EP1188222B1 - Magnetischer linearantrieb - Google Patents

Magnetischer linearantrieb Download PDF

Info

Publication number
EP1188222B1
EP1188222B1 EP00947808A EP00947808A EP1188222B1 EP 1188222 B1 EP1188222 B1 EP 1188222B1 EP 00947808 A EP00947808 A EP 00947808A EP 00947808 A EP00947808 A EP 00947808A EP 1188222 B1 EP1188222 B1 EP 1188222B1
Authority
EP
European Patent Office
Prior art keywords
coil
active part
magnetically active
current
linear drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00947808A
Other languages
English (en)
French (fr)
Other versions
EP1188222A1 (de
Inventor
Karl Mascher
Klaus Schuler
Andreas Arndt
Holger Gerhard Wisken
Wolf Rüdiger CANDERS
Hardo May
Herbert Weh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1188222A1 publication Critical patent/EP1188222A1/de
Application granted granted Critical
Publication of EP1188222B1 publication Critical patent/EP1188222B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1638Armatures not entering the winding
    • H01F7/1646Armatures or stationary parts of magnetic circuit having permanent magnet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/22Power arrangements internal to the switch for operating the driving mechanism
    • H01H3/28Power arrangements internal to the switch for operating the driving mechanism using electromagnet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1805Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current
    • H01F7/1816Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current making use of an energy accumulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/22Power arrangements internal to the switch for operating the driving mechanism
    • H01H3/26Power arrangements internal to the switch for operating the driving mechanism using dynamo-electric motor
    • H01H2003/268Power arrangements internal to the switch for operating the driving mechanism using dynamo-electric motor using a linear motor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements
    • H01H33/6662Operating arrangements using bistable electromagnetic actuators, e.g. linear polarised electromagnetic actuators

