EP1169492B1 - Verfahren zur herstellung dünner, schwer löslicher beschichtungen - Google Patents

Verfahren zur herstellung dünner, schwer löslicher beschichtungen Download PDF

Info

Publication number
EP1169492B1
EP1169492B1 EP00934914A EP00934914A EP1169492B1 EP 1169492 B1 EP1169492 B1 EP 1169492B1 EP 00934914 A EP00934914 A EP 00934914A EP 00934914 A EP00934914 A EP 00934914A EP 1169492 B1 EP1169492 B1 EP 1169492B1
Authority
EP
European Patent Office
Prior art keywords
layer
precursor
reactant gas
layers
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00934914A
Other languages
English (en)
French (fr)
Other versions
EP1169492A2 (de
Inventor
Christian-Herbert Fischer
Hans-Jürgen Muffler
Martha Christina Lux-Steiner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hahn Meitner Institut Berlin GmbH
Original Assignee
Hahn Meitner Institut Berlin GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hahn Meitner Institut Berlin GmbH filed Critical Hahn Meitner Institut Berlin GmbH
Priority to SI200030030T priority Critical patent/SI1169492T1/xx
Publication of EP1169492A2 publication Critical patent/EP1169492A2/de
Application granted granted Critical
Publication of EP1169492B1 publication Critical patent/EP1169492B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S501/00Compositions: ceramic
    • Y10S501/90Optical glass, e.g. silent on refractive index and/or ABBE number
    • Y10S501/906Thorium oxide containing

