EP1161570B1 - Procede pour recouvrir un corps support d'un materiau a base de se-fe-n magnetique dur, par projection au plasma - Google Patents

Procede pour recouvrir un corps support d'un materiau a base de se-fe-n magnetique dur, par projection au plasma Download PDF

Info

Publication number
EP1161570B1
EP1161570B1 EP00920387A EP00920387A EP1161570B1 EP 1161570 B1 EP1161570 B1 EP 1161570B1 EP 00920387 A EP00920387 A EP 00920387A EP 00920387 A EP00920387 A EP 00920387A EP 1161570 B1 EP1161570 B1 EP 1161570B1
Authority
EP
European Patent Office
Prior art keywords
coating
temperature
support body
layer
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00920387A
Other languages
German (de)
English (en)
Other versions
EP1161570A1 (fr
Inventor
Gotthard Rieger
Joachim Wecker
Thomas Duda
Wolfram Unterberg
Werner Rodewald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10002346A external-priority patent/DE10002346A1/de
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1161570A1 publication Critical patent/EP1161570A1/fr
Application granted granted Critical
Publication of EP1161570B1 publication Critical patent/EP1161570B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/126Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing rare earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates

Definitions

  • the invention relates to a method for coating a carrier body with a layer of hard magnetic Material of the SE-FE-B material system, with the SE component at least one rare earth metal and at least the FE component contain a ferromagnetic element.
  • the coating process comprises a plasma spraying process, in which a melted powder from a primary material of the hard magnetic material to be trained on the Carrier body is sprayed.
  • a plasma spraying process in which a melted powder from a primary material of the hard magnetic material to be trained on the Carrier body is sprayed.
  • During the coating process are used for each area of the Carrier body several coating phases with heating the surface of the layer to be coated and each an intermediate, coating-free phase is provided.
  • the method and the associated device are based on the DE 195 31 861 A1. Similar processes are known, for example, from US Pat. No. 4,297,388, US Pat. No. 4,897,283, and the Journal of Material Science, 15 July 1992, 27 (14), pages 3
  • magnetic materials based on material systems which contain a rare earth metal (SE) and a ferromagnetic transition metal (FE) and are characterized by a high coercive field strength H c and a high energy density (B ⁇ H) max .
  • SE rare earth metal
  • FE ferromagnetic transition metal
  • B ⁇ H max high energy density
  • an isotropic Nd-Fe-B magnetic material can be obtained on a support body made of copper (Cu) heated to 600 ° C, heat treatment being provided at 750 ° C for 0.5 hours after the deposition process. This heat treatment can significantly increase the coercive force, the remanence and the energy product.
  • the cited publication also mentions a coercive field strength H c for anisotropic material of 12 kA / cm sprayed onto a support body made of Cu held at 600 ° C.
  • the aforementioned DE-A document is a a coating process comprising a plasma spraying process remove, in the case of a base body such as a melted body of an electrical machine Powder from a primary material of a trainee hard magnetic material is sprayed on.
  • a base body such as a melted body of an electrical machine Powder from a primary material of a trainee hard magnetic material is sprayed on.
  • An area of the base body should have several coating phases are suspended between which each is applied material and the underlying material can cool down. The rate of cooling is obvious so high that after the coating process the material is amorphous is.
  • the base body must therefore be at high temperatures from, for example, 800 to 900 ° C, so that Recrystallize material.
  • the object of the present invention is the known method further to improve so that layers with high coercive force and can be obtained with a relatively large layer thickness.
  • the aim is to avoid expensive recrystallization annealing his.
  • This object is achieved according to the invention solved in that the carrier body at least in one at least its zone facing the surface to be coated towards the end of the coating process Recrystallization of a hard magnetic phase of the hard magnetic Material ensuring temperature level raised becomes. In addition to the hard magnetic phase, if necessary other phases are present in the hard magnetic material his.
  • the measures according to the invention are based on the knowledge that that fluctuates during the coating process Temperature level a very uniform layer structure with a low porosity and good adhesive properties on the carrier body can be obtained, especially with larger layer thicknesses comparatively higher hard magnetic properties shows when the layer structure is on for recrystallization sufficiently high temperature level through appropriate Heating the carrier body during the coating process is lifted. This temperature level should at the latest be reached towards or at the end of the coating process, can also be achieved much sooner. simultaneously layer residual stresses are relatively low held. This takes into account the fact that with a continuous coating process no thicker Layers with the required consistently good magnetic Let properties be preserved as there are problems with there is local overheating on the carrier body.