Definitions

  • the invention relates to a magnetic Linear drive, especially for an electrical switch, with a coil to which a current can be applied, in whose Inside by the current in an axial direction magnetic flux can be generated with an armature that is only movable perpendicular to the axial direction and which has a magnetically active part, the Path of motion through an air gap inside the coil penetrating core or on one end of the Kernes passes, the magnetically active part is unmagnetized or is magnetized such that the magnetic Flow inside the magnetically active part runs parallel or anti-parallel to the axial direction (see GB-A-829 782).
  • US Pat. No. 5,719,451 is also a magnetic one Linear actuator known, for example for use there in liquid pumps.
  • the linear drives shown there is common that a solenoid in an armature Accelerated axial direction of the coil.
  • Such a magnetic linear drive is for example also known from GB 10 68 610.
  • Actuator is an actuator for a valve, at by means of the movement of an anchor, a liquid channel is locked or opened.
  • the armature has a permanent magnet there, the magnetic one Flow inside it in the direction of movement of the armature and aligned perpendicular to the axial direction is.
  • the armature moves against mechanical ones Stops such that one pole of the permanent magnet comes into contact with the stop and that through the magnetic Effect of the permanent magnet on the stop is held.
  • the present invention is based on the object a magnetic linear drive of the aforementioned Kind of creating an instantaneous acceleration of the Anchor with little design effort and little control effort reached.
  • the object is achieved in that the magnetically active part in two end positions permanently positionable and by the action of a current from a first end position can be converted into a second end position is.
  • a current is applied to the coil, then in its Generates a magnetic flux inside in the axial direction, which runs inside the core and in the area of the air gap emerges from the core.
  • a magnetically active part of a Anchor that, for example, ferromagnetically unmagnetized or magnetized, especially permanently magnetized in one Direction anti-parallel to the direction of the magnetic flux the coil is accelerated towards the inside of the coil.
  • a magnet whose inner magnetic flux is parallel to the Flow of the coil is aligned from the inside of the Coil pushed off. This effect drives the Anchor exploited.
  • the magnetic linear drive advantageous as a switch drive for an electrical Switches, for example a high voltage circuit breaker or a vacuum switch can be used.
  • the anchor is in an end position of its movement path such that when the coil current is switched on a small amount of magnetic flux through the coil magnetically active part passes through, this leads to that the armature is accelerated towards the center of the coil until a maximum part of the magnetic flux of the coil through the magnetically active part passes through.
  • the armature is the current flow through the coil by means of a Control device interrupted so that the anchor due its dynamic energy and the dynamic energy of driven masses continues to move beyond the coil, without the magnetic flux of the coil due to the action brake the armature onto the magnetically active part can.
  • a desired acceleration profile of the armature can, for example can be achieved in that the air gap between the core and the trajectory of the magnetically active Partly different width along the trajectory becomes.
  • the anchor is, for example, a drive rod electrical switch connected, which in turn a Switch contact of a breaker unit drives.
  • Mechanical stops can be in the area of the shift rod or be realized in the area of the linear drive itself.
  • An advantageous embodiment of the invention provides that the magnetically active part is magnetized and that in at least an end position of the magnetically active part thereof at least partially in the area of one outside the Coil arranged yoke body is arranged that the out the magnetically active part out or enters it magnetic flux at least in part directly through a the magnetically active part facing boundary surface of the Yoke body passes through.
  • the boundary surface is advantageously essentially vertical aligned with the axial direction.
  • the magnetically active part magnetizes, for example as an electromagnet or permanently magnetized
  • the magnetic flux of the magnetically active part has the Tends to have an air gap adjacent to one another To reduce the yoke body as much as possible.
  • At least one is in the end region of the movement path of the armature Yoke body arranged in which the magnetic flux of the magnetic active part over at least part of the length of the magnetically active part can occur.
  • a force effect thus takes place on the anchor, which strives is as large an overlap as possible between the magnetic to generate the active part and the yoke body in such a way that as much as possible the entire magnetic flux of the magnetically active Partially in the yoke body by as vertical as possible enter the boundary surface arranged to the axial direction can.
  • the force effect in the direction of the path of movement of the anchor is essentially independent of how far the magnetic active part and the yoke body overlap.
  • Such an arrangement can be advantageous for both end positions realized the magnetically active part or the armature his.
  • a further advantageous embodiment of the invention provides before that the coil with respect to the trajectory of the magnetic active part is opposite a second coil with a 6
  • first and the second Coil offset against each other in the direction of movement of the armature are.
  • the anchor against each other can have a certain acceleration profile can be reached along the trajectory.
  • each of the coils for each one of the directions of movement of the armature is used.
  • two yoke bodies are provided, each other with respect to the trajectory opposite of the magnetically active part and the between air gaps form, at least partially from the trajectory of the magnetically active part are penetrated.
  • the first yoke body With respect to the path of movement of the magnetically active part, becomes the magnetic circuit for both the flow through the coil as well as for the flow of the magnetically active Partially closed in each of the end positions, so that each a great force effect for both acceleration and is also achieved for the holding force in the end positions.
  • a further advantageous embodiment of the invention provides before, in the control device several rechargeable and occasionally jointly or alternatively connectable to the coil Charging capacitors are provided.
  • the different charging capacitors can be used for different Switching cases (for example different load cases of a circuit breaker to be driven) or different can be used for switching on and off.
  • the invention also relates to a method of operation of a magnetic linear actuator, in which provided is that the coil for driving the armature in different Each direction is charged with a current of the same direction becomes.
  • the method according to the invention can advantageously be designed as a result be that the application of a current ends before the magnetically active part reaches its end position has reached.
  • Another advantageous embodiment provides that the Current flow through the coil is interrupted as soon as due of an electrical oscillation process the supply voltage to her Sign reverses.
  • the coil has an electrical inductance as well as an ohmic Represents resistance and normally by a capacitance is fed, there is an electrical resonant circuit in the control of the linear drive. This leads to Generation of an electrical oscillation, so that at the Coil applied supply voltage reverses its sign at some point.
  • the current flow is diverted to a charging capacitor as soon as the supply voltage due to an electrical vibration process you Sign reverses.
  • FIG. 1 shows a magnetic linear drive, with an anchor 1 made of a rod 2 made of glass fiber reinforced Plastic and a magnetically active part 3 consists of a permanent magnetic material and to the at one end a shift rod 4 is coupled, which is only schematic shown and with a drivable switch contact 5 the interrupter unit of a high-voltage circuit breaker connected is.
  • the linear drive generates movements in Direction of the double arrow 6.
  • the armature 1 moves in the air gap 7 between one first yoke body 8 and a second yoke body 9, each other mirror image of the movement path of the armature 1 are opposite.
  • Each of the yoke bodies has an annular recess, in each of which a coil 10, 11 is introduced.
  • the spools 10, 11 are each provided with electrical connections and can be supplied with a current by means of a control device.
  • the current direction is such that in the upper part of the coil 10, the current in the plane of the drawing runs in and in the lower part of the coil the current from the Drawing level emerges as illustrated by point 12 becomes.
  • part 16 of the magnetic flux 13 already occurs of the coils 10, 11 through an edge region of the magnetically active Part 3 of the anchor through.
  • the magnetic flux tends to be magnetic to accelerate active part 3 downwards in the display, so that the magnetic flux 13 of the coils 10, 11 on the greatest possible length of the magnetically active part 3 passes through it and antiparallel to the inside of the magnetically active part 3 prevailing magnetic flux 17 runs.
  • the anchor keeps moving because of the dynamic energy, until that a second, dashed end position 36 of the magnetically active part 3 is reached.
  • the magnetic flux 17 within the magnetically active part 3 the endeavor to have the smallest possible air gap in one of the yoke bodies 8, 9 and exit it again.
  • Part of the magnetic flux 17 inside the magnetic active part 3 can directly into the yoke body 8 enter through the boundary surface 35, the flow over the second yoke body 9 with the interposition of the inevitable Air gap is closed, so that from there magnetic flux reenter the magnetically active part 3 can.
  • the magnetic force on the armature 1 is here largely regardless of how far the magnetically active Part 3 with the part of the yoke body 8 above the coil 10 already overlapped. Therefore, the holding force on the anchor is in the end position largely independent of mechanical tolerances.
  • FIG. 1 also shows that both yoke bodies 8, 9 in the area of the cores 14, 15 along the movement path of the magnetically active part are profiled such that the Air gap between the armature 3 and the yoke bodies 8, 9 after becomes wider at the top. This means that the force effect on the magnetically active part 3 during its movements decreases upwards. This way when you turn off the Break unit at the start of the movement high acceleration and towards the end a weakening one Acceleration can be achieved. It is also conceivable that for example the second coil 11 opposite the first coil 10 offset down along the path of movement of the armature 1 is, so that when switching off, d. H. a movement the armature 1 from bottom to top, first the second coil 11 would bear the brunt of acceleration and later the first coil 10.
  • FIG. 2 shows a control circuit with a Charging capacitor 19, which has a first IGBT (insulatedgate bipolar transistor) 20 and a second IGBT 21 with the Coil 22 connectable within the magnetic linear drive is.
  • IGBT insulatedgate bipolar transistor
  • FIG. 2 shows a control circuit with a Charging capacitor 19, which has a first IGBT (insulatedgate bipolar transistor) 20 and a second IGBT 21 with the Coil 22 connectable within the magnetic linear drive is.
  • IGBT insulatedgate bipolar transistor
  • the capacitor 19 discharges, the voltage at the drops Coil 22 and a counter voltage is induced there, the endeavors to maintain the current of the current 24.
  • the counter voltage on the coil 22 is the supply voltage opposite, so that there is a voltage zero crossing results.
  • the IGBTs 21, 22 are turned off, d. H. they shut off the electricity.
  • FIG. 3 shows schematically the energy supply of a linear drive via three different control units 31, 32, 33, each of which has its own charging capacitor, where the charging capacitors have different capacitances can have. This makes for different switching cases each have a different amount of energy in the form of electrical field energy stored in the charging capacitors made available.
  • the different controls 31, 32, 33 can also used for quick successive off-on-off switching become

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Linear Motors (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Electromagnets (AREA)

Abstract

Bei einem magnetischen Linearantrieb ist eine Spule (10, 11) vorgesehen, in deren Innerem durch einen Strom in einer Axialrichtung (34) ein magnetischer Fluß (13) erzeugbar ist mit einem Anker (1), der ausschließlich senkrecht zu der Axialrichtung (34) beweglich ist und der einen magnetisch aktiven Teil (3) aufweist, der insbesondere antiparallel zu der Axialrichtung (34) magnetisiert ist. Der Anker wird durch einen Stromstoß angetrieben, der unabhängig von der Startposition des magnetisch aktiven Teils (3) diesen zur Spulenmitte hin beschleunigt.

