingelagert sind und teilweise Nitrid- und/oder Karbonitridausscheidungen bilden, welche die Korngrenzenfestigkeit erhöhen und somit eine Korngrenzengleiten bei Temperaturen über 1000°C erschweren. Weiters verhindern die Ausscheidungen ein Kornwachstum bei diesen Bedingungen wirkungsvoll.
Ein Ausmaß der Mischkristallverfestigung kann dabei durch den Kohlenstoffgehalt und den Gehalt an starken Karbidbildnern eingestellt werden. Ist beispielsweise der Kohlenstoffanteil der Legierung gering, werden die stark karbidbildenden Elemente verstärkt im Kristallgitter der Mischkristalle eingebaut und verspannen dieses.
Ein weiterer entscheidender Vorteil der erfindungsgemäßen Legierung besteht darin, daß die oben angeführten Elemente, insbesondere die Elemente Mo und W, die peritektische Umwandlung der II-Phase durch Substitution von Cr-Atomen zu höheren Temperaturen verschieben und dadurch eine Stabilisierung der II-Ausscheidungen unter Anwendungsbedingungen bewirkt wird. Eine mit steigender Temperatur bei etwa 1000°C stattfindende Umwandlung
γ + π → γ + ε entsprechend γ + Cr13Ni7N4 → γ + Cr2N
in Ni-Cr-N- Legierungen,welche mit einer Volumsänderung von etwa 1 x 10-3 % verbunden ist, wird beispielsweise, wie aus Tabelle 1 ersehen werden kann, durch eine Mo-Konzentration von 4 Gew.-% auf eine Temperatur von über 1210°C angehoben. Bei zyklischer Temperaturbeaufschlagung und Materialbeanspruchung sind durch den Zusatz von zum Beispiel Mo Volumsänderungen auch bei hohen Einsatztemperaturen nicht gegeben, was eine Verbesserung der Hochtemperaturkorrosions- Beständigkeit bewirkt, weil keine Initiation zum Abplatzen von Teilen der Chrom-Spinell-Oberflächenschicht vorliegt.
Kohlenstoff mit einem Gehalt von größer als 0,0015 Gew.-% fördert die Nitrid- und Karbonitridbildung, entzieht jedoch bei einem Gehalt von größer als 0,6 Gew.-% der Legierung zu große Mengen an karbidbildenden Elementen, was einer Matrixverfestigung entgegenwirkt. Bevorzugt werden Kohlenstoffgehalte von 0,16 bis 0,5 Gew.-%.
Wenn in günstiger Weise der Verhältniswert Stickstoff - zu Kohlenstoffgehalt in der Legierung im Bereich von 0,5 bis 5,5, vorzugsweise 1,0 bis 4,0, gegebenenfalls 1,0 bis 3,0, liegt, werden besonders wirkungsvolle und stabile Karbonitridausscheidungen gebildet und eine effiziente Mischkristallverfestigung erreicht.
Um eine möglichst stabile π- Phase bei hohen Verwendungstemperaturen des Werkstoffes , aber auch gleichzeitig eine wirksame Mischkristallhärtung zu erreichen, ist es von Vorteil, wenn die Nickelbasislegierung eine Summenkonzentration von Molybdän und Wolfram in Gew.-% gemäß dem Zusammenhang
Mo + W / 2 = 3,0 bis 10, vorzugsweise 4,0 bis 8,0 aufweist.
Bevorzugt werden Chromgehalte in Gew.-% von 25 bis 30. Zur Minimierung der Hochtemperaturkorrosion ist es wichtig, daß der Werkstoff mindestens 0,03 Gew.-% Al und mindestens 0,4 Gew.-% Si enthält. Höhere Gehalte als 3,0 Gew.-% Al führen zu einem nachteiligen Ausscheidungsverhalten, zu Spannungsrissen und zu einer Grobkornbildung und höhere Gehalte als 3,0 % Si verschlechtern die Warmverformbarkeit der Legierung.