Definitions

  • the invention relates to a method for producing thin, sparingly soluble Coatings on substrates with any morphology. In doing so prefers ceramic and oxide layers, but also metallic as well further chalcogenidic layers can be produced.
  • Ceramic materials are inorganic, non-metallic, poorly soluble in water and at least 30% crystalline. However, they can be expanded by the group of glasses, glass ceramics and inorganic binders.
  • the ceramic materials are divided into the two large groups “functional ceramics” and “structural ceramics”. Structural ceramics consider materials based on oxides and silicates as well as carbides, nitrides, borides and silicides (MoSi 2 ) of main group elements.
  • oxide ceramics can be understood to mean all ceramic materials which essentially (> 90%) consist of single-phase and single-component metal oxides. In contrast, all materials based on ceramics made from the boron, carbon, nitrogen, silicon and possibly oxygen system are called “non-oxide ceramics". Oxide-ceramic materials are polycrystalline materials made from pure oxides or oxide compounds; they have a high purity and are usually free of glass phase. In addition to the high-melting metal oxides, such as aluminum, zirconium, magnesium, titanium and beryllium oxide, and calcium oxide, magneto-ceramic materials and materials with a high dielectric constant, piezoceramic, can also be included.
  • high-melting metal oxides such as aluminum, zirconium, magnesium, titanium and beryllium oxide, and calcium oxide
  • magneto-ceramic materials and materials with a high dielectric constant, piezoceramic can also be included.
  • oxide ceramic materials include, for example, chromite with a coarse structure and perovskite, ferrites and garnets with a fine structure.
  • Hardly soluble layers have so far been possible, for example, by sputtering or Evaporation using the sol-gel technique, chemical bath deposition or deposition from the vapor phase (Metal Organic Chemical Vapor Deposition MOCVD) can be applied to surfaces.
  • chemical bath deposition or deposition from the vapor phase Metal Organic Chemical Vapor Deposition MOCVD
  • MOCVD Metal Organic Chemical Vapor Deposition
  • ZnO films with good quality can also be produced by direct electrode deposition from aqueous solutions at a low process temperature (see: "reparation Of ZnO Films By Electrodepositon From Aqueous Solution” by S.Peulon at al., 13th European Photovoltaic Solar Energy Conference , 23-27 October 1995, Nice, France, 1750-52).
  • sol-gel technique cf. "Micostructure of TiO 2 and ZnO Films Fabricated by the Sol-Gel-Method" by Y.Ohya et al., J.Am.Ceram.Soc. 79 [4] 825-30 (1996)
  • the object of the present invention is also to enable the production of further surface layers in other material compositions.
  • the process should still be simple in its sequence, also in ecological and economic terms.
  • an expanded range of applications should be achieved through the materials that can then be used.
  • a qualitatively improved coating with improved utilization of the materials used compared to the known coatings with chalcogenide structure should also be aimed at as a sub-item in this problem area.
  • films of sparingly soluble can Oxides and generally of such compounds that can be converted a dry solid starting compound with a gaseous reactant form simply be made.
  • This is crucial the first hydrolysis to achieve a homogeneous Dried starting substance layer by a moist surface Reactant gas to form hydroxides or complexes, for example Amine complexes when using moist ammonia gas as the reactant gas.
  • the reactant gas can also be another, preferentially reacting steam or possibly for water vapor alone act.
  • steam With the designation "steam” always moist gases, i.e. on Mixture of gaseous water, basic gas and in most cases an inert carrier gas.
  • Moist ammonia gas is generated by simply "bubbling" nitrogen through a wash bottle aqueous ammonia solution. The generation of metallic layers by Fumigation accordingly requires treatment with reducing effects Gases.
  • thermal after fumigation Treatment is then by elimination of water - and also with complexes by ligand elimination - the desired ceramic or oxidic Surface layers or other end layers created.
  • the thermal Treatment of the hydroxide or complex layers can be done in a separate Process step after gassing with the reactant gas, for example by heating the layers in an oven. But it can also during the process of gassing by increasing the process temperature be effected. By applying a higher temperature the optional cleaning step may omitted, because this already undesirable Substances can be removed from the film. In particular Cases can even be brought about without using a targeted one Temperature increase immediately form an oxide.
  • the thermal treatment can affect both extend necessary fumigations.
  • the thermal treatment for education The respective final layer can also be removed in individual cases be understood by disruptive components. In the preparation of metallic layers, this is used to create unwanted by-products to remove.
  • the starting substance is a metal compound, for example metal halides such as ZnCl 2 or AlCl 3 , of the metal whose oxide, ceramic (for example ZnO, Al 2 O 3 ) or metal is desired as the end product for the coating.
  • the correspondingly dissolved metal salt is then applied to the substrate, dried (if necessary up to a defined residual moisture) and reacted with gaseous reactants.
  • Layers produced with the method according to the invention can Solar technology used in the manufacture of many components of solar cells Find.
  • materials technology a coating can be used by everyone possible smooth, rough and porous substrates. Still allowed the process through the use of starting material mixtures or different starting substances and their alternating use, also the production of homogeneously doped layers and mixed layers and the generation of multilayers.
  • the thin, heavy ones can be used soluble coatings especially wherever there is an extended Surface protection is required. This can be purely mechanical and chemical protection of the surface, but also about influencing their physical and chemical surface properties, such as for example conductivity, reflection and absorption behavior or Catalysis or chemisorption.
  • the Chalcogenization step for the formation of sulfides, selenides or tellurides in that described in the older German application DE 198 31 214 ILGAR processes also changed the crystal structure in certain cases.
  • the increased energy requirement during the crystal transformation can in the sense of well-known tempering of course also directly through an increased Process temperature provided during the chalcogenization step become.
  • the substrate can already be illuminated with a Halogen lamp is sufficient.
  • An implementation of the chalcogenization step inside a furnace is also possible.
  • the measures mentioned lead to purer and higher quality thin films with a simultaneous reduction in quantity of the chalcogen-containing reactant gas to be used and reduce the deposition time, as on rinsing steps, the time costs and reduce the quality of the end product can be.
  • the hydroxide reaction is introduced there are no starting material residues more to expect, the by-products that occur here are relatively volatile and with a suitable temperature selection in the last Process step removable.
  • FIG. 1 shows the production of a zinc oxide layer on an amorphous substrate S , which is clamped in a substrate holder SH that can be moved in three-dimensional space.
  • the substrate holder SH has a cover C to cover the individual baths.
  • a suitable starting substance P precursor
  • this is a solution bath LB with the dissolved metal compound zinc chloride ZnCl 2 .
  • a starting substance layer PL here ZnCl 2 , on the substrate surface.
  • the ZnCl 2 layer is first dried in a vessel V in a second process step II , for example by introducing a gas stream GS. This can be inert nitrogen.