  • a plasma spray jet is preferred managed so that during a coating phase subsequent coating-free phase with respect one area a coating of another area the carrier body is made. You can see this expediently moving the plasma spray jet and / or the carrier body.
  • the coating process according to the invention can also be carried out in several Coating sections are divided by at least a cooling section are interrupted. in this connection has proven to be particularly advantageous when temperature control is carried out on the carrier body in such a way that at least the first coating section of room temperature up to a first maximum temperature, the cooling section from the first maximum temperature to one Intermediate temperature and the second coating section of this intermediate temperature up to a second maximum temperature be provided.
  • the first and the second maximum temperature can be at the same temperature level.
  • the immediately adjacent sections lead to temperature compensation over the entire surface and therefore also for a particularly even layer structure.
  • Such a layer structure is to be ensured in particular if if the first maximum temperature and / or the second maximum temperature from a temperature range between 400 ° C and 900 ° C, in particular between 500 ° C and 800 ° C selected will be.
  • the at least one intermediate temperature is also advantageous by at least 20 ° C, preferably by at least 50 ° C lower than the maximum temperature of the previous one Coating phase selected.
  • the first coating section advantageously takes one Period between 2 and 15 minutes, preferably between 3 and 10 minutes.
  • layers are particularly proportionate large thickness of, for example, over 0.5 mm, preferably over 1 mm.
  • a Area to be coated during a coating phase of the carrier body by a plasma spray jet moved relative thereto several times in a corresponding number of Overflows. It is preferably with everyone Overflow a partial layer with a thickness between 1 and 20 microns, especially between 3 and 15 microns applied. In at least The layer on the Deposited support body with the desired total thickness become. With each overflow, only a partial area of the area of the carrier body detected during an overflow detected. This leads to a further equalization of the Temperature on the support body or a corresponding reduction from local overheating and also to one Improve the straight with regard to relatively thick Layers of important good adhesion of the deposited material with low porosity.
  • the support body can optionally still undergo heat treatment, wherein the heat treatment in particular at at least one temperature level between 550 ° and 800 ° C, is preferably between 600 ° and 750 ° C.
  • the heat treatment in particular at at least one temperature level between 550 ° and 800 ° C, is preferably between 600 ° and 750 ° C.
  • a suitable one for carrying out the method according to the invention coater can a known one Plasma spray gun, in whose plasma flame the primary material is to introduce means for holding the support body with respect one aimed at him, exiting the sprayer Spray jet and means for temperature adjustment on the support body. With such measures are to achieve the advantages of the claimed process control.
  • the carrier body is advantageously simple by means of it receiving, to be placed at a predetermined temperature level Bracket indirectly at the desired temperature level to keep.
  • the temperature level of the carrier body leaves adjust itself easily when the holder is coolable is. This is the hot ambient temperature of the plasma spraying process on the carrier body to the desired extent.
  • means for relative can be particularly advantageous Movement of the carrier body with respect to the plasma spraying device be provided.
  • the plasma spray device be designed to be pivotable. In this way complicated geometries of carrier bodies can also be created and coat large areas effortlessly.
  • the method is particularly suitable for the formation of layers which contain at least the components Nd, Fe and B of the SE-FE-B material, in particular at least largely the hard magnetic Nd 2 Fe 14 B phase.
  • Corresponding layers are advantageously deposited on a carrier body made of Cu or a material containing Cu, in particular of a Cu alloy, or of an alloyed or unalloyed steel.
  • the device is a substrate or carrier body 3 with a Layer 4 made of a special hard magnetic material in a volume V one which can be evacuated to a residual pressure p not shown, known coating chamber coat.
  • the device 2 has a known one Spray device 5 for plasma spraying.
  • This device includes a Housing 6, in which a cathode 7 and one serving as an anode Nozzle 8 are present. They are also feeders for one Powder inlet 9, for a plasma gas 10 and channels 11 for a coolant, for example water.
  • the carrier body 3 is fastened to a holder 12 which is preferably coolable. It therefore points e.g. cooling channels 13 for guiding a (further) coolant such as e.g. water on.
  • the bracket is also advantageously in a large-area thermal connection with the support body, so that its temperature level can be influenced by the bracket is.
  • the carrier body consists of one of the temperature conditions adapted to the plasma spraying process or ceramic material.
