EP1135593B1 - Ventil zum steuern von flüssigkeiten - Google Patents

Ventil zum steuern von flüssigkeiten Download PDF

Info

Publication number
EP1135593B1
EP1135593B1 EP00974318A EP00974318A EP1135593B1 EP 1135593 B1 EP1135593 B1 EP 1135593B1 EP 00974318 A EP00974318 A EP 00974318A EP 00974318 A EP00974318 A EP 00974318A EP 1135593 B1 EP1135593 B1 EP 1135593B1
Authority
EP
European Patent Office
Prior art keywords
valve
pressure
low
piston
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00974318A
Other languages
English (en)
French (fr)
Other versions
EP1135593A1 (de
Inventor
Wolfgang Stoecklein
Dietmar Schmieder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1135593A1 publication Critical patent/EP1135593A1/de
Application granted granted Critical
Publication of EP1135593B1 publication Critical patent/EP1135593B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • F02M63/0026Valves characterised by the valve actuating means electrical, e.g. using solenoid using piezoelectric or magnetostrictive actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/02Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts
    • F02M45/04Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts with a small initial part, e.g. initial part for partial load and initial and main part for full load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/30Fuel-injection apparatus having mechanical parts, the movement of which is damped
    • F02M2200/304Fuel-injection apparatus having mechanical parts, the movement of which is damped using hydraulic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/70Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger
    • F02M2200/703Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger hydraulic

Definitions

  • the invention is based on a valve for controlling Liquids according to the preamble of claim 1.
  • the hydraulic chamber closes between two limiting them Pistons, one of which is a piston with a smaller diameter is formed and with a valve member to be controlled is connected and the other piston with a larger diameter is formed and with the piezoelectric Actuator is connected, a common compensation volume one.
  • the hydraulic chamber is so between the clamped two pistons that the actuating piston of the Valve member, in its rest position by means of a or several springs relative to a predetermined position is held, one to the gear ratio of Piston diameter makes increased stroke when the larger Piston by the piezoelectric actuator to a certain Distance is moved.
  • the valve member, the pistons and the Piezoelectric actuators lie on a common Axis in a row.
  • About the equalization volume of Hydraulic chamber can tolerances due to temperature gradients in the component or different thermal expansion coefficients the materials used as well any settling effects are compensated without thereby changing the position of the to be controlled Valve member occurs.
  • the hydraulic coupler requires a system pressure which drops due to leakage, if not sufficient Refilling with hydraulic fluid takes place.
  • the invention has for its object to provide a valve for To create control of liquids with which the Leakage losses with increasing pressure in the high pressure range be limited.
  • the valve according to the invention for controlling fluids with the features of claim 1 has the advantage that for generating the minimum leak rate from the high pressure area in the low pressure area with system pressure one Throttle bore is used, whereby the leakage loss at high pressures in the high pressure area compared to the system pressure supply by a conventional leakage gap or Filling pen is reduced by a multiple.
  • FIG. 1 shows a use of the valve according to the invention in a Fuel injection valve 1 for internal combustion engines of Motor vehicles.
  • the fuel injection valve 1 is in the present case designed as a common rail injector, wherein the fuel injection over the pressure level in one Valve control chamber 12, which with a high pressure supply connected, is controlled.
  • a valve member 2 For setting an injection start, an injection duration and an injection amount about balance of power in the Fuel injection valve 1, a valve member 2 via a piezoelectric actuator 3 formed as a piezoelectric Unit controlled, which operates on the valve control and combustion chamber side facing away from the valve member. 2 is arranged.
  • the piezoelectric actuator 3 is composed of several layers constructed and has on its the valve member 2 facing Side an actuator head 4 and on its the valve member side facing away from an actuator base 5, which is located at a wall of a valve body 9 is supported. At the actuator head 4 is located above a support 6, a first piston 7 of the Valve member 2, which is stepped in its diameter is executed.
  • the valve member 2 is axially displaceable in a Longitudinal bore executed bore 8 of the valve body. 9 arranged and includes in addition to the first piston 7 a Valve closure member 13 actuated second piston 10, wherein the pistons 7 and 10 by means of a hydraulic transmission coupled together.
  • the hydraulic transmission is as a hydraulic chamber 11th formed, which is the deflection of the piezoelectric Actuator 3 transmits.