Die Korrosionsbeständigkeit bei hohen Temperaturen kann gesteigert werden, wenn der Werkstoff mit Elementen der Gruppe 3 des Periodensystems, das sind Scandium (Sc), Yttrium ( Y) Lanthan ( La) und Lantanide bis zu einer Konzentration von 0,15 Gew.-% legiert ist. Dabei sind Gehalte zwischen 0,01 und 0,12 Gew.-% bevorzugt.
Im folgenden soll die Erfindung weiter erläutert werden:
Nickelbasislegierungen mit einer erfindungsgemäßen Zusammensetzung können mit Hilfe der Druckmetallurgie, bei welcher die flüssige Schmelze bis zur Erstarrung derselben unter hohem Druck gehalten wird, (z. B. DESU- Verfahren) oder pulvermetallurgisch hergestellt werden. Bei Anwendung einer PM- Technologie wird erst ein Metallpulver mit den gewünschten Gehalten an metallischen Elementen hergestellt, anschließend dieses Pulver über die Gasphase bei erhöhter Temperatur aufgestickt und heißisostatisch gepreßt.
Eine Verformung des Guß- oder Sinterblockes erfolgt meist nach einer Homogenisierung des Materials bei 1250 °C bei einem Umformen bei 1200°C. Dabei werden Korngrößen von 35 bis 80µm und Nitridausscheidungen mit einem Durchmesser von 1 bis 5 µm im Werkstoff erstellt.
Wie früher erwähnt, wird die Umwandlungstemperatur der II-Phase durch eine Anwesenheit von Elementen der Gruppe 4,5 und 6 ( außer Cr) erhöht. In Tab. 1 sind die ermittelten Auflösungs- und Bildungstemperaturen, die Zusammensetzung der II-Phase und jene des - Mischkristalles für eine Mo-freie Ni-Cr-N- Legierung und für solche mit einem Mo- Gehalt von 4 und 8 Gew,-% sowie eine mit 4 Gew.-% W angegeben. Bei Konzentrationen von 8 Gew.-% Mo und 0,7 Gew.-% N liegen beispielsweise beide Temperaturwerte für eine π ↔ ε - Umwandlung über 1300°C.
Die II- Phase weist dabei einen erniedrigten Chromgehalt von 45 Gew.-% bei einer Molybdänkonzentration von 11 Gew.-% auf. Der γ- Mischkristall besitzt bei einer verminderten Nickelkonzentration erhöhte Chromwerte von 29 Gew.-% und einen Molybdängehalt von 6,5 Gew.-% .
Einfluß des Molybdän-und Wolframgehaltes auf das Intervall der γ + Cr2N Umwandlungstemperatur ΔT (Dilatometer - Untersuchungen)
Chemische Zusammensetzung [Gew. %] Ni 30Cr 0,9N Ni 30Cr
4W 0,7N
Ni 30Cr
4Mo 0,7N
Ni 30Cr
8Mo 0,7N
ΔT (Erwärmen) 1120-1185°C 1160-1180°C 1210-1280°C >1300°C
ΔT (Abkühlen) 1180-1195°C 1180-1240°C 1260-1280°C >1300°C
π-Phase 42Ni 41Ni 41Ni 43Ni
Zusammensetzung 58Cr 53Cr 51Cr 45Cr
[Gew. %] 4,5W 8Mo 11Mo
γ-Matrix 77Ni 68Ni 69Ni 65Ni
Zusammensetzung 23Cr 26Cr 28Cr 29Cr
[Gew. %] 5W 3,5Mo 6,5Mo
Die Tabelle 2 zeigt die chemische Zusammensetzung von erfindungsgemäßen Legierungen ( Leg. 1 bis 5) und Vergleichslegierungen ( Leg. 6 bis 9).
In Tabelle 3 sind die mechanischen Eigenschaften der Legierungen bei 800°C. bei 1000° C und bei 1100°C angeführt.
Im Vergleich ist festzustellen, daß durch die erfindungsgemäßen legierungstechnischen Maßnahmen die 0,2% Dehngrenzen ( Rp0,2) des Werkstoffes wesentlich erhöht sind und die Bruchdehnung (A) jeweils geringere Werte aufweist. Gegenüber dem Stand der Technik ist insbesondere die Kriechfestigkeit bei 1% Dehnung der Nickelbasislegierungen nach der Erfindung wesentlich verbessert.
Die Beständigkeit gegen Hochtemperaturkorrosion war bei den erfindungsgemäßen Legierungen um etwa 16% (Legierung 3 um mehr als 22%) gegenüber jenen des Standes der Technik verbessert.
Figure 00070001