  • Metallic carrier materials preferably Cu or a Cu-containing material such as e.g. a Cu alloy or alloyed or unalloyed steels such as e.g. CrNi steel are especially for reasons of heat conduction particularly suitable.
  • An electrical generator 14 is used between the cathode 7 and the nozzle 8 designed as an anode a high voltage applied so that an arc is ignited.
  • a plasma flame 15 arises the opening of the nozzle 8 through which a conical spray jet 16 of the powder fed laterally via the powder inlet 9 is formed. It can thus be on the substrate 3 form large-area spray layer 4.
  • This powder can be a powder mixture of the individual components of the material to be formed or an alloy powder which does not yet have the desired magnetic properties. Since the basic type SE-FE-B mentioned only needs to form the basis for the material to be formed, this means that the three components mentioned are also partially, ie less than 50 atomic%, replaced by corresponding other components in a manner known per se can.
  • Nd-Fe-B in particular, as the main representative of the SE-FE-B system, it is possible to partially remove the Nd component by at least one other element from the group of rare earth metals, whose atomic number in the periodic table of elements is between 57 and 66 ( included) to replace.
  • Co and / or Ni can also be selected for part of the ferromagnetic metal Fe as the FE component.
  • a small proportion of the B component (to a maximum of 3 atomic% within the total composition of the starting powder mixture) can advantageously also be replaced in a known manner by other elements, for example by Si. However, these substituents can also serve to replace the Fe component accordingly.
  • the alloy of the layer to be formed then has the composition SE x (FE, ZM) y B z .
  • V, Nb, Ta, Ti, Zr, Hf, Mn, Cr, Mo and W are particularly suitable as ZM elements.
  • the value ranges for the proportions x, y and z remain the same.
  • a deposition and formation of a layer from a material of the material system Nd-Fe-B which contains the hard magnetic Nd 2 Fe 14 B phase at least to a large extent (ie to more than 50% by volume) is assumed below as an exemplary embodiment.
  • the coating of a carrier body 3 according to the invention by means of a plasma spraying process in an evacuable volume V offers considerable advantages over other coating processes Benefits.
  • This has a very even layer structure a low porosity especially due to the high kinetic Energy of the individual spray particles in the spray jet 16 in a row.
  • the low porosity also contributes to this at that have good hard magnetic properties within Layer 4 can adjust.
  • both high remanence values are to also ensure high coercive field strengths of the end product of the layer. Due to the high particle speeds that can be achieved with a vacuum plasma spraying and in generally lie between 400 to 600 m / s, this also results a high adhesive tensile strength between the material of the Carrier body 3 and the material of layer 4.
  • a preferred one Embodiment of the coating device 2 provides for this before that the carrier body 3 relative to the plasma spray device 5 is to be moved.
  • the plasma spraying device in both the horizontal and vertical directions pivoted.
  • Carrier bodies can thus be used complicated geometries and / or large area with ease Provide layers of the hard magnetic material.
  • the process management advantageously so is that the carrier body 3 in the horizontal direction simultaneous pivoting of the plasma spray device 5 performed and thus enables a large-area coating becomes.
  • the carrier body through the in the coating chamber prevailing ambient temperature of the plasma spraying process and especially by the striking Plasma spray jet 16 heated.
  • the specific temperature on Carrier body can be indirectly by cooling the adjust holder 12 thermally connected to the carrier body.
  • coating breaks are provided.
  • the carrier body heats up phases or coating pauses 3 at least despite a possible initial cooling in a near-surface zone from room temperature to one first maximum temperature, this maximum temperature advantageously between 400 ° C and 900 ° C, especially between 500 ° C and 800 ° C. For example, a maximum temperature of about 760 ° C.
  • a near-surface Zone of the carrier body becomes a to be coated Surface (3a, see Fig. 6) adjacent portion of the Carrier body with a predetermined, in the carrier body protruding minimum depth understood. This minimum depth is generally in the millimeter range, for example 1 mm.
  • the first coating stage generally lasts between 2 and 15 minutes, for example between 3 and 10 Minutes.
  • the carrier body After the carrier body has been on for a few minutes this maximum temperature was heated using the plasma spray 16 the area of the carrier body to be coated by swiveling the plasma spraying device accordingly 5 sweeps, a special cooling section connect without coating.
  • the carrier body cools because of the cooling of it Bracket 12 and because of the lack of exposure to the Plasma spray jet 16 as a function of the pause duration one lower by at least 20 ° C, preferably at least 50 ° C as the above-mentioned maximum temperature intermediate temperature from.
  • the intermediate temperature in one Temperature range between 100 ° C and 500 ° C such as at 170 ° C lie.