Description

Die Erfindung bezieht sich auf einen magnetischen Linearantrieb, insbesondere für einen elektrischen Schalter, mit einer mit einem Strom beaufschlagbaren Spule, in deren Innerem durch den Strom in einer Axialrichtung ein magnetischer Fluß erzeugbar ist, mit einem Anker, der ausschließlich senkrecht zu der Axialrichtung beweglich ist und der einen magnetisch aktiven Teil aufweist, dessen Bewegungsbahn durch einen Luftspalt innerhalb eines die Spule durchsetzenden Kernes hindurch oder an einer Stirnseite des Kernes vorbeiführt, wobei der magnetisch aktive Teil unmagnetisiert ist oder derart magnetisiert ist, daß der magnetische Fluß innerhalb des magnetisch aktiven Teils parallel oder antiparallel zu der Axialrichtung verläuft (siehe GB-A- 829 782).
Aus der US-Patentschrift 4,817,494 ist ein magnetischer Linearantrieb zum Beschleunigen eines Projektils bekannt.
Aus der US-Patentschrift 5,719,451 ist ebenfalls ein magnetischer Linearantrieb bekannt, dort beispielsweise zur Anwendung in Flüssigkeitspumpen. Den dort dargestellten Linearantrieben ist gemeinsam, dass eine Magnetspule einen Anker in Axialrichtung der Spule beschleunigt.
Ein derartiger magnetischer Linearantrieb ist beispielsweise auch aus der GB 10 68 610 bekannt. Bei dem dort beschriebenen Antrieb handelt es sich um einen Antrieb für ein Ventil, bei dem mittels der Bewegung eines Ankers ein Flüssigkeitskanal abgesperrt oder geöffnet wird.
Der Anker weist dort einen Permanentmagneten auf, dessen magnetischer Fluß in seinem Inneren in der Bewegungsrichtung des Ankers und senkrecht zu der Axialrichtung ausgerichtet ist.
In seinen Endstellungen fährt der Anker jeweils gegen mechanische Anschläge derart, daß jeweils ein Pol des Dauermagneten mit dem Anschlag in Berührung kommt und daß durch die magnetische Wirkung des Dauermagneten dieser an dem Anschlag gehalten wird.
Wird die Spule mit einem Strom beaufschlagt, so muß die magnetische Wirkung des Stroms zunächst die Haltekraft des Permanentmagneten am Anschlag überwinden. Dies äußert sich in einer Verzögerung der Ankerbeschleunigung. Außerdem wird der Anker bei seiner Bewegung zu einer Endstellung hin erst unmittelbar vor Erreichen des Anschlages zum Anschlag gezogen, da der zwischen dem Pol des Permanentmagneten und der Anschlagsfläche befindliche Luftspalt erst zum Ende der Bewegung hin genügend verkleinert ist.
Demgegenüber liegt der vorliegenden Erfindung die Aufgabe zugrunde, einen magnetischen Linearantrieb der eingangs genannten Art zu schaffen, der eine unverzögerte Beschleunigung des Ankers bei geringem konstruktivem Aufwand und geringem Steuerungsaufwand erreicht.
Die Aufgabe wird erfindungsgemäß dadurch gelöst, daß der magnetisch aktive Teil in zwei Endpositionen dauerhaft positionierbar und durch Einwirkung eines Stromes von einer ersten Endposition in eine zweite Endposition überführbar ist.
Wird die Spule mit einem Strom beaufschlagt, so wird in ihrem Inneren in der Axialrichtung ein magnetischer Fluß erzeugt, der innerhalb des Kerns verläuft und im Bereich des Luftspaltes aus dem Kern austritt. Ein magnetisch aktiver Teil eines Ankers, der beispielsweise ferromagnetisch unmagnetisiert oder magnetisiert, insbesondere dauermagnetisiert in einer Richtung antiparallel zu der Richtung des magnetischen Flusses der Spule ist, wird zum Spuleninneren hin beschleunigt. Ein Magnet, dessen innerer magnetischer Fluß parallel zum Fluß der Spule ausgerichtet ist, wird aus dem Inneren der Spule heraus abgestoßen. Dieser Effekt wird zum Antrieb des Ankers ausgenutzt.
Insbesondere dann, wenn der magnetisch aktive Teil ferromagnetisch oder als Dauermagnet in antiparalleler Richtung zu der Axialrichtung magnetisiert ist, kann der magnetische Linearantrieb vorteilhaft als Schalterantrieb für einen elektrischen Schalter, beispielsweise einen Hochspannungsleistungsschalter oder einen Vakuumschalter, verwendet werden.
Befindet sich der Anker in einer Endposition seiner Bewegungsbahn derart, daß beim Einschalten des Spulenstromes der magnetische Fluß der Spule zu einem geringen Anteil durch den magnetisch aktiven Teil hindurchtritt, so führt dies dazu, daß der Anker zur Spulenmitte hin beschleunigt wird, bis ein maximaler Teil des magnetischen Flusses der Spule durch den magnetisch aktiven Teil hindurchtritt. Während der Bewegung des Ankers wird der Stromfluß durch die Spule mittels einer Steuereinrichtung unterbrochen, so daß der Anker aufgrund seiner dynamischen Energie und der dynamischen Energie der angetriebenen Massen sich über die Spule hinaus weiter bewegt, ohne daß der magnetische Fluß der Spule durch die Ein-wirkung auf den magnetisch aktiven Teil den Anker abbremsen kann.
Auf diese Weise ist eine optimale Beschleunigung des Ankers zu Beginn der Bewegung gewährleistet.
Ein gewünschtes Beschleunigungsprofil des Ankers kann beispielsweise dadurch erreicht werden, daß der Luftspalt zwischen dem Kern und der Bewegungsbahn des magnetisch aktiven Teils entlang der Bewegungsbahn unterschiedlich breit ausgebildet wird. Je geringer der Luftspalt in einem bestimmten Bereich entlang der Bewegungsbahn ist, desto größer ist die Kraftwirkung auf den Anker in diesem Bereich.
Mit dem Anker ist beispielsweise eine Antriebsstange eines elektrischen Schalters verbunden, die ihrerseits einen Schaltkontakt einer Unterbrechereinheit antreibt.
Mechanische Anschläge können im Bereich der Schaltstange oder im Bereich des Linearantriebs selbst realisiert sein.
Eine vorteilhafte Ausgestaltung der Erfindung sieht vor, daß der magnetisch aktive Teil magnetisiert ist und daß in wenigstens einer Endposition des magnetisch aktiven Teils dieser wenigstens teilweise derart im Bereich eines außerhalb der Spule angeordneten Jochkörpers angeordnet ist, daß der aus dem magnetisch aktiven Teil aus- oder in diesen eintretende magnetische Fluß wenigstens zum Teil unmittelbar durch eine dem magnetisch aktiven Teil zugewandte Begrenzungsfläche des Jochkörpers hindurchtritt.
Die Begrenzungsfläche ist vorteilhaft im wesentlichen senkrecht zu der Axialrichtung ausgerichtet.
Für den Fall, daß der magnetisch aktive Teil magnetisiert, beispielsweise als Elektromagnet, oder dauermagnetisiert ist, hat der magnetische Fluß des magnetisch aktiven Teils die Tendenz, einen Luftspalt zu einem benachbart angeordneten Jochkörper möglichst zu verringern.