Claims (7)

  1. Kriechfeste korrosionsbeständige Nickelbasislegierung für eine Anwendung in der Hochtemperaturtechnik bestehend aus in Gew.-%
    0,0015
    bis 0,60 Kohlenstoff (C)
    0,20
    bis 0,90 Stickstoff (N)
    22,0
    bis 32,0 Chrom (Cr)
    5,0
    bis 20,0 Elemente der Gruppe 4,5 und 6 des Periodensystems, ausgenommen Cr
    0,03
    bis 3,0 Aluminium (Al)
    0,4
    bis 3,0 Silizium (Si)
    bis 0,15 Elemente der Gruppe 3 des Periodensystems, ausgenommen Actinoide
    bis 0,60 Mangan (Mn)
    bis 14,8 Eisen (Fe)
    bis 0,01 Bor (B)
    max 0,014 Phosphor (P)
    max 0,004 Schwefel (S)
    min 51 Nickel (Ni) und/oder Cobalt (Co)
    und erschmelzungsbedingte Verunreinigungen.
  2. Nickelbasislegierung nach Anspruch 1, enthaltend in Gew.-% 0,16 bis 0,5 C
  3. Nickelbasislegierung nach Anspruch 1 oder 2 mit der Maßgabe, daß der Verhältniswert Stickstoff zu Kohlenstoff 0,5 bis 5,5, vorzugsweise 1 bis 4, gegebenenfalls 1 bis 3, beträgt
        N / C = 0,5 bis 5,5, vorzugsweise 1,0 bis 4,0, gegebenenfalls 1 bis 3
  4. Nickelbasislegierung nach einem der Ansprüche 1 bis 3, enthaltend eine Summenkonzentration von Molybdän und Wolfram in Gew.-% gemäß dem Zusammenhang:
    Mo + W / 2 = 3,0 bis 10,0, vorzugsweise 4,0 bis 8,0
  5. Nickelbasislegierung nach einem der Ansprüche 1 bis 4, enthaltend in Gew.-% 25,0 bis 30,0 Cr
  6. Nickelbasislegierung nach Anspruch 1 bis 5, enthaltend in Gew.-% 0,5 bis 1,0 Si
  7. Nickelbasislegierung nach einem der Ansprüche 1 bis 6 enthaltend in Gew.-% 0,01 bis 0,12 Elemente der Gruppe 3 des Periodensystens, ausgenommen Actinoide.
EP01890180A 2000-09-14 2001-06-08 Nickelbasislegierung für die Hochtemperaturtechnik Expired - Lifetime EP1188845B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT01890180T ATE301730T1 (de) 2000-09-14 2001-06-08 Nickelbasislegierung für die hochtemperaturtechnik

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0156200A AT408665B (de) 2000-09-14 2000-09-14 Nickelbasislegierung für die hochtemperaturtechnik
AT15622000 2000-09-14

Publications (2)

Publication Number Publication Date
EP1188845A1 true EP1188845A1 (de) 2002-03-20
EP1188845B1 EP1188845B1 (de) 2005-08-10

Family

ID=3688355

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01890180A Expired - Lifetime EP1188845B1 (de) 2000-09-14 2001-06-08 Nickelbasislegierung für die Hochtemperaturtechnik

Country Status (5)

Country Link
US (1) US6797232B2 (de)
EP (1) EP1188845B1 (de)
AT (2) AT408665B (de)
CA (1) CA2355446C (de)
DE (1) DE50107021D1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019020145A1 (de) * 2017-07-28 2019-01-31 Vdm Metals International Gmbh Hochtemperatur-nickelbasislegierung
CN113555068A (zh) * 2021-07-13 2021-10-26 北京航空航天大学 一种计算合金化元素在镍基单晶高温合金双相界面附近层浓度的方法
DE102022211589A1 (de) 2022-11-02 2024-05-02 Siemens Energy Global GmbH & Co. KG Kobaltbasislegierung, Pulver, Verfahren und Bauteile