  • a gas stream GS This can be inert nitrogen.
  • the dried starting substance layer PLD is again gassed in the vessel V with a moist reactant gas RG, here moist ammonia gas.
  • the moist ammonia gas is produced by simply introducing nitrogen N 2 into a wash bottle B in which there are concentrated ammonia solution NH 4 OH and water H 2 O.
  • a hydroxide layer HL has formed on the substrate S , in the exemplary embodiment zinc hydroxide Zn (OH) 2 .
  • Different vessels V can also be used for drying and gassing.
  • a fourth method step IV the substrate S provided with the zinc hydroxide Zn (OH) 2 is introduced into an oven H.
  • the Zn (OH) 2 is thermally converted into zinc oxide ZnO by elimination of water by supplying energy.
  • This oxide or ceramic layer OL / CL covers the entire accessible surface of the substrate, including the inner surface, safely and exerts its functionality there.
  • a subsequent rinsing and drying process step is optional and not shown here. Depending on the desired layer thickness, the process steps mentioned can be cycled through several times.
  • FIG. 2 schematically shows the process sequence according to the invention for producing other chalcogenide coatings using the example of cadmium sulfide CdS.
  • Process steps and reference numerals which are not further explained here can be found in the description of FIG. 1.
  • a further process step IIIa follows which the hydroxide layer HL (Cd (OH) 2 ) formed is brought into contact with an additional reactant gas CRG (here hydrogen sulfide H 2 S) containing chalcogen hydrogen compounds.
  • CRG hydrogen sulfide H 2 S
  • This process step IIIa the chalcogenization step, produces a chalcogenide coating CHL in the form of cadmium sulfide (CdS) on the substrate S.
  • the process temperature TP is increased, for example by carrying out the process steps in a muffle furnace H, in order to improve the material conversion.
  • the thermal treatment in process step IV therefore extends to both fumigations III, IIIa.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung dünner, schwer löslicher Beschichtungen auf Substraten mit beliebiger Morphologie. Dabei sollen bevorzugt keramische und oxidische Schichten, aber auch metallische sowie weitere chalkogenidische Schichten herstellbar sein.
Nach der Definition (vgl. "Technische Keramik" Herausgeber B. Thier, Vulkan Verlag, Essen 1988, Seiten 2 bis 25.) der Deutschen Keramischen Gesellschaft sind keramische Werkstoffe anorganisch, nichtmetallisch, in Wasser schwer löslich und zu wenigstens 30% kristallin. Sie können aber durch die Gruppe der Gläser, Glaskeramiken und anorganischen Bindemittel erweitert werden. Unterteilt werden die keramischen Werkstoffe in die beiden großen Gruppen "Funktionskeramik" und "Strukturkeramik". Bei der Strukturkeramik betrachtet man Werkstoffe auf Basis von Oxiden und Silikaten sowie von Carbiden, Nitriden, Boriden und Siliziden (MoSi2) von Hauptgruppenelementen.
Bei systematischer Betrachtungsweise können unter "Oxidkeramik" alle keramischen Werkstoffe verstanden werden, die im Wesentlichen (>90%) aus einphasigen und einkomponentigen Metalloxiden bestehen. Im Gegensatz dazu bezeichnet man alle Werkstoffe auf Basis keramisch hergestellter Materialien aus dem System Bor, Kohlenstoff, Stickstoff, Silizium und u.U. Sauerstoff als "Nichtoxidkeramiken". Oxidkeramische Werkstoffe sind polykristalline Materialien aus reinen Oxiden oder Oxidverbindungen; sie weisen eine hohe Reinheit auf und sind in der Regel frei von Glasphase. Neben den hochschmelzenden Metalloxiden, wie z.B. Aluminium-, Zirkon-, Magnesium-, Titan- und Berylliumoxid, und Kalziumoxid kann man auch magnetkeramische Werkstoffe und Stoffe mit hoher Dielektrizitätskonstante, Piezokeramik, dazurechnen. Üblich ist aber die Beschränkung auf die hochschmelzenden Oxide. Siliziumdioxid (SiO2) wird jedoch nicht unter die Oxidkeramik klassifiziert. Deshalb und auch in Berücksichtigung weiterer Oxide, die geeignet sind, aber nicht zu den keramischen Werkstoffen gehören, bezieht sich die Erfindung auch auf die Herstellung sowohl von keramischen als auch von oxidischen Schichten. Bei den oxidkeramischen Werkstoffen unterscheidet man weiterhin zwischen einfachen Oxiden und komplexen Oxiden. Hierzu zählen beispielsweise Chromit mit grobem Gefüge und Perowskite, Ferrite und Granate mit feinem Gefüge.
Schwer lösliche Schichten können bislang beispielsweise durch Sputtern oder Aufdampfen, mittels der Sol-Gel-Technik, der chemischen Badabscheidung oder der Deposition aus der Dampfphase (Metal Organic Chemical Vapor Deposition MOCVD) auf Oberflächen aufgebracht werden. Aus dem Aufsatz "Laser annealing of zinc oxide thin film deposited by spray-CVD" von G.K.Bhaumik et al., Elsevier Materials Science and Engineering B52 (1998) 25-31, ist es bekannt, einen polykristallinen ZnO-Film auf Quarz- und SiliziumSubstraten mittels der "Sprüh-CVD-Methode" aufzubringen. Der aufgebrachte Film kann dann zur Verbesserung seiner Kristallstruktur durch Laserbestrahlung erhitzt werden. Die Anlagerung von undotierten ZnO-Filmen durch Sprühpyrolyse mit wässriger Zinknitratlösung ist aus dem Aufsatz "Optical and electrical properties of undoped ZnO films grown by spray pyrolyse of zinc nitrate solution" von S.A. Studenikin et al., J.of Appl.Phys. Vol.83, No.4, 15.Feb.1998, 2104 -11) bekannt. Der Schwerpunkt dieses Aufsatzes liegt in der Ermittlung der Zusammenhänge zwischen der Pyrolysetemperatur und den strukturellen, elektrischen und optischen Eigenschaften des ZnO-Films. Unterschiedliche Temperaturen wurden durch Erhitzen der Probensubstrate, beispielsweise in Stickstoff bei 400°C, erreicht.
Beim Sputtern (vgl. für ZnO: "Use of a helicon wave excited plasma of aluminium-doped ZnO thin-film sputtering" von K.Yamaya et al., Appl. Phys.
Lett. 72(2), 12.Jan.1998, 235-37) werden Atome aus einer Metallkathode durch aufprallende lonen einer Gasentladung herausgelöst ("Kathodenzerstäubung"). Das zerstäubte Metall schlägt sich dann auf einer Oberfläche als gleichmäßige Schicht nieder. Mit Molekularstrahlepitaxie unter Benutzung von sauerstoffhaltigem Plasma bei Anwesenheit eines Mikrowellenfeldes können einkristalline ZnO-Dünnschichten auf c-planarem Saphir hergestellt werden (vgl. "Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire : Growth and characterisation" von Y.Chen et al., J.of Appl.Phys., Vol.84, No.7, 1.Oct.1998, 3912-18). ZnO-Fime mit guter Qualität können auch durch direkte Elektrodeposition aus wässrigen Lösungen bei einer niedrigen Prozesstemperatur hergestellt werden (vgl.: "reparation Of ZnO Films By Electrodepositon From Aqueous Solution" von S.Peulon at al., 13th Europ. Photovoltaic Solar Energy Conference, 23-27 October 1995, Nice, France, 1750-52). Bei der Sol-Gel-Technik (vgl. "Micostructure of TiO2 and ZnO Films Fabricated by the Sol-Gel-Method" von Y.Ohya et al., J.Am.Ceram.Soc. 79[4] 825-30 (1996)) erstarren als Sol vorliegende Kolloid-Lösungen unter Reaktion mit Wasser und Entzug von Lösungsmittel mit den fest adsorbierten Lösungsmittelresten zu einem Gel, das an Oberflächen angelagert und getrocknet werden kann.
Beim Verfahren der chemischen Badabscheidung (Chemical Bath Deposition CBD, vgl. für ZnO/CdS/CIS/Mo-Strukturen: "Effects of Cd-Free Buffer Layer For CuInSe2 Thin Solar Cells" von T.Nii et al., First WCPEC; Dec.5-9, 1994; Hawaii, 254-57) werden bei der Herstellung von schwer löslichen Metallchalkogenid-Schichten die beiden unterschiedlichen Varianten "SILAR-Verfahren" (Successive lonic Layer Adsorption and Reaction) und "Chalkogeno-Harnstoffverfahren" unterschieden.