  • the hydraulic chamber 11 closes between the two limiting pistons 7 and 10, of those of the second piston 10 with a smaller diameter and the first piston 7 with a larger diameter is formed, a common compensation volume.
  • the hydraulic chamber 11 is between the piston 7 and 10 clamped, that the second piston 10 of the valve member 2 one to the ratio of the piston diameter increased stroke makes when the larger first piston 7 by the piezoelectric actuator 3 to a certain Distance is moved.
  • the valve member 2, the piston 7, 10th and the piezoelectric actuator 3 lie on one common axis in a row.
  • valve closing member 13 acts on the Valve body 9 formed valve seats 14, 15 together, wherein the valve closing member 13 is a low-pressure region 16 with a system pressure p_sys from a high pressure area 17 with a high pressure or rail pressure p_R separates.
  • valve seats 14, 15 are in one of the valve body. 9 formed valve low-pressure chamber 18 formed by the a leakage drain passage 19 and one to a valve system pressure chamber 20 on the piezoelectric actuator 3 facing Side of the valve member 2 leading opening 21st dissipates.
  • valve low-pressure chamber 18 has a formed by the lower valve seat 15 connection to the in Figure 1 only indicated valve control chamber 12 in the high pressure area 17.
  • valve control chamber 12 is a movable valve spool disposed in the Drawing is not shown.
  • the valve system pressure chamber 20 connects to the piezo glove End of the bore 8 and is on the one hand by the valve body 9 and on the other hand by a with the first piston. 7 the valve member 2 and the valve body 9 connected Sealing element 22 limited, with a leakage line 23 from the valve system pressure chamber 20 discharges.
  • the sealing element 22nd is presently designed as a bellows-like membrane and prevents the piezoelectric actuator 3 with the in the Valve system pressure chamber 20 contained fuel in contact comes.
  • a first piston 7 surrounding the gap 24 and a gap 25 surrounding the second piston 10 is one Leakage from the hydraulic chamber 11 in the valve low-pressure chamber 18 and in particular in the valve system pressure chamber 20 given.
  • the high pressure area 17 is provided.
  • the channel 27 of the filling device 26 opens on the Low pressure region 16 facing side of the throttle bore 28 in the first piston 7 surrounding gap 24, wherein in Mouth area an annular groove 29 is provided.
  • the channel 27 opens into the valve low pressure chamber 18th
  • the diameter of the throttle bore 28 is designed such that that a throttle bore 28 passing volume flow the high pressure area 17 at a defined minimum High pressure p_R_min the leakage quantity of the low pressure range 16 compensates.
  • the Orifice 28 has a diameter of 50 microns.
  • a connection between the throttle bore 28 and the Mouth of the channel 27 in the annular gap 29 a connection between the channel 27 of the filling device 28 and the Valve low pressure chamber 18 via a pressure relief valve 30th provided, which is spring loaded.
  • This pressure relief valve 30 is used to set a constant system pressure p_sys in the valve system pressure chamber 20, so that the system pressure for all contiguous common rail injectors can be kept the same.
  • the fuel injection valve 1 according to FIG. 1 operates in this case in the manner described below.
  • valve closure member 13 at the upper valve seat 14 by a spring 31st Upon discharge of the valve control chamber 12, the valve closure member 13 at the upper valve seat 14 by a spring 31st held.
  • the piezoelectric actuator 3 When an injection through the fuel injector 1, the piezoelectric actuator 3 is energized, making this his axial extent abruptly increased. In such a quick operation of the piezoelectric actuator 3 is based on the Valve body 9 from, whereby the second piston 10, the Valve closure member 13 of the valve member 2 from its upper Valve seat 14 in a middle position between the two Valve seats 14, 15 moves.
  • the moving membrane 22 By the adjusting movement of the Valve member 2 is due to the moving membrane 22 reduces the volume of the valve system pressure chamber 20, wherein a pressure reduction by leakage from the hydraulic chamber into the valve system pressure chamber 20 and the valve low-pressure chamber 18 and from these via the leakage line 23 and the Leakage drainage channel 19 and via the pressure relief valve 30th takes place.
  • each control (energizing or terminating the energizing) of the piezoelectric unit is a fuel injection allows.
  • the throttle bore 28 must be dimensioned so that the Provision of system pressure p_sys also at one minimum high pressure p_R_min is still secured. on the other hand also decreases with increasing high or rail pressure p_R the leakage in the low pressure area 16 too. That's why it opens the pressure relief valve 30 the more, the higher the channel 27 supplied high pressure p_R is to comply with the constant system pressure p_sys excess hydraulic fluid or to drain fuel.