Im Endbereich der Bewegungsbahn des Ankers ist wenigstens ein Jochkörper angeordnet, in den der magnetische Fluß des magnetisch aktiven Teils wenigstens auf einem Teil der Länge des magnetisch aktiven Teils eintreten kann.
Auf den Anker findet somit eine Kraftwirkung statt, die bestrebt ist, eine möglichst große Überlappung zwischen dem magnetisch aktiven Teil und dem Jochkörper zu erzeugen derart, daß möglichst der gesamte magnetische Fluß des magnetisch aktiven Teils in den Jochkörper durch eine möglichst senkrecht zu der Axialrichtung angeordnete Begrenzungsfläche eintreten kann. Die Kraftwirkung in Richtung der Bewegungsbahn des Ankers ist im wesentlichen unabhängig davon, wieweit der magnetisch aktive Teil und der Jochkörper überlappen.
Hierdurch ist eine von der Stellung des Ankers im Endbereich der Bewegung im wesentlichen unabhängige Haltekraft realisiert, die den Anker in einer seiner Endpositionen hält.
Eine derartige Anordnung kann vorteilhaft für beide Endpositionen des magnetisch aktiven Teils bzw. des Ankers realisiert sein.
Eine weitere vorteilhafte Ausgestaltung der Erfindung sieht vor, daß der Spule bezüglich der Bewegungsbahn des magnetisch aktiven Teils eine zweite Spule gegenüberliegt, die mit einem 6
Strom in demselben Richtungssinn wie die erste Spule beaufschlagbar ist.
Durch zwei in der dargestellten Weise kombinierte Spulen ist ein entsprechend größerer magnetischer Fluß erzeugbar, was zu einer größeren potentiellen Beschleunigung des Ankers führt.
Außerdem kann vorgesehen sein, daß die erste und die zweite Spule in Bewegungsrichtung des Ankers gegeneinander versetzt sind.
Durch einen derartigen Versatz der Spulen in Bewegungsrichtung des Ankers gegeneinander kann ein bestimmtes Beschleunigungsprofil entlang der Bewegungsbahn erreicht werden.
Es kann auch vorgesehen sein, daß jede der Spulen für jeweils eine der Bewegungsrichtungen des Ankers genutzt wird.
Außerdem kann vorteilhaft vorgesehen sein, daß zwei Jochkörper vorgesehen sind, die einander bezüglich der Bewegungsbahn des magnetisch aktiven Teils gegenüberliegen und die zwischen sich Luftspalte bilden, die wenigstens teilweise von der Bewegungsbahn des magnetisch aktiven Teils durchsetzt sind.
Durch einen weiteren Jochkörper, der dem ersten Jochkörper bezüglich der Bewegungsbahn des magnetisch aktiven Teils gegenüberliegt, wird der magnetische Kreis sowohl für den Fluß durch die Spule als auch für den Fluß des magnetisch aktiven Teils in jeder der Endpositionen geschlossen, so daß jeweils eine große Kraftwirkung sowohl für die Beschleunigung als auch für die Haltekraft in den Endpositionen erreicht wird. 7
Eine weitere vorteilhafte Ausgestaltung der Erfindung sieht vor, in der Steuerungseinrichtung mehrere aufladbare und fallweise gemeinsam oder alternativ mit der Spule verbindbare Ladekondensatoren vorgesehen sind.
Die verschiedenen Ladekondensatoren können für unterschiedliche Schaltfälle (beispielsweise unterschiedliche Belastungsfälle eines anzutreibenden Leistungsschalters) oder unterschiedlich für eine Ein- und Ausschaltung genutzt werden.
Die Erfindung bezieht sich außerdem auf ein Verfahren zum Betrieb eines magnetischen Linearantriebs, bei dem vorgesehen ist, daß die Spule zum Antrieb des Ankers in verschiedene Richtungen jeweils mit einem Strom gleicher Richtung beaufschlagt wird.
Gleich in welcher Endposition sich der Anker bzw. der magnetisch aktive Teil befindet, wird er bei Erzeugung eines magnetischen Flusses im Inneren der Spule zum Spuleninneren hin beschleunigt. Wird der Strom durch die Spule rechtzeitig unterbrochen, so bewegt sich der Anker bis zu der jeweils anderen Endposition. Dies vereinfacht die Ansteuerung der Spule beträchtlich.
Das erfindungsgemäße Verfahren kann vorteilhaft dadurch ausgestaltet werden, daß die Beaufschlagung mit einem Strom beendet wird, bevor das magnetisch aktive Teil seine Endposition erreicht hat.
Eine weitere vorteilhafte Ausgestaltung sieht vor, daß der Stromfluß durch die Spule unterbrochen wird, sobald aufgrund eines elektrischen Schwingungsvorgangs die Speisespannung ihr Vorzeichen umkehrt.
Da die Spule eine elektrische Induktivität sowie einen ohmschen Widerstand darstellt und im Normalfall durch eine Kapazität gespeist wird, ergibt sich ein elektrischer Schwingkreis in der Ansteuerung des Linearantriebs. Dies führt zur Entstehung einer elektrischen Schwingung, so daß die an der Spule anliegende Speisespannung irgendwann ihr Vorzeichen umkehrt.
Dies würde eine Umkehrung des magnetischen Flusses bedeuten, was eine Umkehrung der magnetischen Kraftwirkung auf den magnetisch aktiven Teil bedeuten würde, die ungewollt ist. Daher wird vorteilhaft die Speisespannung überwacht und der Stromfluß durch die Spule unterbrochen, sobald die Speisespannung ihr Vorzeichen umkehrt.
Es kann auch vorteilhaft vorgesehen sein, daß der Stromfluß zu einem Ladekondensator umgeleitet wird, sobald die Speisespannung aufgrund eines elektrischen Schwingungsvorgangs ihr Vorzeichen umkehrt.
Im folgenden wird die Erfindung anhand eines Ausführungsbeispiels in einer Zeichnung gezeigt und anschließend beschrieben.
Dabei zeigt
  • Figur 1 schematisch im Querschnitt den magnetischen Linearantrieb,
  • Figur 2 eine Ansteuerungsschaltung für die Spule des Linearantriebs und
  • Figur 3 schematisch die Energieversorgung für den Linearantrieb.
  • In der Figur 1 ist ein magnetischer Linearantrieb dargestellt, mit einen Anker 1, der aus einem Stab 2 aus glasfaserverstärktem Kunststoff und einem magnetisch aktiven Teil 3 aus einem dauermagnetischem Werkstoff besteht und an den an einem Ende eine Schaltstange 4 angekoppelt ist, die nur schematisch dargestellt und mit einem antreibbaren Schaltkontakt 5 der Unterbrechereinheit eines Hochspannungsleistungsschalters verbunden ist. Der Linearantrieb erzeugt Bewegungen in Richtung des Doppelpfeiles 6.
    Der Anker 1 bewegt sich in dem Luftspalt 7 zwischen einem ersten Jochkörper 8 und einem zweiten Jochkörper 9, die einander bezüglich der Bewegungsbahn des Ankers 1 spiegelbildlich gegenüberliegen.
    Jeder der Jochkörper weist eine ringförmige Ausnehmung auf, in die jeweils eine Spule 10, 11 eingebracht ist. Die Spulen 10, 11 sind jeweils mit elektrischen Anschlüssen versehen und mittels einer Steuereinrichtung mit einem Strom beaufschlagbar.
    Wird wenigstens eine der Spulen 10, 11 mit einem Strom beaufschlagt, so ist beispielsweise die Stromrichtung derart, daß im oberen Teil der Spule 10 der Strom in die Zeichenebene hineinläuft und im unteren Teil der Spule der Strom aus der Zeichenebene heraustritt wie durch den Punkt 12 veranschaulicht wird.