Gegenstand der Veröffentlichung "CuInS2 as an extremely thin absorber in an eta solar cell" von J. Möller et al. (Conference Proceedings of the 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion, 6. - 10. Juli 1998, Seiten 209 - 211, XP 002110735 Vienna) ist ein von den oben genannten Methoden ausgehendes Verfahren zur verbesserten Herstellung dünner Metallchalkogenid-Schichten unter Angabe von verschiedenen Materialzusammensetzungen Bei diesem Verfahren wird zunächst eine Lösung einer Metallverbindung auf ein Substrat aufgebracht, sodass sich dort Ionen anlagern. Dem Substrat wird dann in einem Trocknungsprozess das Lösungsmittel entzogen. Danach wird ein chalkogenwasserstoffhaltiges Gas mit der angelagerten lonenschicht in Kontakt gebracht, um eine Reaktion mit den Metallionen hervorzurufen. Mit diesem Verfahren können homogene Metallchalkogenid-Schichten in gleichbleibender Qualität einfach hergestellt werden. Anwendung finden solche Schichten beispielsweise als Absorber- oder Pufferschichten in Solarzellen. Von dem in diesem Aufsatz beschriebenen Verfahren, das mit ILGAR-Verfahren (lonic Layer Gas Reaction) bezeichnet werden kann, geht die Erfindung als nächstliegendem Stand der Technik aus.
Gegenüber diesem bekannten Verfahren soll es Aufgabe der vorliegenden Erfindung sein, auch die Herstellung weiterer Oberflächenschichten in anderen Materialzusammensetzungen zu ermöglichen. Dabei soll das Verfahren trotzdem einfach in seinem Ablauf sein, auch in ökologischer und ökonomischer Hinsicht. Weiterhin soll durch die dann einsetzbaren Materialien ein erweitertes Anwendungsspektrum erreicht werden. Eine qualitativ verbesserte Beschichtung bei einer verbesserten Ausnutzung der eingesetzten Stoffe gegenüber den bekannten Beschichtungen mit Chalkogenid-Struktur ist als Unterpunkt in diesem Problemfeld ebenfalls anzustreben.
Als Lösung für das angegebene Hauptproblem ist deshalb ein Verfahren zur Herstellung dünner, schwer löslicher Beschichtungen auf Substraten mit beliebiger Morphologie vorgesehen mit den in Abhängigkeit von der gewünschten Schichtdicke zyklisch durchzuführenden nachfolgenden Verfahrensschritten zur Herstellung keramischer oder oxidischer Schichten :
  • I. Aufbringen zumindest einer geeigneten Ausgangssubstanz zum Schichtaufbau auf die Substratoberfläche,
  • II. Trocknen der gebildeten Ausgangssubstanz-Schicht in einem inerten Gasstrom oder durch Verdunstung,
  • III. Begasung der getrockneten Ausgangssubstanz-Schicht mit einem feuchten Reaktantgas zur Umwandlung in eine entsprechende Hydroxid- oder Komplex-Schicht,
  • IV. thermische Behandlung der gebildeten Hydroxid- oder Komplex-Schicht zur Bildung der jeweiligen Endschicht und anschließend
    in Abhängigkeit vom Auftreten nicht umgesetzter Ausgangskomponenten oder unerwünschter Nebenprodukte:
  • V. Spülen zu deren Entfernung und anschließendes Trocknen.
  • Eine andere Lösung der Problemstellung zur alternativen Herstellung metallischer Schichten ist durch ein analoges Verfahren mit mit den nachfolgenden Verfahrensschritten vorgesehen :
  • I. Aufbringen zumindest einer geeigneten Ausgangssubstanz zum Schichtaufbau auf die Substratoberfläche,
  • II. Trocknen der gebildeten Ausgangssubstanz-Schicht in einem inerten Gasstrom oder durch Verdunstung,
  • III. Begasung der getrockneten Ausgangssubstanz-Schicht mit einem feuchten, reduzierend wirkend Reaktantgas zur Bildung einer metallischen Schicht und
  • IV. thermische Behandlung der gebildeten Metall-Schicht zur Entfernung nicht umgesetzter Ausgangskomponenten oder unerwünschter Nebenprodukte.
  • Eine weitere Lösung der Problemstellung ist zur alternativen Herstellung anderer chalkogenidischer Beschichtungen ist außerdem durch ein analoges Verfahren mit mit den nachfolgenden Verfahrensschritten vorgesehen :
  • I. Aufbringen zumindest einer geeigneten Ausgangssubstanz zum Schichtaufbau auf die Substratoberfläche,
  • II. Trocknen der gebildeten Ausgangssubstanz-Schicht in einem inerten Gasstrom oder durch Verdunstung,
  • III. Begasung der getrockneten Ausgangssubstanz-Schicht mit einem feuchten Reaktantgas zur Umwandlung in eine entsprechende Hydroxid- oder Komplex-Schicht,
  • IIIa. Begasung der Hydroxid- oder Komplex-Schicht mit einem zusätzlichen, Chalkogenwasserstoffverbindungen enthaltenden Reaktantgaszur Bildung der chalkogenidischen Endschicht und
  • IV. thermische Behandlung der gebildeten Hydroxid- oder Komplex-Schicht und/oder der chalkogenidischen Endschicht.
  • Vorteilhafte Weiterbildungen der erfindungsgemäßen Verfahrens zur alternativen Herstellung von keramischen und oxidischen, metallischen oder andereren chalkogenidischen Schichten sind den einzelnen Unteransprüchen zu entnehmen. Deren Inhalt wird im Folgenden im Zusammenhang mit den allgemeinen Ausführungen zu der Erfindung implizit erläutert.
    Mit den erfindungsgemäßen Verfahren können Filme von schwer löslichen Oxiden und generell von solchen Verbindungen, die sich durch Umsetzung einer trockenen festen Ausgangsverbindung mit einer gasförmigen Reaktionskomponente bilden, einfach hergestellt werden. Ausschlaggebend hierfür ist die zunächst erfolgende Hydrolyse der zur Erzielung einer homogenen Oberfläche getrockneten Ausgangssubstanz-Schicht durch ein feuchtes Reaktantgas zur Bildung von Hydroxiden oder Komplexen, beispielsweise Amminkomplexe bei Verwendung von feuchtem Ammoniak-Gas als Reaktantgas. Bei dem Reaktantgas kann es sich aber auch um einen anderen, bevorzugt basisch reagierenden Dampf oder u.U. um Wasserdampf allein handeln. Mit der Bezeichnung "Dampf" sollen immer feuchte Gase, d.h. ein Gemisch aus gasförmigem Wasser, basischem Gas und in den meisten Fällen einem inerten Trägergas, gemeint sein. Feuchtes Ammoniak-Gas entsteht durch einfaches "Durchblubbern" von Stickstoff durch eine Waschflasche mit wässriger Ammoniaklösung. Die Erzeugung metallischer Schichten durch Begasung erfordert entsprechend eine Behandlung mit reduzierend wirkenden Gasen.
    Durch die der Begasung nachfolgende Durchführung einer thermischen Behandlung werden dann durch Wasserabspaltung - und bei Komplexen auch durch Ligandenabspaltung - die gewünschten keramischen oder oxidischen Oberflächen-Schichten oder anderen Endschichten erzeugt. Die thermische Behandlung der Hydroxid- oder Komplex-Schichten kann in einem separaten Verfahrensschritt nach der Begasung mit dem Reaktantgas erfolgen, beispielsweise durch Erhitzen der Schichten in einem Ofen. Sie kann aber auch prozessbegleitend bei der Begasung durch eine Erhöhung der Prozesstemperatur bewirkt werden. Durch Anwendung einer höheren Temperatur kann der optionale Reinigungsschritt u.U. entfallen, da dadurch bereits unerwünschte Substanzen aus dem Film entfernt werden können. In bestimmten Fällen kann sich sogar auch ohne Anwendung einer gezielt herbeigeführten Temperaturerhöhung unmittelbar ein Oxid bilden. Bei der Herstellung von chalkogenidischen Schichten kann sich die thermische Behandlung auf beide erforderliche Begasungen erstrecken. Die thermische Behandlung zur Bildung der jeweiligen Endschicht kann im Einzelfall auch im Sinne einer Entfernung von störenden Komponenten verstanden werden. Bei der Herstellung metallischer Schichten wird diese dazu benutzt, unerwünschte Nebenprodukte zu entfernen.
    In der Regel handelt es sich bei der Ausgangssubstanz um eine Metallverbindung, beispielsweise Metallhalogenide wie ZnCl2 oder AlCl3, desjenigen Metalls, dessen Oxid, Keramik (z.B. ZnO, Al2O3) oder Metall als Endprodukt für die Beschichtung gewünscht ist. Das entsprechend gelöste Metallsalz wird dann auf das Substrat aufgebracht, getrocknet (ggfs. bis zu einer definierten Restfeuchte) und mit gasförmigen Reaktionspartnern umgesetzt.
    Mit den erfindungsgemäßen Verfahren hergestellte Schichten können in der Solartechnik bei der Herstellung vieler Komponenten von Solarzellen Verwendung finden. In der Werkstofftechnik kann eine Beschichtung von allen möglichen glatten, rauen und porösen Substraten erfolgen. Weiterhin erlaubt das Verfahren durch den Einsatz von Ausgangssubstanz-Mischungen oder unterschiedlicher Ausgangssubstanzen und deren alternierender Verwendung, auch die Herstellung von homogen dotierten Schichten und Mischschichten sowie die Erzeugung von Multischichten. Einsetzbar sind die dünnen, schwer löslichen Beschichtungen insbesondere überall dort, wo ein erweiterter Oberflächenschutz gefragt ist. Hierbei kann es sich rein um den mechanischen und chemischen Schutz der Oberfläche handeln, aber auch um die Beeinflussung ihrer physikalischen und chemischen Oberflächeneigenschaften, wie beispielsweise Leitfähigkeit, Reflexions- und Absorptionsverhalten bzw. Katalyse oder Chemiesorption.