  • FIG. 3 is a diagram can be seen, which shows that the throttle bore 28 while significant advantages over the realization of the filling of the low-pressure region 16 with a conventional filling pen has.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Control Of Non-Electrical Variables (AREA)

Description

Stand der Technik
Die Erfindung geht von einem Ventil zum Steuern von Flüssigkeiten gemäß der Gattung des Patentanspruchs 1 aus.
Aus der EP 0 477 400 A1 ist ein derartiges Ventil, welches über einen piezoelektrischen Aktor betätigbar ist, bereits bekannt. Dieses bekannte Ventil weist eine Anordnung für einen in Hubrichtung wirkenden Wegtransformator des piezoelektrischen Aktors auf, bei der die Auslenkung des piezoelektrischen Aktors über eine Hydraulikkammer übertragen wird, welche als hydraulische Übersetzung bzw. Kopplung und Toleranzausgleichselement arbeitet.
Die Hydraulikkammer schließt zwischen zwei sie begrenzenden Kolben, von denen ein Kolben mit einem kleineren Durchmesser ausgebildet ist und mit einem anzusteuernden Ventilglied verbunden ist und der andere Kolben mit einem größeren Durchmesser ausgebildet ist und mit dem piezoelektrischen Aktor verbunden ist, ein gemeinsames Ausgleichsvolumen ein. Die Hydraulikkammer ist derart zwischen den beiden Kolben eingespannt, daß der Betätigungskolben des Ventilgliedes, das in seiner Ruhelage mittels einer oder mehrerer Federn relativ zu einer vorgegebenen Position gehalten ist, einen um das Übersetzungsverhältnis des Kolbendurchmessers vergrößerten Hub macht, wenn der größere Kolben durch den piezoelektrischen Aktor um eine bestimmte Wegstrecke bewegt wird. Das Ventilglied, die Kolben und der piezoelektrische Aktor liegen dabei auf einer gemeinsamen Achse hintereinander. Über das Ausgleichsvolumen der Hydraulikkammer können Toleranzen aufgrund von Temperaturgradienten im Bauteil oder unterschiedlichen Temperaturausdehnungskoeffizienten der verwendeten Materialien sowie eventuelle Setzeffekte ausgeglichen werden, ohne daß dadurch eine Änderung der Position des anzusteuernden Ventilgliedes auftritt.
Der hydraulische Koppler benötigt einen Systemdruck, welcher aufgrund von Leckage abfällt, falls keine ausreichende Nachfüllung mit Hydraulikflüssigkeit stattfindet.
Aus der Praxis sind bei Common-Rail-Injektoren Lösungen bekannt, bei denen der Systemdruck zweckmäßig im Ventil selbst erzeugt wird, wobei ein konstanter Systemdruck auch bei einem Systemstart sichergestellt ist. Hierzu wird Hydraulikflüssigkeit aus einem Hochdruckbereich des zu steuernden Kraftstoffs entnommen und dem Niederdruckbereich mit dem Systemdruck zugeführt. Dies geschieht mit Hilfe von Leckspalten, die durch Leck- bzw. Befüllstifte dargestellt werden.
Wenn jedoch der Druck im Hochdruckbereich ansteigt, nimmt automatisch die Leckrate in den Systembereich zu. Dies führt unter Umständen zu einem nicht zulässigen hohen Leckverlust des Ventils, wobei der Wirkungsgrad des Systems stark abnimmt.
Der Erfindung liegt die Aufgabe zugrunde, ein Ventil zur Steuerung von Flüssigkeiten zu schaffen, mit dem die Leckverluste bei steigendem Druck im Hochdruckbereich begrenzt werden.
Vorteile der Erfindung
Das erfindungsgemäße Ventil zur Steuerung von Flüssigkeiten mit den Merkmalen des Patentanspruchs 1 hat den Vorteil, daß zur Erzeugung der Mindestleckrate von dem Hochdruckbereich in den Niederdruckbereich mit Systemdruck eine Drosselbohrung benutzt wird, womit der Leckageverlust bei hohen Drücken im Hochdruckbereich gegenüber der Systemdruckversorgung durch einen herkömmlichen Leckspalt bzw. Befüllstift um ein Vielfaches reduziert wird.