    Hierdurch wird ein magnetischer Fluß in der Axialrichtung 34 erzeugt, der durch die Pfeile 13 dargestellt ist und der durch einen ersten Kern 14 des ersten Jochkörpers 8 innerhalb der Spule 10 und durch einen zweiten Kern 15 des zweiten Jochkörpers 9 innerhalb der Spule 11 hindurchtritt.
    In der dargestellten Endposition des Ankers, in der dieser in nicht dargestellter Weise an einem mechanischen Anschlag ruht, tritt bereits ein Teil 16 des magnetischen Flusses 13 der Spulen 10, 11 durch einen Randbereich des magnetisch aktiven Teils 3 des Ankers hindurch.
    Der übrige Teil des magnetischen Flusses 13 der Spulen 10, 11 muß den breiten Luftspalt zwischen den Kernen 14, 15 überwinden, der durch den GFK-Körper des Ankers 1 nicht überbrückt wird.
    Demgemäß hat der magnetische Fluß die Tendenz, den magnetisch aktiven Teil 3 in der Darstellung nach unten zu beschleunigen, so daß der magnetische Fluß 13 der Spulen 10, 11 auf einer möglichst großen Länge des magnetisch aktiven Teils 3 durch diesen hindurchtritt und antiparallel zu dem im Inneren des magnetisch aktiven Teils 3 herrschenden magnetischen Fluß 17 verläuft.
    Wenn der magnetisch aktive Teil 3 etwa in der Mitte der Spulen 10, 11 angekommen ist, wird der Stromfluß durch die Spulen 10, 11 unterbrochen, um ein Abbremsen des magnetischen Teils beim Austritt aus dem Fluß 13 der Spulen 10, 11 zu verhindern.
    Der Anker bewegt sich aufgrund der dynamischen Energie weiter, bis daß eine zweite, gestrichelt dargestellte Endposition 36 des magnetisch aktiven Teils 3 erreicht ist.
    In dem Bewegungsbereich vor Erreichen der Endposition hat der magnetische Fluß 17 innerhalb des magnetisch aktiven Teils 3 das Bestreben, über einen möglichst geringen Luftspalt in einen der Jochkörper 8, 9 ein und aus diesem wieder auszutreten.
    Die auf den Anker in seinen Endpositionen wirkenden Haltekräfte werden anhand der in der Figur 1 dargestellten oberen Endposition beschrieben.
    Wenn der Stromfluß durch die Spulen 10, 11 unterbrochen ist, entfällt der magnetische Fluß 13.
    Ein Teil des magnetischen Flusses 17 im Inneren des magnetisch aktiven Teils 3 kann unmittelbar in den Jochkörper 8 durch die Begrenzungsfläche 35 eintreten, wobei der Fluß über den zweiten Jochkörper 9 unter Zwischenschaltung der unvermeidbaren Luftspalte geschlossen wird, so daß von dort der magnetische Fluß wieder in den magnetisch aktiven Teil 3 eintreten kann.
    Die Teile 18 des magnetischen Flusses in dem magnetisch aktiven Teil 3, die in Höhe einer Spulenwicklung 10, 11 liegen, müssen einen breiten Luftspalt überwinden, um in einen Jochkörper 8 einzutreten. Daher besteht in der dargestellten Konstellation das Bestreben, den magnetisch aktiven Teil 3 weiter nach oben zu bewegen, um eine möglichst große Überlappung der Länge des magnetisch aktiven Teils 3 mit dem Teil des Jochkörpers 8 oberhalb der Spule 10 zu erreichen.
    Die magnetische Kraftwirkung auf den Anker 1 ist hierbei weitgehend unabhängig davon, wieweit der magnetisch aktive Teil 3 mit dem Teil des Jochkörpers 8 oberhalb der Spule 10 bereits überlappt. Daher ist die Haltekraft auf den Anker in der Endposition weitgehend unabhängig von mechanischen Toleranzen.
    Entsprechendes gilt für die andere, gestrichelt dargestellte Endposition des Ankers.
    In der Figur 1 ist außerdem dargestellt, daß beide Jochkörper 8, 9 im Bereich der Kerne 14, 15 entlang der Bewegungsbahn des magnetisch aktiven Teils derart profiliert sind, daß der Luftspalt zwischen dem Anker 3 und den Jochkörpern 8, 9 nach oben hin breiter wird. Dies bedeutet, daß die Kraftwirkung auf den magnetisch aktiven Teil 3 während dessen Bewegungen nach oben abnimmt. Auf diese Weise kann beim Ausschalten der Unterbrechereinheit zum Anfang der Bewegung eine hohe Beschleunigung und zu deren Ende hin eine schwächer werdende Beschleunigung erreicht werden. Außerdem ist denkbar, daß beispielsweise die zweite Spule 11 gegenüber der ersten Spule 10 nach unten entlang der Bewegungsbahn des Ankers 1 versetzt ist, so daß bei einem Ausschaltvorgang, d. h. einer Bewegung des Ankers 1 von unten nach oben, zunächst die zweite Spule 11 die Hauptlast der Beschleunigung tragen würde und später die erste Spule 10.
    Auch hierdurch läßt sich eine bestimmt Profilierung der Beschleunigung erreichen.
    In der Figur 2 ist eine Ansteuerschaltung gezeigt, mit einem Ladekondensator 19, der über einen ersten IGBT (insulatedgate bipolar Transistor) 20 und einen zweiten IGBT 21 mit der Spule 22 innerhalb des magnetischen Linearantriebs verbindbar ist. Mit 23 ist der ohmsche Widerstand der Spule 22 und ihrer Zuleitungen symbolisch bezeichnet.
    Werden die IGBT's 20, 21 durchgeschaltet, so fließt ein Strom durch die Spule 22 in Richtung des mit 24 bezeichneten Pfeiles. Dieser fließt durch den ersten IGBT 20 und weiter entlang der Pfeile 25, 26, 27.
    Entlädt sich der Kondensator 19, so sinkt die Spannung an der Spule 22 und es wird dort eine Gegenspannung induziert, die bestrebt ist, die Stromstärke des Stromes 24 aufrecht zu erhalten. Die Gegenspannung an der Spule 22 ist der Speisespannung entgegengesetzt, so daß sich ein Spannungsnulldurchgang ergibt. Zu diesem Zeitpunkt werden die IGBT's 21, 22 ausgeschaltet, d. h. sie sperren den Strom.
    Der durch die Spannung innerhalb der Spule 22 induzierte Strom fließt über die Dioden 28, 29 in Richtung des Pfeiles 30 zu dem Kondensator 19 zurück und lädt diesen teilweise wieder auf. Dadurch wird Energie beim Betrieb des Linearantriebs gespart, was insbesondere dann von Bedeutung ist, wenn ein mit diesem angetriebener Hochspannungsschalter im Notbetrieb mittels Batterien betrieben werden muß.
    Die Figur 3 zeigt schematisch die Energieversorgung eines Linearantriebs über drei unterschiedliche Ansteuerungseinheiten 31, 32, 33, von denen jede einen eigenen Ladekondensator aufweist, wobei die Ladekondensatoren unterschiedliche Kapazitäten haben können. Hierdurch wird für unterschiedliche Schaltfälle jeweils eine unterschiedliche Energiemenge in Form von in den Ladekondensatoren gespeicherter elektrischer Feldenergie zur Verfügung gestellt.
    Die unterschiedlichen Ansteuerungen 31, 32, 33 können auch für schnell aufeinander folgende Aus-Ein-Aus-Schaltungen genutzt werden