    Als weitere Vorteile gegenüber bekannten Verfahren sind außerdem zu nennen :
    • niedrige Kosten, da moderate, unkritische Prozessparameter, kein Vakuum
    • Unempfindlichkeit gegen Variation der Prozessparameter
    • einfache Schichtdickeneinstellung durch Anzahl der zu durchlaufenden Zyklen
    • hohe Reproduzierbarkeit hergestellter Schichten
    • homogene Beschichtung von Substraten mit beliebiger Oberfläche
    • Beschichtung auch von abgeschatteten inneren Oberflächen
    • vollständige Ausnutzung des Ausgangsmaterials und
    • einfache Automatisierbarkeit.
    Ausgehend von der Kristallstruktur einer Ausgangsverbindung wird beim Chalkogenisierungsschritt zur Bildung von Sulfiden, Seleniden oder Telluriden bei dem in der älteren deutschen Anmeldung DE 198 31 214 beschriebenen ILGAR-Verfahren in bestimmten Fällen auch die Kristallstruktur verändert.
    Dieses bedarf aber einer Umwandlungsenergie, die bei der Durchführung des ILGAR-Verfahrens bei Raumtemperatur nur in begrenztem Maße vorhanden ist. Dies führt dort zu einem verringerten Umsatz des Ausgangsmaterials zum Endprodukt bzw. zu einer langsameren Reaktionsgeschwindigkeit, sodass Reste der Ausgangsverbindung im hergestellten Metallchalkogenid-Dünnfilm eingelagert bleiben und nur durch zusätzlich vorgesehene Spülschritte entfernt werden können. Mit einer Verringerung der Filmqualität und einer erhöhten Abscheidedauer ist somit beim ILGAR-Verfahren zu rechnen.
    Bei den erfindungsgemäßen Verfahren kann demgegenüber eine Verbesserung erzielt werden. Hierzu ist zur alternativen Herstellung anderer chalkogenidischer Beschichtungen vorgesehen, dass diese nach der Umwandlung der getrockneten Ausgangssubstanz-Schicht in eine entsprechende Hydroxid- oder Komplex-Schicht mit einem zusätzlichen, Chalkogenwasserstoffverbindungen enthaltenden Reaktantgas begast werden. Durch diesen Reaktionsweg über die Bildung eines Metallhydroxids und Integration des Heizprozesses können deutlich höhere Umsätze erzielt werden, wodurch weniger Rückstände des Ausgangsmaterials im Endprodukt auftreten. Bei den Chalkogeniden auf Basis von Schwefel, Selen oder Tellur kann dabei ebenfalls feuchtes Ammoniak-Gas (NH3) als zusätzliches Reaktantgas eingesetzt werden. Als mögliche Erklärung für diesen Effekt kann die niedrigere Aktivierungsenergie durch diesen Zwischenschritt angesehen werde. Zudem besitzen viele Metallhydroxide keine Kristallstruktur, sondern sind amorph. Dadurch sind sie weniger kompakt und lassen das Reaktantgas besser in die zu chalkogenisierende Schicht eindringen.
    Der erhöhte Energiebedarf während der Kristallumwandlung kann im Sinne der allgemein bekannten Temperung natürlich auch direkt durch eine erhöhte Prozesstemperatur während des Chalkogenisierungsschritts bereitgestellt werden. Hierbei kann bereits das Beleuchten des Substrats mit einer Halogenlampe ausreichen. Eine Durchführung des Chalkogenisierungsschritts innerhalb eines Ofens ist ebenfalls möglich. Die genannten Maßnahmen führen zu reineren und höherwertigen Dünnfilmen bei gleichzeitiger Mengenverringerung des einzusetzenden chalkogenwasserstoffhaltigen Reaktantgases und reduzieren die Depositionszeit, da u.U. auf Spülschritte, die Zeit kosten und die Qualität des Endproduktes vermindern können, verzichtet werden kann. Bei Einführung der Hydroxid-Reaktion sind keine Ausgangsmaterial-Rückstände mehr zu erwarten, die hier auftretenden Nebenprodukte sind relativ leicht flüchtig und bei geeigneter Temperaturwahl im letzten Prozessschritt entfernbar. Soll die Kristallitgröße des Endprodukts unter Beibehaltung hohen Umsatzes dagegen klein bleiben, darf die Temperatur nur so gering wie nötig erhöht werden, sodass in einem solchen Fall die Kombination des Hydroxidschrittes mit einer geringfügig erhöhten Prozesstemperatur sinnvoll ist. Nano-Kristallite bekommen zunehmend Bedeutung in Forschung und Technik, weil sie zu Quantum-Size-Effekten im Dünnfilm führen, die Einfluss auf die optischen und elektrischen Eigenschaften des Materials haben.
    Ausbildungsformen der Erfindung werden nachfolgend anhand der schematischen Figuren näher erläutert. Dabei zeigt:
    Figur 1
    den erfindungsgemäßen Prozessablauf bei der Herstellung einer keramischen Beschichtung in einer geeigneten Anordnung und
    Figur 2
    den erfindungsgemäßen Prozessablauf bei der Herstellung einer chalkogenidischen Beschichtung.
    Die Figur 1 zeigt die Herstellung einer Zinkoxidschicht auf einem amorphen Substrat S, das in einen im dreidimensionalen Raum verfahrbaren Substrathalter SH eingespannt ist. Zum Abdecken der einzelnen Bäder weist der Substrathalter SH einen Deckel C auf. Im einem ersten Verfahrensschritt I wird das Substrat S in eine geeignete Ausgangssubstanz P (Precursor) eingetaucht. Im gewählten Ausführungsbeispiel handelt es sich dabei um ein Lösungsbad LB mit der gelösten Metaliverbindung Zinkchlorid ZnCl2. Nach dem Herausziehen befindet sich eine Ausgangssubstanzschicht PL, hier ZnCl2, auf der Substratoberfläche.
    Die ZnCl2-Schicht wird in einem Gefäß V in einem zweiten Verfahrensschritt II zunächst getrocknet, beispielsweise durch Einleiten eines Gasstromes GS. Hierbei kann es sich um inerten Stickstoff handeln. In einem dritten Verfahrensschritt III wird dann wiederum im Gefäß V die getrocknete Ausgangssubstanzschicht PLD mit einem feuchten Reaktantgas RG, hier feuchtes Ammoniakgas, begast. Das feuchte Ammoniakgas wird durch einfaches Einleiten von Stickstoff N2 in eine Waschflasche B, in der sich konzentrierte Ammoniaklösung NH4OH und Wasser H2O befinden, hergestellt. Nach der Begasung hat sich auf dem Substrat S eine Hydroxidschicht HL gebildet, im Ausführungsbeispiel Zinkhydroxid Zn(OH)2. Zur Trocknung und Begasung können auch unterschiedliche Gefäße V eingesetzt werden.
    In einem vierten Verfahrensschritt IV wird das mit dem Zinkhydroxid Zn(OH)2 versehene Substrat S in einen Ofen H eingebracht. Durch Energiezufuhr wird in diesem Verfahrensschritt IV das Zn(OH)2 durch Wasserabspaltung in Zinkoxid ZnO thermisch umgewandelt. Diese oxidische bzw. keramische Schicht OL/CL belegt das Substrat an seiner gesamten zugänglichen Oberfläche, auch der inneren, sicher und übt dort seine Funktionalität aus. Ein anschließender Verfahrensschritt des Spülens und Trocknens ist optional und hier nicht weiter dargestellt. Je nach gewünschter Schichtdicke können die genannten Verfahrensschritte mehrfach zyklisch durchlaufen werden.
    In Figur 2 ist der erfindungsgemäße Verfahrensablauf zur Herstellung anderer chalkogenidischer Beschichtungen am Beispiel von Cadmiumsulfid CdS schematisch dargestellt. Hier nicht weiter erläuterte Verfahrensschritte und Bezugszeichen sind der Beschreibung zur Figur 1 zu entnehmen. Nach der Durchführung der Verfahrensschritte I bis III mit Adsorption P (CdCl2), Trocknung PLD (CdCl2), Begasung (N2+NH3) und Hydroxid-Bildung HL (Cd(OH)2) erfolgt ein weiterer Verfahrensschritt IIIa, bei dem die gebildete Hydroxid-Schicht HL (Cd(OH)2) mit einem zusätzlichen, Chalkogenwasserstoffverbindungen enthaltenden Reaktantgas CRG (hier Schwefelwasserstoff H2S) in Kontakt gebracht wird. Durch diesen Verfahrensschritt IIIa, dem Chalkogenisierungsschritt, wird eine chalkogenidische Beschichtung CHL in Form von Cadmiumsulfid (CdS) auf dem Substrat S erzeugt. Während der Durchführung der Verfahrensschritte II-IIIa ist die Prozesstemperatur TP, beispielsweise durch eine Durchführung der Verfahrensschritte in einem Muffelofen H, zur Verbesserung des Stoffumsatzes erhöht. Die thermische Behandlung im Verfahrensschritt IV erstreckt sich hier also auf beide Begasungen III, IIIa.
    Bezugszeichenliste
    B
    Waschflasche
    C
    Deckel
    CHL
    chalkogenidische Schicht
    CL
    keramische Schicht
    CRG
    Chalkogenwasserstoffverbindungen enthaltendes Reaktantgas
    H
    Ofen
    HL
    Hydroxidschicht
    LB
    Lösungsbad
    OL
    oxidische Schicht
    P
    Ausgangssubstanz
    PL
    Ausgangssubstanzschicht
    PLD
    getrocknete Ausgangssubstanzschicht
    RG
    feuchtes Reaktantgas
    S
    Substrat
    SH
    Substrathalter
    TP
    Prozesstemperatur
    V
    Gefäß