Dabei werden auf einfache Art und Weise die grundlegend unterschiedlichen stömungsphysikalischen Effekte zwischen der turbulenten Durchströmung einer Drosselbohrung und der laminaren Spaltströmung um einen Befüllstift zur Realisierung der Befüllung des Niederdruckbereiches genutzt.
Weitere Vorteile und vorteilhafte Ausgestaltungen des Gegenstandes der Erfindung sind der Beschreibung, der Zeichnung und den Patentansprüchen entnehmbar.
Zeichnung
Ein Ausführungsbeispiel des erfindungsgemäßen Ventils zur Steuerung von Flüssigkeiten ist in der Zeichnung dargestellt und wird in der folgenden Beschreibung näher erläutert. Es zeigen
  • Figur 1 eine schematische, ausschnittsweise Darstellung eines Ausführungsbeispiels der Erfindung bei einem Kraftstoffeinspritzventil für Brennkraftmaschinen im Längsschnitt, und
  • Figur 2 ein Diagramm mit einem stark vereinfachten Verlauf einer druckabhängigen Leckmenge bei einer erfindungsgemäßen Drosselbohrung im Vergleich zu der druckabhängigen Leckmenge bei einem Befüllstift.
  • Beschreibung des Ausführungsbeispiels
    Das in der Figur 1 dargestellte Ausführungsbeispiel zeigt eine Verwendung des erfindungsgemäßen Ventils bei einem Kraftstoffeinspritzventil 1 für Brennkraftmaschinen von Kraftfahrzeugen. Das Kraftstoffeinspritzventil 1 ist vorliegend als ein Common-Rail-Injektor ausgebildet, wobei die Kraftstoffeinspritzung über das Druckniveau in einem Ventilsteuerraum 12, welcher mit einer Hochdruckversorgung verbunden ist, gesteuert wird.
    Zur Einstellung eines Einspritzbeginns, einer Einspritzdauer und einer Einspritzmenge über Kräfteverhältnisse in dem Kraftstoffeinspritzventil 1 wird ein Ventilglied 2 über eine als piezoelektrischer Aktor 3 ausgebildete piezoelektrische Einheit angesteuert, welche auf der ventilsteuerraum- und brennraumabgewandten Seite des Ventilgliedes 2 angeordnet ist.
    Der piezoelektrische Aktor 3 ist aus mehreren Schichten aufgebaut und weist auf seiner dem Ventilglied 2 zugewandten Seite einen Aktorkopf 4 sowie auf seiner dem Ventilglied abgewandten Seite einen Aktorfuß 5 auf, der sich an einer Wand eines Ventilkörpers 9 abstützt. An dem Aktorkopf 4 liegt über ein Auflager 6 ein erster Kolben 7 des Ventilgliedes 2 an, welcher in seinem Durchmesser gestuft ausgeführt ist.
    Das Ventilglied 2 ist axial verschiebbar in einer als Längsbohrung ausgeführten Bohrung 8 des Ventilkörpers 9 angeordnet und umfaßt neben dem ersten Kolben 7 einen ein Ventilschließglied 13 betätigenden zweiten Kolben 10, wobei die Kolben 7 und 10 mittels einer hydraulischen Übersetzung miteinander gekoppelt sind.
    Die hydraulische Übersetzung ist als Hydraulikkammer 11 ausgebildet, die die Auslenkung des piezoelektrischen Aktors 3 überträgt. Die Hydraulikkammer 11 schließt zwischen den beiden sie begrenzenden Kolben 7 und 10, von denen der zweite Kolben 10 mit einem kleineren Durchmesser und der erste Kolben 7 mit einem größeren Durchmesser ausgebildet ist, ein gemeinsames Ausgleichsvolumen ein.
    Die Hydraulikkammer 11 ist derart zwischen den Kolben 7 und 10 eingespannt, daß der zweite Kolben 10 des Ventilgliedes 2 einen um das Übersetzungsverhältnis des Kolbendurchmessers vergrößerten Hub macht, wenn der größere erste Kolben 7 durch den piezoelektrischen Aktor 3 um eine bestimmte Wegstrecke bewegt wird. Das Ventilglied 2, die Kolben 7, 10 und der piezoelektrische Aktor 3 liegen dabei auf einer gemeinsamen Achse hintereinander.