    Claims (11)

    1. Magnetischer Linearantrieb, insbesondere für einen elektrischen Schalter, mit einer mit einem Strom beaufschlagbaren Spule (10,11), in deren Innerem durch den Strom in einer Axialrichtung (34) ein magnetischer Fluß (13) erzeugbar ist, mit einem Anker (1), der ausschließlich senkrecht zu der Axialrichtung (34) beweglich ist und der einen magnetisch aktiven Teil (3) aufweist, dessen Bewegungsbahn durch einen Luftspalt (7) innerhalb eines die Spule (10,11) durchsetzenden Kernes (14,15) hindurch oder an einer Stirnseite des Kernes (14,15) vorbeiführt, wobei der magnetisch aktive Teil (3) unmagnetisiert ist oder derart magnetisiert ist, daß der magnetische Fluß (17) innerhalb des magnetisch aktiven Teils (3) parallel oder antiparallel zu der Axialrichtung (34) verläuft,
      dadurch gekennzeichnet, dass
      der magnetisch aktive Teil in zwei Endpositionen dauerhaft positionierbar und durch Einwirkung eines Stromes von einer ersten Endposition in eine zweite Endposition überführbar ist.
    2. Magnetischer Linearantrieb nach Anspruch 1,
      dadurch gekennzeichnet, dass
      der magnetisch aktive Teil (3) magnetisiert ist und daß in wenigstens einer Endposition des magnetisch aktiven Teils (3) dieser wenigstens teilweise derart im Bereich eines außerhalb der Spule angeordneten Jochkörpers (8,9) angeordnet ist, daß der aus dem magnetisch aktiven Teil (3) aus- oder in diesen eintretende magnetische Fluß (17) wenigstens zum Teil unmittelbar durch eine dem magnetisch aktiven Teil zugewandte Begrenzungsfläche (35) des Jochkörpers hindurchtritt.
    3. Magnetischer Linearantrieb nach einem der Ansprüche 1 oder 2,
      dadurch gekennzeichnet, dass
      der Spule (10) bezüglich der Bewegungsbahn des magnetisch aktiven Teils (3) eine zweite Spule (11) gegenüberliegt, die mit der ersten Spule (10) mit einem Strom in demselben Richtungssinn wie die erste Spule (10) beaufschlagbar ist.
    4. Magnetischer Linearantrieb nach Anspruch 1, 2 oder 3,
      dadurch gekennzeichnet, dass
      die erste und die zweite Spule (10,11) in Bewegungsrichtung des Ankers (1) gegeneinander versetzt sind.
    5. Magnetischer Linearantrieb nach einem der Ansprüche 1 bis 4,
      dadurch gekennzeichnet, dass
      zwei Jochkörper (8,9) vorgesehen sind, die einander bezüglich der Bewegungsbahn des magnetisch aktiven Teils (3) gegenüberliegen und die zwischen sich Luftspalte (7) bilden, die wenigstens teilweise von der Bewegungsbahn des magnetisch aktiven Teils (3) durchsetzt sind.
    6. Magnetischer Linearantrieb nach einem der Ansprüche 1 bis 5 mit einer Steuerungseinrichtung ,
      dadurch gekennzeichnet, dass
      in der Steuerungseinrichtung (31,32,33) mehrere aufladbare und fallweise gemeinsam oder alternativ mit einer Spule verbindbare Ladekondensatoren (19) vorgesehen sind.
    7. Verfahren zum Betrieb eines magnetischen Linearantriebs nach Anspruch 1,
      dadurch gekennzeichnet, dass
      die Spule (10,11) zum Antrieb des Ankers (1) in verschiedene Richtungen jeweils mit einem Strom gleicher Richtung beaufschlagt wird.
    8. Verfahren nach Anspruch 7,
      dadurch gekennzeichnet, dass
      die Beaufschlagung mit einem Strom beendet wird, bevor das magnetisch aktive Teil (3) seine Endposition erreicht hat.
    9. Verfahren nach Anspruch 8,
      dadurch gekennzeichnet, dass
      der Stromfluß durch die Spule (10,11) unterbrochen wird, sobald aufgrund eines elektrischen Schwingungsvorgangs die Speisespannung ihr Vorzeichen umkehrt.
    10. Verfahren nach Anspruch 8,
      dadurch gekennzeichnet, dass
      der Stromfluß zu einem Ladekondensator (19) umgeleitet wird, sobald die Speisespannung aufgrund eines elektrischen Schwingungsvorgangs ihr Vorzeichen umkehrt.
    11. Verfahren zum Betrieb eines magnetischen Linearantriebes nach Anspruch 1,
      dadurch gekennzeichnet, dass
      zuerst ein Strom in der Spule (10,11) erzeugt wird, dessen resultierender magnetischer Fluss in der Spule (10,11) antiparallel zu einer Magnetisierung des magnetisch aktiven Teils (3) gerichtet ist, sofern dieses magnetisiert ist, und dass, nachdem das magnetisch aktive Teil (3) auf seiner Bewegungsbahn den Ort der größten Magnetfeldstärke der Spule (10,11) erreicht hat, die Stromrichtung durch die Spule (10,11) umgekehrt wird.
    EP00947808A 1999-06-22 2000-06-20 Magnetischer linearantrieb Expired - Lifetime EP1188222B1 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE19929572 1999-06-22
    DE19929572A DE19929572A1 (de) 1999-06-22 1999-06-22 Magnetischer Linearantrieb
    PCT/DE2000/001981 WO2000079672A1 (de) 1999-06-22 2000-06-20 Magnetischer linearantrieb