  • This cooling section can then have several Connect the next coating section for minutes, during which the carrier body 3 to a second Maximum temperature, for example the first maximum temperature corresponds, is heated again.
  • this cycle includes the cooling section and the coating / heating section at least one more corresponding cycle. At the end of the entire coating process, that within the first coating section and the at least one cycle generally at least 50 Overflows of the plasma spray jet, there is then a lamella-like, at least largely crystalline structure of the Layer 4 before, but their magnetic properties still cannot be optimal.
  • the carrier body 3 coated in this way can therefore subsequently in a conventional manner a heat treatment or Annealing at at least one predetermined temperature level subjected to the desired magnetic Optimize properties.
  • the at least one annealing temperature is generally between 550 ° and 800 ° C, preferably between 600 ° and 750 ° C. Thereby, for the duration of the heat treatment usually a period of at least half an hour.
  • the carrier body 3 can optionally magnetization treatment after the coating process undergo so in the hard magnetic To impress a preferred direction of magnetization.
  • the following table shows the influence of subsequent heat treatments of several samples at different temperatures on the coercive force H c .
  • the samples each had layers of Nd-Fe-B deposited according to the invention with a stoichiometry corresponding to the hard magnetic phase.
  • the carrier bodies consisted of Cu or a chromium-nickel (CrMi) steel. The thickness of the deposited layers was also varied.
  • the heat treatments were carried out for one hour in a high vacuum.
  • the intermediate temperature at the end of the single cooling section between two heating sections was approximately 170 ° C.
  • layer thicknesses D of at least 0.5 mm are particularly advantageous. It should also be noted that the second Cu sample, for whose maximum temperatures 760 ° C was chosen, has the highest coercive force values H c when annealed at approximately 700 ° C.
  • FIG. 3 shows in a diagram the hysteresis curve of the correspondingly produced material (sample No. 9) after the optimized heat treatment following the plasma spraying process.
  • the diagram shows the magnetic field strength H (in kOe) in the abscissa direction and the magnetic polarization J (in T) in the ordinate direction.
  • the individual coating and cooling sections take approximately equal time intervals in the order of magnitude between 1.5 and 5 minutes.
  • the method according to the invention is not limited to such a procedure. For example, a very gradual rise in temperature during the first coating section over a comparatively longer period of time, for example between 5 and 12 minutes, can be provided, which is then generally followed by several cycles of cooling and coating sections of substantially shorter duration. The individual phases of such a cycle can last between 0.3 minutes and 3 minutes.
  • FIG. 4 A corresponding exemplary embodiment of the method according to the invention can be seen from the diagram shown as FIG. 4 in a representation corresponding to FIG.
  • the diagram shows the profile of the carrier body temperature T as a function of the time t after optimization of the carrier body guidance.
  • a repeated sequence (cycle) of a cooling section and a coating section followed, the temperature drop during the cooling section being around 20 ° C.
  • Each of the 5 cycles here lasted a total of about 1 minute.
  • the approximately 1 mm thick layer on a CrNi steel carrier body showed a maximum coercive field strength H c of 13.5 kA / cm after tempering in a high vacuum at 720 ° C. for 1 hour.
  • the hard magnetic material is separated from the SE-FE-B material system by means of a special plasma spraying process in several coating phases.
  • a corresponding build-up of a layer of this material on a particularly cooled carrier body 3 is indicated in the sectional views in FIGS. 5 to 7.
  • a desired thickness d of the layer 4 of more than 0.5 mm, preferably of at least 1 mm, for example of several millimeters (cf. FIG. 7), is achieved by a large number of coating phases hereinafter referred to as overflows or scans of the plasma jet.
  • overflows or scans of the plasma jet a layer increase ⁇ d (see FIG.
  • the recrystallization temperature of the hard magnetic phase of the material system which is between approximately 500 and 550 ° C, the entire layer is then successively crystallized.
  • This crystallization process can be seen from FIGS. 5 to 7.
  • the initially amorphous partial layers 1 a (cf. FIG. 5) are crystallized out from the surface 3 a of the substrate or carrier body 3 because of the heating of the carrier body that goes along with the progressing coating process.
  • These crystallized partial layers are denoted by l k and form a layer zone z facing the surface 3a (cf. FIG. 6).
  • This crystallized zone z thus grows as the coating process proceeds from the surface 3a and extends at the end of the coating process practically through the entire layer 4 of thickness d (cf. FIG. 7).
  • This heat treatment integrated into the process control can advantageously at least largely dispense with the subsequent heat treatment required for recrystallization.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Thin Magnetic Films (AREA)
  • Hard Magnetic Materials (AREA)