    Claims (9)

    1. Verfahren zur Herstellung dünner, schwer löslicher Beschichtungen auf Substraten (S) mit beliebiger Morphologie mit den in Abhängigkeit von der gewünschten Schichtdicke zyklisch durchzuführenden nachfolgenden Verfahrensschritten zur Herstellung keramischer oder oxidischer Schichten (CL/OL):
      I. Aufbringen zumindest einer geeigneten Ausgangssubstanz (P) zum Schichtaufbau auf die Substratoberfläche (S),
      II. Trocknen der gebildeten Ausgangssubstanz-Schicht (PL) in einem inerten Gasstrom (GS) oder durch Verdunstung,
      III. Begasung der getrockneten Ausgangssubstanz-Schicht (PLD) mit einem feuchten Reaktantgas (RG) zur Umwandlung in eine entsprechende Hydroxid- oder Komplex-Schicht (HL),
      IV. thermische Behandlung der gebildeten Hydroxid- oder Komplex-Schicht (HL) zur Bildung der jeweiligen Endschicht (CL/OL) und anschließend
      in Abhängigkeit vom Auftreten nicht umgesetzter Ausgangskomponenten oder unerwünschter Nebenprodukte:
      V. Spülen zu deren Entfernung und anschließendes Trocknen.
    2. Verfahren zur Herstellung dünner, schwer löslicher Beschichtungen auf Substraten (S) mit beliebiger Morphologie mit den in Abhängigkeit von der gewünschten Schichtdicke zyklisch durchzuführenden nachfolgenden Verfahrensschritten zur Herstellung metallischer Schichten :
      I. Aufbringen zumindest einer geeigneten Ausgangssubstanz (P) zum Schichtaufbau auf die Substratoberfläche (S),
      II. Trocknen der gebildeten Ausgangssubstanz-Schicht (PL) in einem inerten Gasstrom (GS) oder durch Verdunstung,
      III. Begasung der getrockneten Ausgangssubstanz-Schicht (PLD) mit einem feuchten, reduzierend wirkend Reaktantgas (RG) zur Bildung einer metallischen Schicht und
      IV. thermische Behandlung der gebildeten Metall-Schicht zur Entfernung nicht umgesetzter Ausgangskomponenten oder unerwünschter Nebenprodukte.
    3. Verfahren zur Herstellung dünner, schwer löslicher Beschichtungen auf Substraten (S) mit beliebiger Morphologie mit den in Abhängigkeit von der gewünschten Schichtdicke zyklisch durchzuführenden nachfolgenden Verfahrensschritten zur Herstellung anderer chalkogenidischer Beschichtungen (CHL):
      I. Aufbringen zumindest einer geeigneten Ausgangssubstanz (P) zum Schichtaufbau auf die Substratoberfläche (S),
      II. Trocknen der gebildeten Ausgangssubstanz-Schicht (PL) in einem inerten Gasstrom (GS) oder durch Verdunstung,
      III. Begasung der getrockneten Ausgangssubstanz-Schicht (PLD) mit einem feuchten Reaktantgas (RG) zur Umwandlung in eine entsprechende Hydroxid- oder Komplex-Schicht (HL),
      IIIa. Begasung der Hydroxid- oder Komplex-Schicht (HL) mit einem zusätzlichen, Chalkogenwasserstoffverbindungen enthaltenden Reaktantgas (CRG) zur Bildung der chalkogenidischen Endschicht (CHL) und
      IV. thermische Behandlung der gebildeten Hydroxid- oder Komplex-Schicht (HL) und/oder der chalkogenidischen Endschicht (CHL).
    4. Verfahren nach einem der Ansprüche 1 bis 3,
      dadurch gekennzeichnet, dass
      die thermische Behandlung (IV) entweder durch separates Erhitzen der jeweiligen Schicht nach deren Bildung oder durch Erhöhen der Prozesstemperatur (TP) bei ihrer Bildung erfolgt.
    5. Verfahren nach einem der Ansprüche 1 bis 4,
      dadurch gekennzeichnet, dass
      die zumindest eine Ausgangssubstanz (P) als Lösung mit einem vorzugsweise leicht flüchtigen Lösungsmittel vorliegt und das Aufbringen der Lösung auf das Substrat (S) durch Eintauchen (LB) oder Aufsprühen erfolgt.
    6. Verfahren nach einem der Ansprüche 1 bis 5,
      dadurch gekennzeichnet, dass
      die Ausgangssubstanz (P) ein Salz ist.
    7. Verfahren nach einem der Ansprüche 1 bis 6,
      dadurch gekennzeichnet, dass
      das feuchte Reaktantgas (RG) ein vorzugsweise basisch reagierendes Gas oder gasförmiges Wasser ist.
    8. Verfahren nach einem der Ansprüche 1 bis 7,
      dadurch gekennzeichnet, dass
      die Ausgangssubstanz (P) eine Mischung verschiedener Verbindungen ist.
    9. Verfahren nach einem der Ansprüche 1 bis 8,
      dadurch gekennzeichnet, dass
      unterschiedliche Ausgangssubstanzen (P) in den einzelnen Verfahrenszyklen eingesetzt werden, insbesondere in wiederkehrender Reihenfolge.
    EP00934914A 1999-04-06 2000-04-06 Verfahren zur herstellung dünner, schwer löslicher beschichtungen Expired - Lifetime EP1169492B1 (de)