    Über das Ausgleichsvolumen der Hydraulikkammer 11 können Toleranzen aufgrund von Temperaturgradienten im Bauteil oder unterschiedlichen Temperaturausdehnungskoeffizienten der verwendeten Materialien sowie eventuelle Setzeffekte ausgeglichen werden, ohne daß dadurch eine Änderung der Position des anzusteuernden Ventilschließgliedes 13 auftritt.
    An dem ventilsteuerraumseitigen Ende des Ventilgliedes 2 wirkt das kugelartige Ventilschließglied 13 mit an dem Ventilkörper 9 ausgebildeten Ventilsitzen 14, 15 zusammen, wobei das Ventilschließglied 13 einen Niederdruckbereich 16 mit einem Systemdruck p_sys von einem Hochdruckbereich 17 mit einem Hochdruck bzw. Raildruck p_R trennt.
    Die Ventilsitze 14, 15 sind in einem von dem Ventilkörper 9 gebildeten Ventilniederdruckraum 18 ausgebildet, von dem ein Leckageablaufkanal 19 und eine zu einem Ventilsystemdruckraum 20 auf der dem piezoelektrischen Aktor 3 zugewandten Seite des Ventilgliedes 2 führende Öffnung 21 abführt.
    Darüber hinaus weist der Ventilniederdruckraum 18 eine durch den unteren Ventilsitz 15 gebildete Verbindung zu dem in Figur 1 lediglich angedeuteten Ventilsteuerraum 12 in dem Hochdruckbereich 17 auf. In dem Ventilsteuerraum 12 ist ein bewegbarer Ventilsteuerkolben angeordnet, der in der Zeichnung nicht weiter dargestellt ist. Durch axiale Bewegungen des Ventilsteuerkolbens in dem Ventilsteuerraum 12, der in üblicher Weise mit einer Einspritzleitung verbunden ist, welche mit einem für mehrere Kraftstoffeinspritzventile gemeinsamen Hochdruckspeicherraum (Common-Rail) verbunden ist und eine Einspritzdüse mit Kraftstoff versorgt, wird das Einspritzverhalten des Kraftstoffeinspritzventils 1 auf an sich bekannte Art gesteuert.
    Der Ventilsystemdruckraum 20 schließt an das piezoseitige Ende der Bohrung 8 an und ist einerseits durch den Ventilkörper 9 und andererseits durch ein mit dem ersten Kolben 7 des Ventilgliedes 2 und dem Ventilkörper 9 verbundenes Dichtelement 22 begrenzt, wobei eine Leckageleitung 23 aus dem Ventilsystemdruckraum 20 abführt. Das Dichtelement 22 ist vorliegend als faltenbalgartige Membran ausgebildet und verhindert, daß der piezoelektrische Aktor 3 mit dem in dem Ventilsystemdruckraum 20 enthaltenen Kraftstoff in Kontakt kommt.
    Über einen den ersten Kolben 7 umgebenden Spalt 24 und einen den zweiten Kolben 10 umgebenden Spalt 25 ist eine Leckage von der Hydraulikkammer 11 in den Ventilniederdruckraum 18 und insbesondere in den Ventilsystemdruckraum 20 gegeben.
    Da die Hydraulikkammer 11 während einer Ansteuer- bzw. Bestromungspause des piezoelektrischen Aktors 3 wiederbefüllt werden muß, ist ein Ausgleich einer Leckagemenge des Niederdruckbereiches 16 durch Entnahme von Hydraulikflüssigkeit des Hochdruckbereichs 17 vorgesehen. Hierzu dient eine Befülleinrichtung 26, welche mit einem Kanal 27, in dem eine Drosselbohrung 28 angeordnet ist, ausgebildet ist. Der Kanal 27 der Befülleinrichtung 26 mündet auf der dem Niederdruckbereich 16 zugewandten Seite der Drosselbohrung 28 in den den ersten Kolben 7 umgebenden Spalt 24, wobei im Mündungsbereich eine Ringnut 29 vorgesehen ist. Auf der dem Hochdruckbereich 17 zugewandten Seite der Drosselbohrung 28 mündet der Kanal 27 in den Ventilniederdruckraum 18.
    Selbstverständlich kann in einer alternativen Ausführung auch vorgesehen sein, daß der Kanal 27 der Befülleinrichtung 26 zu dem den zweiten Kolben 10 umgebenden Spalt 25 führt.