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7211346B2 (en) * 2002-04-03 2007-05-01 Ut-Battelle, Llc Corrosion resistant metallic bipolar plate
US7829194B2 (en) * 2003-03-31 2010-11-09 Ut-Battelle, Llc Iron-based alloy and nitridation treatment for PEM fuel cell bipolar plates
US20060110626A1 (en) * 2004-11-24 2006-05-25 Heraeus, Inc. Carbon containing sputter target alloy compositions
EP1777312B1 (de) * 2005-10-24 2008-09-10 Siemens Aktiengesellschaft Schweißzusatzwerkstoff, Verwendung des Schweißzusatzwerkstoffes und Verfahren zum Schweißen
ES2403027T3 (es) * 2006-08-08 2013-05-13 Huntington Alloys Corporation Aleación de soldadura y artículos para su uso en soldeo, conjuntos soldados y procedimiento para producir conjuntos soldados
US8858874B2 (en) * 2007-11-23 2014-10-14 Rolls-Royce Plc Ternary nickel eutectic alloy
JP2013181190A (ja) * 2012-02-29 2013-09-12 Seiko Instruments Inc 生体用Co基合金およびステント
US9540714B2 (en) 2013-03-15 2017-01-10 Ut-Battelle, Llc High strength alloys for high temperature service in liquid-salt cooled energy systems
US9377245B2 (en) 2013-03-15 2016-06-28 Ut-Battelle, Llc Heat exchanger life extension via in-situ reconditioning
US10017842B2 (en) 2013-08-05 2018-07-10 Ut-Battelle, Llc Creep-resistant, cobalt-containing alloys for high temperature, liquid-salt heat exchanger systems
US9435011B2 (en) 2013-08-08 2016-09-06 Ut-Battelle, Llc Creep-resistant, cobalt-free alloys for high temperature, liquid-salt heat exchanger systems
US9683280B2 (en) 2014-01-10 2017-06-20 Ut-Battelle, Llc Intermediate strength alloys for high temperature service in liquid-salt cooled energy systems
US9683279B2 (en) 2014-05-15 2017-06-20 Ut-Battelle, Llc Intermediate strength alloys for high temperature service in liquid-salt cooled energy systems
US9605565B2 (en) 2014-06-18 2017-03-28 Ut-Battelle, Llc Low-cost Fe—Ni—Cr alloys for high temperature valve applications
CN105238958A (zh) * 2015-10-28 2016-01-13 无棣向上机械设计服务有限公司 镍基高温合金
EP3269472B1 (de) * 2016-07-13 2022-09-07 Ansaldo Energia IP UK Limited Verfahren zur herstellung von mechanischen komponenten

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB810366A (en) * 1957-09-25 1959-03-11 Mond Nickel Co Ltd Improvements relating to heat-resisting alloys
EP0251295A2 (de) * 1986-07-03 1988-01-07 Inco Alloys International, Inc. Nickellegierung mit hohem Chromgehalt
EP0322156A1 (de) * 1987-12-21 1989-06-28 Inco Alloys International, Inc. Nickellegierung mit hohem Chromgehalt
DE4411228A1 (de) * 1994-03-31 1995-10-05 Krupp Vdm Gmbh Hochwarmfeste Nickelbasislegierung und Verwendung derselben
JPH07316702A (ja) * 1994-05-24 1995-12-05 Mitsubishi Materials Corp 高耐摩耗性および高強度を有する耐食性窒化物分散型Ni基鋳造合金

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5684445A (en) * 1979-12-10 1981-07-09 Aichi Steel Works Ltd Heat-resistant alloy having excellent corrosion resistance at high temperature
JPS57210941A (en) * 1981-06-19 1982-12-24 Sumitomo Metal Ind Ltd Alloy for high-strength oil well pipe with superior stress corrosion cracking resistance
US4784830A (en) 1986-07-03 1988-11-15 Inco Alloys International, Inc. High nickel chromium alloy
US6287398B1 (en) * 1998-12-09 2001-09-11 Inco Alloys International, Inc. High strength alloy tailored for high temperature mixed-oxidant environments

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB810366A (en) * 1957-09-25 1959-03-11 Mond Nickel Co Ltd Improvements relating to heat-resisting alloys
EP0251295A2 (de) * 1986-07-03 1988-01-07 Inco Alloys International, Inc. Nickellegierung mit hohem Chromgehalt
EP0322156A1 (de) * 1987-12-21 1989-06-28 Inco Alloys International, Inc. Nickellegierung mit hohem Chromgehalt
DE4411228A1 (de) * 1994-03-31 1995-10-05 Krupp Vdm Gmbh Hochwarmfeste Nickelbasislegierung und Verwendung derselben
JPH07316702A (ja) * 1994-05-24 1995-12-05 Mitsubishi Materials Corp 高耐摩耗性および高強度を有する耐食性窒化物分散型Ni基鋳造合金