    Priority Applications (1)

    Application Number Priority Date Filing Date Title
    SI200030030T SI1169492T1 (en) 1999-04-06 2000-04-06 Method of producing thin, poorly soluble coatings

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE19916403 1999-04-06
    DE19916403A DE19916403C1 (de) 1999-04-06 1999-04-06 Verfahren zur Herstellung dünner, schwer löslicher Beschichtungen
    PCT/DE2000/001173 WO2000060135A2 (de) 1999-04-06 2000-04-06 Verfahren zur herstellung dünner, schwer löslicher beschichtungen

    Publications (2)

    Publication Number Publication Date
    EP1169492A2 EP1169492A2 (de) 2002-01-09
    EP1169492B1 true EP1169492B1 (de) 2002-09-25

    Family

    ID=7904248

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP00934914A Expired - Lifetime EP1169492B1 (de) 1999-04-06 2000-04-06 Verfahren zur herstellung dünner, schwer löslicher beschichtungen

    Country Status (16)

    Country Link
    US (1) US8158204B1 (de)
    EP (1) EP1169492B1 (de)
    JP (2) JP4275319B2 (de)
    KR (1) KR20010113877A (de)
    CN (1) CN1268786C (de)
    AT (1) ATE224965T1 (de)
    AU (1) AU757674B2 (de)
    CA (1) CA2367342A1 (de)
    DE (2) DE19916403C1 (de)
    DK (1) DK1169492T3 (de)
    ES (1) ES2183798T3 (de)
    HU (1) HU222653B1 (de)
    PL (1) PL193049B1 (de)
    PT (1) PT1169492E (de)
    RU (1) RU2250932C2 (de)
    WO (1) WO2000060135A2 (de)

    Families Citing this family (8)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE10142913B4 (de) 2001-08-27 2004-03-18 Hahn-Meitner-Institut Berlin Gmbh Vertikale Transistoranordnung mit einem flexiblen, aus Kunststofffolien bestehenden Substrat und Verfahren zu deren Herstellung
    DE10160504C2 (de) * 2001-11-30 2003-11-13 Hahn Meitner Inst Berlin Gmbh Verfahren zur Herstellung dünner, schwer löslicher Beschichtungen
    DE10258727A1 (de) * 2002-12-05 2004-06-24 Schott Glas Ofen
    DE10339824B4 (de) * 2003-08-24 2005-07-07 Hahn-Meitner-Institut Berlin Gmbh Beschichtungsverfahren zur Deposition und Fixierung von Partikeln auf einer Substratoberfläche und Solarzellen mit funkionellem Schichtenaufbau
    KR100863932B1 (ko) * 2007-07-10 2008-11-18 주식회사 코미코 세라믹 용사 코팅층의 수화 처리 방법과, 이를 이용한정전척 제조 방법 그리고 상기 수화 처리 방법에 형성된세라믹 용사 코팅층을 갖는 기판 구조물 및 정전척
    DE102008017077B4 (de) 2008-04-01 2011-08-11 Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 14109 Verfahren zur Herstellung einer n-halbleitenden Indiumsulfid-Dünnschicht
    DE102009037371B3 (de) * 2009-08-13 2011-03-17 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Beschichtungsvorrichtung mit Ultraschallzerstäuber
    CN103489962B (zh) * 2013-10-07 2017-01-04 复旦大学 大面积制备半导体量子点的方法

    Family Cites Families (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4242374A (en) * 1979-04-19 1980-12-30 Exxon Research & Engineering Co. Process for thin film deposition of metal and mixed metal chalcogenides displaying semi-conductor properties
    JPS63103886A (ja) * 1986-10-21 1988-05-09 日本碍子株式会社 メタライズペ−ストならびにそれを使用してなるセラミツクスのメタライズ法
    US5106828A (en) * 1987-07-20 1992-04-21 North American Philips Corporation Method for fabricating superconductors by sol-gel process
    ES2135427T3 (es) 1992-07-08 1999-11-01 Yeda Res & Dev Peliculas finas y orientadas policristalinas de calgogenuros de un metal de transicion.
    JP2535790B2 (ja) * 1994-09-08 1996-09-18 工業技術院長 タングステンブロンズおよびその被覆複合体の製造方法
    US5686368A (en) * 1995-12-13 1997-11-11 Quantum Group, Inc. Fibrous metal oxide textiles for spectral emitters
    JPH10128115A (ja) * 1996-11-01 1998-05-19 Cosmo Sogo Kenkyusho:Kk 担持貴金属触媒およびその製造方法
    JP4587247B2 (ja) 1998-03-19 2010-11-24 ヘルムホルツ−ツェントルム ベルリン フュア マテリアリーエン ウント エネルギー ゲゼルシャフト ミット ベシュレンクテル ハフツング 金属カルコゲン化物薄層を製造する方法及び装置
    DE19831214C2 (de) * 1998-03-19 2003-07-03 Hahn Meitner Inst Berlin Gmbh Verfahren und Anordnung zur Herstellung dünner Metallchalkogenid-Schichten