Claims (22)

  1. Procédé pour revêtir un corps porteur d'une couche en un matériau magnétique dur du système de matériau TR-FE-B, le composant TR contenant au moins un métal des terres rares et le composant FE au moins un élément ferromagnétique, pour lequel l'opération de revêtement comprend un processus de projection au plasma en projetant sur le corps porteur une poudre fondue d'un matériau primaire du matériau magnétique dur à former, avec, pendant l'opération de revêtement pour chaque zone du corps porteur (3) à revêtir, plusieurs phases de revêtement en chauffant la surface à revêtir concernée et à chaque fois une phase intermédiaire sans revêtement, caractérisé en ce que au moins dans une zone orientée vers sa surface (3a) à revêtir au moins vers la fin de l'opération de revêtement, le corps porteur (3) est élevé à un niveau de température qui assure une recristallisation d'une phase magnétique dure du matériau magnétique dur.
  2. Procédé selon la revendication 1,
    caractérisé en ce qu'
    au moins dans sa zone proche de la surface, le corps porteur (3) est élevé à un niveau de température qui est au plus 100 °C au-dessus de la température de recristallisation de la phase magnétique dure.
  3. Procédé selon la revendication 1 ou 2,
    caractérisé en ce que
    différentes zones du corps porteur (3) sont successivement et de façon réitérée saisies par un jet de projection au plasma (16)
  4. Procédé selon la revendication 3,
    caractérisé par un déplacement du jet de projection au plasma (16) et/ou du corps porteur (3).
  5. Procédé selon l'une des revendications précédentes,
    caractérisé en ce qu'
    une zone à revêtir du corps porteur (3) est balayée par un jet de projection au plasma (16) déplacé plusieurs fois par rapport à lui, le nombre de passages correspondant aux phases de revêtement.
  6. Procédé selon la revendication 5,
    caractérisé en ce qu'
    à chaque passage est appliquée une couche partielle d'une épaisseur (Δd) comprise entre 1 et 20 µm, de préférence entre 3 et 15 µm.
  7. Procédé selon la revendication 5 ou 6,
    caractérisé en ce que
    la couche (4) sur le corps porteur (3) est appliquée sous forme de lamelle avec une épaisseur totale (d) en au moins 50 passages.
  8. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    l'opération de revêtement est subdivisée en plusieurs périodes de revêtement (I ; III) qui sont interrompues par au moins une période de refroidissement (II).
  9. Procédé selon la revendication 8,
    caractérisé en ce que
    l'on prévoit au moins la première période de revêtement (I) depuis la température ambiante jusqu'à une première température maximale, la période de refroidissement (II) depuis la première température maximale jusqu'à une température intermédiaire et la deuxième période de revêtement (III) depuis la température intermédiaire jusqu'à une deuxième température maximale.
  10. Procédé selon la revendication 9,
    caractérisé en ce que
    la première température maximale et/ou la deuxième température maximale est/sont dans une plage de températures comprise entre 400 °C et 900 °C, en particulier entre 500 °C et 800 °C.
  11. Procédé selon la revendication 9 ou 10,
    caractérisé en ce que
    la température intermédiaire au moins au nombre d'une est choisie de préférence pour qu'elle soit inférieure d'au moins 20°C, de préférence d'au moins de 50 °C inférieure à la température maximale de la phase de revêtement précédente.
  12. Procédé selon l'une des revendications 8 à 11,
    caractérisé en ce que
    la première période de revêtement (I) a une durée comprise entre 2 et 15 minutes, de préférence entre 3 et 10 minutes.
  13. Procédé selon l'une des revendications 8 à 12,
    caractérisé en ce que
    suite à la première période de revêtement (I), on prévoit plusieurs cycles qui ont chacun une période de refroidissement (II) et une période de revêtement (III).
  14. Procédé selon la revendication 13,
    caractérisé en ce que
    la première période de revêtement (I) a une durée comprise entre 5 et 12 minutes et la période de refroidissement (II) et la période de revêtement (III) de chaque cycle ont chacune une durée comprise entre 0,3 et 3 minutes.
  15. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    le corps porteur (3) est soumis à un traitement thermique après l'opération de revêtement.
  16. Procédé selon la revendication 15,
    caractérisé en ce que
    le traitement thermique est réalisé à au moins un niveau de température qui est compris entre 550 ° et 800 °C, de préférence entre 600 ° et 750 °C.
  17. Procédé selon la revendication 15 ou 16,
    caractérisé en ce que
    l'on prévoit un traitement thermique d'une durée d'au moins une demi-heure.
  18. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    le corps porteur (3) est soumis à un traitement d'aimantation après l'opération de revêtement.
  19. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    l'on prévoit un corps porteur (3) en Cu ou en un matériau contenant du Cu, en particulier un alliage de Cu, ou en un acier allié ou non allié.
  20. Procédé selon l'une des revendications précédentes,
    caractérisé en ce qu'
    on forme une couche (4) qui contient au moins les composants Nd, Fe et B du matériau TR-FE-B.
  21. Procédé selon la revendication 20,
    caractérisé en ce qu'
    on forme une couche (4) qui contient au moins en majeure partie la phase magnétique dure Nd2Fe14B.
  22. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    l'on dépose une couche (4) d'une épaisseur de plus de 0,5 mm, de préférence d'au moins 1 mm.
EP00920387A 1999-03-16 2000-03-13 Procede pour recouvrir un corps support d'un materiau a base de se-fe-n magnetique dur, par projection au plasma Expired - Lifetime EP1161570B1 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19911609 1999-03-16
DE19911609 1999-03-16
DE10002346 2000-01-20
DE10002346A DE10002346A1 (de) 1999-03-16 2000-01-20 Verfahren und Vorrichtung zur Beschichtung eines Trägerkörpers mit einem hartmagnetischen SE-FE-B-Material mittels Plasmaspritzens
PCT/DE2000/000781 WO2000055384A1 (fr) 1999-03-16 2000-03-13 Procede et dispositif pour recouvrir un corps support d'un materiau a base de se-fe-n magnetique dur, par projection au plasma