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 04 30 April 1996 (1996-04-30) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019020145A1 (de) * 2017-07-28 2019-01-31 Vdm Metals International Gmbh Hochtemperatur-nickelbasislegierung
US11193186B2 (en) 2017-07-28 2021-12-07 Vdm Metals International Gmbh High-temperature nickel-base alloy
CN113555068A (zh) * 2021-07-13 2021-10-26 北京航空航天大学 一种计算合金化元素在镍基单晶高温合金双相界面附近层浓度的方法
DE102022211589A1 (de) 2022-11-02 2024-05-02 Siemens Energy Global GmbH & Co. KG Kobaltbasislegierung, Pulver, Verfahren und Bauteile

Also Published As

Publication number Publication date
US20020057984A1 (en) 2002-05-16
ATA15622000A (de) 2001-06-15
AT408665B (de) 2002-02-25
CA2355446C (en) 2011-11-22
EP1188845B1 (de) 2005-08-10
DE50107021D1 (de) 2005-09-15
US6797232B2 (en) 2004-09-28
ATE301730T1 (de) 2005-08-15
CA2355446A1 (en) 2002-03-14

Similar Documents

Publication Publication Date Title
EP1188845B1 (de) Nickelbasislegierung für die Hochtemperaturtechnik
DE602006000160T2 (de) Hitzbeständige Legierung für bei 900oC nachhaltige Auslassventile und Auslassventile aus dieser Legierung
DE602005002866T2 (de) Verfahren zur Herstellung einer wärmedehnungsarmen Superlegierung auf Ni-basis
DE3686121T2 (de) Hochfester hitzebestaendiger ferritischer stahl mit hohem chromgehalt und verfahren zu seiner herstellung.
DE69018658T2 (de) Hochfester hitzebeständiger Stahl mit verbesserter Bearbeitbarkeit.
DE69014085T2 (de) Oxidationsbeständige Legierungen mit niedrigem Ausdehnungskoeffizient.
DE602004000997T2 (de) Hitzebeständige Nickelgusslegierung und daraus hergestellte Turbinenräder
EP2855723B1 (de) Nickel-chrom-aluminium-legierung mit guter verarbeitbarkeit, kriechfestigkeit und korrosionsbeständigkeit
EP3175008B1 (de) Kobaltbasissuperlegierung
DE3030962A1 (de) Ein- und polykristalline legierung auf nickel- oder kobalt-basis.
WO2009135469A1 (de) Eisen-nickel-legierung
EP3208354B1 (de) Ni-basierte superlegierung zum warmschmieden
DE69824962T2 (de) Verwendung eines hitzebeständigen Gussstahls
EP3775308A1 (de) Verwendung einer nickel-chrom-eisen-aluminium-legierung
EP0581204A1 (de) Hochwarmfester Werkstoff
DE3429286A1 (de) Diffusions-lotlegierung auf nickelbasis
DE602004008134T2 (de) Dispersionsgehärtete ausscheidungshärtbare Nickel-Eisen-Chromlegierung und zugehöriges Verfahren
EP3208355B1 (de) Ni-basierte superlegierung zum warmschmieden
DE69126531T2 (de) Hitzebeständige Legierung mit hoher Zeitstandfestigkeit bei hohem Temperaturbetrieb und niedriger Beanspruchung und mit sehr guter Beständigkeit gegen Aufkohlung
DE2534786A1 (de) Nickel-chrom-wolfram-legierungen
EP3133178B1 (de) Optimierte nickelbasis-superlegierung
DE69205092T2 (de) Gusslegierung auf Nickelbasis.
DE2420362B2 (de)
EP1568795B1 (de) Hitzebeständige Superlegierung und ihre Verwendung
AT405297B (de) Duplexlegierung für komplex beanspruchte bauteile

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020510

AKX Designation fees paid

Free format text: AT CH DE FR GB IT LI

17Q First examination report despatched

Effective date: 20030318

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: HANS RUDOLF GACHNANG PATENTANWALT

REF Corresponds to:

Ref document number: 50107021

Country of ref document: DE

Date of ref document: 20050915

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20051125

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060511

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: GACHNANG AG PATENTANWAELTE, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140618

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20140611

Year of fee payment: 14

Ref country code: IT

Payment date: 20140623

Year of fee payment: 14

Ref country code: DE

Payment date: 20140619

Year of fee payment: 14

Ref country code: CH

Payment date: 20140618

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140619

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50107021

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150608

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 301730

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150608

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150608

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150608

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150608

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630