    Publications (2)

    Publication Number Publication Date
    EP1188222A1 EP1188222A1 (de) 2002-03-20
    EP1188222B1 true EP1188222B1 (de) 2003-05-02

    Family

    ID=7912818

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP00947808A Expired - Lifetime EP1188222B1 (de) 1999-06-22 2000-06-20 Magnetischer linearantrieb

    Country Status (6)

    Country Link
    US (1) US6888269B1 (de)
    EP (1) EP1188222B1 (de)
    CN (1) CN1242534C (de)
    AU (1) AU6148600A (de)
    DE (2) DE19929572A1 (de)
    WO (1) WO2000079672A1 (de)

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN103178685A (zh) * 2013-03-04 2013-06-26 中国科学院国家天文台南京天文光学技术研究所 用于天文望远镜镜面主动支撑的电磁式力促动器
    DE102013201084A1 (de) 2013-01-24 2014-07-24 Siemens Aktiengesellschaft Elektrische Maschine

    Families Citing this family (19)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6497676B1 (en) 2000-02-10 2002-12-24 Baxter International Method and apparatus for monitoring and controlling peritoneal dialysis therapy
    DE10132553A1 (de) 2001-07-04 2003-01-23 Siemens Ag Elektrodynamischer Linearantrieb
    US7153286B2 (en) 2002-05-24 2006-12-26 Baxter International Inc. Automated dialysis system
    US7175606B2 (en) 2002-05-24 2007-02-13 Baxter International Inc. Disposable medical fluid unit having rigid frame
    US7238164B2 (en) 2002-07-19 2007-07-03 Baxter International Inc. Systems, methods and apparatuses for pumping cassette-based therapies
    DE10309697B3 (de) 2003-02-26 2004-09-02 Siemens Ag Magnetischer Linearantrieb
    EP2368589B1 (de) 2003-10-28 2016-08-03 Baxter International Inc. Vorrichtung für medizinische Flüssigkeitssysteme
    GB0411802D0 (en) * 2004-05-26 2004-06-30 Electro Magnetic Rams Ltd Switchgear system
    EP1975960A1 (de) * 2007-03-30 2008-10-01 Abb Research Ltd. Bistabiler magnetischer Betätiger, elektronischer Steuerkreis und Verfahren zum Betreiben eines solchen Betätigers.
    DE102007030391A1 (de) * 2007-06-29 2009-01-02 Siemens Ag Herstellungsverfahren für einen Stößel und derartiger Stößel
    FR2934923B1 (fr) * 2008-08-11 2013-05-31 Schneider Electric Ind Sas Actionneur electromagnetique hybride a bobine fixe
    GB2467363A (en) * 2009-01-30 2010-08-04 Imra Europ S A S Uk Res Ct A linear actuator
    FR2943170B1 (fr) * 2009-03-10 2013-03-22 Areva T & D Sa Circuit actionneur magnetique
    EP2367189B1 (de) * 2010-03-18 2013-09-04 ABB Technology AG Unité de commutation et procédé apparenté
    EP2835811A4 (de) * 2012-04-06 2015-12-16 Hitachi Ltd Druckgasschalter
    KR101668341B1 (ko) * 2012-04-18 2016-10-21 가부시키가이샤 히타치세이사쿠쇼 개폐 장치
    CN105374584B (zh) * 2015-12-22 2017-09-05 福州大学 可快速动作、有效缓冲、稳定保持或具磁悬浮效应的装置
    CN105513844B (zh) * 2015-12-22 2018-04-13 福州大学 基于故障电流能量与变化率的快速电磁拉力机构及其应用
    US11179516B2 (en) 2017-06-22 2021-11-23 Baxter International Inc. Systems and methods for incorporating patient pressure into medical fluid delivery