    Also Published As

    Publication number Publication date
    DE19916403C1 (de) 2000-10-12
    ATE224965T1 (de) 2002-10-15
    RU2250932C2 (ru) 2005-04-27
    HUP0200790A2 (en) 2002-07-29
    CN1268786C (zh) 2006-08-09
    DE50000568D1 (de) 2002-10-31
    PL193049B1 (pl) 2007-01-31
    PL350799A1 (en) 2003-02-10
    AU757674B2 (en) 2003-02-27
    JP4275319B2 (ja) 2009-06-10
    CN1346412A (zh) 2002-04-24
    PT1169492E (pt) 2003-02-28
    EP1169492A2 (de) 2002-01-09
    CA2367342A1 (en) 2000-10-12
    AU5060000A (en) 2000-10-23
    JP2009084153A (ja) 2009-04-23
    WO2000060135A2 (de) 2000-10-12
    KR20010113877A (ko) 2001-12-28
    WO2000060135A3 (de) 2001-04-19
    US8158204B1 (en) 2012-04-17
    ES2183798T3 (es) 2003-04-01
    DK1169492T3 (da) 2003-02-03
    HU222653B1 (hu) 2003-09-29
    JP2003530284A (ja) 2003-10-14

    Similar Documents

    Publication Publication Date Title
    Gourmelon et al. MS2 (M= W, Mo) photosensitive thin films for solar cells
    Ortega-López et al. Improved efficiency of the chemical bath deposition method during growth of ZnO thin films
    DE10049257B4 (de) Verfahren zur Dünnfilmerzeugung mittels atomarer Schichtdeposition
    DE102010000002B4 (de) Verfahren zur Abscheidung von Mehrlagenschichten und/oder Gradientenschichten
    DE202004021800U1 (de) Halbleiterfilme aus einer quartären oder höheren Legierung der Gruppe I-III-VI
    KR100789064B1 (ko) 금속유기물증착법에 의한 CuInS2 박막의 제조방법,그로 제조된 CuInS2 박막 및 그를 이용한 In2S3박막의 제조방법
    EP3028295B1 (de) Verfahren zum bonden von substraten
    EP1169492B1 (de) Verfahren zur herstellung dünner, schwer löslicher beschichtungen
    CN105836789B (zh) 一种原位制备多孔结构氧化锌纳米棒阵列的方法
    KR20120004352A (ko) Cigs박막의 제조방법
    CN100424233C (zh) 一种多晶氧化锌薄膜材料的制备方法
    KR20130116746A (ko) 정전분무법에 의하여 제조된 czts 박막 및 그의 제조방법
    CN107858754A (zh) 一种GaP纳米线及其制备方法和用途
    CN101847583A (zh) 一种球状CdS半导体薄膜的制备方法
    Ait Ahmed et al. Morphological and optical properties of ZnO thin films grown on Si and ITO glass substrates
    Gálvez-Barboza et al. Effect of Ce doping on the structure and optical properties of HfO 2 films by the Pechini-type sol–gel method
    Nagamalleswari et al. Growth of Cu2ZnSnS4 Thin Film Solar Cells Using Chemical Synthesis
    EP2847786B1 (de) Verfahren zum bonden von substraten
    Budanov et al. Synthesis of a Cu2SnS3 ternary compound by thermal annealing of a metal layer in sulfur vapor
    CN114262911A (zh) 一种用于光解水的全空间梯度掺杂光电极及制备方法
    Ishizaki et al. Structural properties of Ag-based chalcopyrite compound thin films for solar cells
    Zaretskaya et al. Properties of Cu2ZnSn (SxSe1-X) 4 Thin Films Obtained by an Electrodeposition-Annealing Process
    Thankalekshmi et al. Non-Vacuum single step synthesis of large-grain size CZTS photo absorber for thin film solar cells by flux assisted chemical spray
    Moreno et al. Transition from CdS to CdCO3 by deposition temperature influence
    Manobalaji et al. A modified high-temperature vapour deposition technique for fabricating CH 3 NH 3 PbI 3 thin films under an ambient atmosphere

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20011106

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT PAYMENT 20011106;LV PAYMENT 20011106;MK;RO;SI PAYMENT 20011106

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    17Q First examination report despatched

    Effective date: 20020308

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: LT PAYMENT 20011106;LV PAYMENT 20011106;SI PAYMENT 20011106

    REF Corresponds to:

    Ref document number: 224965

    Country of ref document: AT

    Date of ref document: 20021015

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REF Corresponds to:

    Ref document number: 50000568

    Country of ref document: DE

    Date of ref document: 20021031

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: BOVARD AG PATENTANWAELTE

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: T3

    REG Reference to a national code

    Ref country code: GR

    Ref legal event code: EP

    Ref document number: 20020404473

    Country of ref document: GR

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20030114

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IE

    Payment date: 20030212

    Year of fee payment: 4

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GR

    Payment date: 20030226

    Year of fee payment: 4

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: SC4A

    Free format text: AVAILABILITY OF NATIONAL TRANSLATION

    Effective date: 20021217

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20030305

    Year of fee payment: 4

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: PT

    Payment date: 20030326

    Year of fee payment: 4

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2183798

    Country of ref document: ES

    Kind code of ref document: T3

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FI

    Payment date: 20030403

    Year of fee payment: 4

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030406

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030406

    ET Fr: translation filed
    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20030423

    Year of fee payment: 4

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DK

    Payment date: 20030424

    Year of fee payment: 4

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030430

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20030626

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040406

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040406

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040406

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040430

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040430

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040430

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040430

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041015

    BERE Be: lapsed

    Owner name: *HAHN-MEITNER-INSTITUT BERLIN G.M.B.H.

    Effective date: 20040430

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041101

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041103

    LTLA Lt: lapse of european patent or patent extension

    Effective date: 20040406

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 20041101

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: MM4A

    REG Reference to a national code

    Ref country code: SI

    Ref legal event code: KO00

    Effective date: 20050103

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: CD

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20130308

    Year of fee payment: 14

    Ref country code: FR

    Payment date: 20130326

    Year of fee payment: 14

    Ref country code: SE

    Payment date: 20130308

    Year of fee payment: 14

    Ref country code: ES

    Payment date: 20130307

    Year of fee payment: 14

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20130423

    Year of fee payment: 14

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: EUG

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20140406

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20141231

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140407

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140406

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140430

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140406

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20150528

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140407

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20150430

    Year of fee payment: 16

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R084

    Ref document number: 50000568

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 50000568

    Country of ref document: DE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20161101