Publications (2)

Publication Number Publication Date
EP1161570A1 EP1161570A1 (fr) 2001-12-12
EP1161570B1 true EP1161570B1 (fr) 2003-07-30

Family

ID=26003944

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00920387A Expired - Lifetime EP1161570B1 (fr) 1999-03-16 2000-03-13 Procede pour recouvrir un corps support d'un materiau a base de se-fe-n magnetique dur, par projection au plasma

Country Status (3)

Country Link
EP (1) EP1161570B1 (fr)
JP (1) JP2002539331A (fr)
WO (1) WO2000055384A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009032222A1 (de) 2009-07-08 2010-04-15 Daimler Ag Elektrische Maschine sowie Verfahren zum Herstellen einer elektrischen Maschine
CN102439193A (zh) * 2009-05-08 2012-05-02 苏舍美特科公司 用于衬底覆层的方法以及具有覆层的衬底

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101830865B (zh) * 2010-03-19 2012-05-02 华东交通大学 一种含羟基的噻二唑衍生物及其制备方法和应用
CN107254656B (zh) * 2017-08-17 2023-06-13 桂林电子科技大学 钕铁硼永磁材料表面等离子喷涂陶瓷层及其制备方法
CN109468576B (zh) * 2018-12-29 2021-01-22 安徽大地熊新材料股份有限公司 一种烧结钕铁硼磁体表面高耐蚀涂层及其制备方法
KR102396336B1 (ko) * 2020-04-10 2022-05-11 (주)티티에스 냉각장치를 포함하는 지그 및 이를 포함하는 슬러리 플라즈마 스프레이 장치