    Family Cites Families (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE7432801U (de) 1975-03-27 Siemens Ag Elektromagnet mit Linearantrieb des Ankers
    GB829782A (en) 1956-03-23 1960-03-09 Chausson Usines Sa An electro-magnetically driven oscillating movement compressor
    US3203447A (en) * 1963-10-09 1965-08-31 Skinner Prec Ind Inc Magnetically operated valve
    US3379214A (en) 1965-01-15 1968-04-23 Skinner Prec Ind Inc Permanent magnet valve assembly
    DE3376912D1 (en) 1983-06-01 1988-07-07 Ibm Deutschland Electromagnetic driving element
    US4817494A (en) * 1987-04-06 1989-04-04 The United States Of America As Represented By The United States Department Of Energy Magnetic reconnection launcher
    DE3942542A1 (de) * 1989-12-22 1991-06-27 Lungu Cornelius Bistabiler magnetantrieb mit permanentmagnetischem hubanker
    JP3121948B2 (ja) 1993-03-18 2001-01-09 河西工業株式会社 クリップ取付座
    GB9409988D0 (en) * 1994-05-18 1994-07-06 Huntleigh Technology Plc Linear magnetic actuator
    US5729067A (en) * 1995-08-30 1998-03-17 Eaton Corporation Method and apparatus for closed loop position control in a linear motor system
    NL1006087C2 (nl) 1997-05-20 1998-11-23 Bogey Venlo B V Actuatormechanisme.

    Cited By (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102013201084A1 (de) 2013-01-24 2014-07-24 Siemens Aktiengesellschaft Elektrische Maschine
    CN103178685A (zh) * 2013-03-04 2013-06-26 中国科学院国家天文台南京天文光学技术研究所 用于天文望远镜镜面主动支撑的电磁式力促动器
    CN103178685B (zh) * 2013-03-04 2015-08-05 中国科学院国家天文台南京天文光学技术研究所 用于天文望远镜镜面主动支撑的电磁式力促动器

    Also Published As

    Publication number Publication date
    EP1188222A1 (de) 2002-03-20
    DE50001984D1 (de) 2003-06-05
    DE19929572A1 (de) 2001-01-04
    AU6148600A (en) 2001-01-09
    CN1242534C (zh) 2006-02-15
    WO2000079672A1 (de) 2000-12-28
    CN1357166A (zh) 2002-07-03
    US6888269B1 (en) 2005-05-03

    Similar Documents

    Publication Publication Date Title
    EP1188222B1 (de) Magnetischer linearantrieb
    DE10146899A1 (de) Elektromagnetischer Aktuator, insbesondere elektromagnetischer Antrieb für ein Schaltgerät
    EP0898780B1 (de) Elektrischer schalter mit einem magnetischen antrieb
    DE10128616A1 (de) Schaltvorrichtung
    DE69830808T2 (de) Betätigungseinrichtung zum antrieb und steuerung eines schaltgeräts
    DE60000739T2 (de) Steuervorrichtung zum öffnen und/oder zum schliessen, insbesondere für ein schaltgerät wie ein schutzschalter, und ein schutzschalter ausgerüstet mit dieser vorrichtung
    DE10309697B3 (de) Magnetischer Linearantrieb
    EP1402546B1 (de) Elektrodynamischer linearantrieb
    EP0996135A2 (de) Antrieb für das bewegliche Kontaktstück eines elektrischen Schaltgerätes
    EP0405191A1 (de) Elektromagnetisch arbeitende Stelleinrichtung
    EP1604445B1 (de) Magnetischer linearantrieb
    DE102011081893B3 (de) Magnetischer Aktor und Verfahren zu dessen Betrieb
    DE102017211257B4 (de) Elektromagnetischer Antrieb und damit ausgestattetes Ventil
    DE3633775C2 (de)
    DE102006013013B9 (de) Kraft-Erzeuger-Einheit
    DE102013105670A1 (de) Bistabiler Elektro-Permanent-Aktuator
    DE102018216223B3 (de) Aktor und Verfahren zur Betätigung eines Hochspannungsschalters
    DE102010041728A1 (de) Resonanter Magnetaktor
    EP0135055A1 (de) Schrittweise arbeitende Antriebsanordnung
    DE1253821B (de) Kolbenhubmagnet mit drei oder mehreren stabilen, permanentmagnetischen Raststellungen
    DE10142670C1 (de) Elektromechanischer Aktuator für Ventiltrieb
    DE9411153U1 (de) Elektromagnetisch betätigbarer Zentralverschluß für photographische Kameras
    WO2016139176A1 (de) Vorrichtung mit einem elektromotor mit einem weichmagnetischen rotor und vorrichtung mit zumindest einem aus einem weichmagnetischen material gebildeten anker eines magnetaktors
    DE102012204322A1 (de) Bidirektionale elektromagnetische Stellvorrichtung
    CH299075A (de) Einrichtung zum ruckartigen Hin- und Herbewegen von Massen.

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20010921

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Designated state(s): CH DE FR GB IT LI SE

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: SIEMENS SCHWEIZ AG

    REF Corresponds to:

    Ref document number: 50001984

    Country of ref document: DE

    Date of ref document: 20030605

    Kind code of ref document: P

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    Ref document number: 1188222E

    Country of ref document: IE

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20040203

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20070607

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20070822

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20070906

    Year of fee payment: 8

    Ref country code: GB

    Payment date: 20070607

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20070626

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20070629

    Year of fee payment: 8

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    EUG Se: european patent has lapsed
    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20080620

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20090228

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090101

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080630

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080630

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080620

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080630

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080620

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080621