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4297388A (en) * 1978-11-06 1981-10-27 The Charles Stark Draper Laboratory, Inc. Process of making permanent magnets
US4897283A (en) * 1985-12-20 1990-01-30 The Charles Stark Draper Laboratory, Inc. Process of producing aligned permanent magnets
JPH04214849A (ja) * 1990-12-14 1992-08-05 Toyota Autom Loom Works Ltd トルクセンサ用磁歪膜の形成方法
AU6733196A (en) * 1995-08-30 1997-03-19 Danfoss A/S Method of producing magnetic poles on a base member, and rotor of an electrical machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102439193A (zh) * 2009-05-08 2012-05-02 苏舍美特科公司 用于衬底覆层的方法以及具有覆层的衬底
CN102439193B (zh) * 2009-05-08 2013-11-06 苏舍美特科公司 用于衬底覆层的方法以及具有覆层的衬底
DE102009032222A1 (de) 2009-07-08 2010-04-15 Daimler Ag Elektrische Maschine sowie Verfahren zum Herstellen einer elektrischen Maschine

Also Published As

Publication number Publication date
WO2000055384A1 (fr) 2000-09-21
JP2002539331A (ja) 2002-11-19
EP1161570A1 (fr) 2001-12-12

Similar Documents

Publication Publication Date Title
DE4408250C2 (de) Oberflächenschichtsystem für Substrate
DE3513014C2 (de) Verfahren zur Behandlung der Oberfläche von Werkstücken
EP0442163A1 (fr) MÀ©thode de production de particules ultrafines et leur utilisation
WO2009129880A1 (fr) Procédé de production de couches d'oxydes métalliques d'une structure définie par évaporation par arc
DE19522331A1 (de) Verfahren zum Beschichten mindestens eines Werkstückes, Anlage hierfür sowie Verfahren zum Betrieb einer kathodischen Bogenentladung und Verwendung desselben
EP3429783B1 (fr) Procédé de fabrication de composants à partir d'un rayon duplex et composants fabriqués par ledit procédé
DE69630283T2 (de) Dauermagnet für ultra-hoch-vakuum anwendung und herstellung desselben
DE1515300A1 (de) Vorrichtung zur Herstellung hochwertiger duenner Schichten durch Kathodenzerstaeubung
EP1161570B1 (fr) Procede pour recouvrir un corps support d'un materiau a base de se-fe-n magnetique dur, par projection au plasma
WO2020102834A1 (fr) Élément en métal réfractaire fabriqué de manière additive, procédé de fabrication additive et poudre
EP0818832A2 (fr) Procédé de production d'une couche supraconductrice
AT10749U1 (de) Verfahren zur herstellung von clathratverbindungen
EP3458616B1 (fr) Procédé de fabrication de matériaux composites de palier lisse
DE3601439C1 (de) Schichtverbundwerkstoff,insbesondere fuer Gleit- und Reibelemente,sowie Verfahren zu seiner Herstellung
DE60006594T2 (de) Magnetfilm mit hohem elektrischem Widerstand
DE10002346A1 (de) Verfahren und Vorrichtung zur Beschichtung eines Trägerkörpers mit einem hartmagnetischen SE-FE-B-Material mittels Plasmaspritzens
EP0285960A1 (fr) Procédé de préparation de matériaux supra-conducteurs à température de transition élevée
DE2161453C3 (de) Verfahren zur Herstellung eines Reibhelages auf Unterlagen, wie Bremsen oder Kupplungen mittels Plasmastrahl
EP0437890A1 (fr) Méthode de production de matériaux multicomposants
DE69922479T2 (de) Verbesserte Stranggusskikille
DD231522A1 (de) Verfahren zur laserinduzierten modifizierung von keramikwerkstoffen
DE3014258A1 (de) Verfahren zum aufbringen von metallischen, metalloidischen oder keramischen schichten mit verbesserten strukturellen eigenschaften durch plasmaspruehen
EP1104033A2 (fr) Procédé de fabrication d'une couche supraconductrice
DE3142766A1 (de) "verfahren zur herstellung eines magnetischen filmfoermigen targets zum bedampfen"
EP0468317B1 (fr) Procédé de fabrication de matériau magnétique à base du système de substances Sm-Fe-N

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010731

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20020911

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RTI1 Title (correction)

Free format text: METHOD FOR COATING A SUPPORT BODY WITH A HARD MAGNETIC SE-FE-B MATERIAL USING PLASMA SPRAYING

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030730

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50003103

Country of ref document: DE

Date of ref document: 20030904

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040504

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050222

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050318

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060313

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060426

Year of fee payment: 7

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060313

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20061130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071002