    Der Durchmesser der Drosselbohrung 28 ist derart ausgelegt, daß ein die Drosselbohrung 28 passierender Volumenstrom aus dem Hochdruckbereich 17 bei einem definierten minimalen Hochdruck p_R_min die Leckagemenge des Niederdruckbereiches 16 ausgleicht. In der gezeigten Ausführung weist die Drosselbohrung 28 einen Durchmesser von 50 Mikrometer auf.
    Des weiteren ist zwischen der Drosselbohrung 28 und der Mündung des Kanals 27 in den Ringspalt 29 eine Verbindung zwischen dem Kanal 27 der Befülleinrichtung 28 und dem Ventilniederdruckraum 18 über ein Überdruckventil 30 vorgesehen, welches federbelastet ist. Dieses Überdruckventil 30 dient zur Einstellung eines konstanten Systemdrucks p_sys in dem Ventilsystemdruckraum 20, so daß der Systemdruck bei allen zusammenhängenden Common-Rail-Injektoren gleich gehalten werden kann.
    Das Kraftstoffeinspritzventil 1 nach Figur 1 arbeitet dabei in nachfolgend beschriebener Weise.
    In geschlossenem Zustand des Kraftstoffeinspritzventils 1, d.h. bei unbestromtem piezoelektrischen Aktor 3 wird das Ventilschließglied 13 des Ventilglieds 2 durch den Hochdruck bzw. Raildruck p_R in dem Hochdruckbereich 17 in Anlage an dem ihm zugeordneten oberen Ventilsitz 14 gehalten, so daß kein Kraftstoff aus dem mit dem Hochdruckspeicherraum verbundenen Ventilsteuerraum 12 in den Ventilniederdruckraum 18 gelangen und dann durch den Leckageablaufkanal 19 entweichen kann.
    Bei Entlastung des Ventilsteuerraums 12 wird das Ventilschließglied 13 am oberen Ventilsitz 14 durch eine Feder 31 gehalten.
    Im Falle einer langsamen Betätigung, wie sie bei einer temperaturbedingten Längenänderung des piezoelektrischen Aktors 3 oder weiterer Ventilbauteile wie z.B. des Ventilglieds 2 oder des Ventilkörper 9 auftritt, dringt der erste Kolben 7 mit Temperaturerhöhung in das Ausgleichsvolumen der Hydraulikkammer 11 ein oder zieht sich bei Temperaturabsenkung daraus zurück, ohne daß dies Auswirkungen auf die Schließ- und Öffnungsstellung des Ventilgliedes 2 und des Kraftstoffventils 1 insgesamt hat.
    Wenn eine Einspritzung durch das Kraftstoffeinspritzventil 1 erfolgen soll, wird der piezoelektrische Aktor 3 bestromt, wodurch dieser seine axiale Ausdehnung schlagartig vergrößert. Bei einer derartigen schnellen Betätigung des piezoelektrischen Aktors 3 stützt sich dieser an dem Ventilkörper 9 ab, wodurch der zweite Kolben 10 das Ventilschließglied 13 des Ventilgliedes 2 von seinem oberen Ventilsitz 14 in eine Mittelstellung zwischen den beiden Ventilsitzen 14, 15 bewegt. Durch die Stellbewegung des Ventilgliedes 2 wird aufgrund der sich bewegenden Membran 22 das Volumen des Ventilsystemdruckraumes 20 verringert, wobei ein Druckabbau durch Leckage von der Hydraulikkammer in den Ventilsystemdruckraum 20 und den Ventilniederdruckraum 18 und aus diesen über die Leckageleitung 23 und den Leckageablaufkanal 19 sowie über das Überdruckventil 30 stattfindet.
    Nach Ablassen des den Systemdruck p_sys übersteigenden Drucks in dem Niederdruckbereich 16 kann das Ventilschließglied 13 in seine Schließstellung an den unteren Ventilsitz 15 bewegt werden, wodurch kein Kraftstoff mehr aus dem Ventilsteuerraum 12 in den Ventilniederdruckraum 18 eindringen kann. Die Kraftstoffeinspritzung ist dann beendet.
    Danach wird die Bestromung des piezoelektrischen Aktors 3 unterbrochen, wodurch sich dieser wieder verkürzt und das Ventilschließglied 13 in die Mittelstellung zwischen die beiden Ventilsitze 14, 15 gebracht wird, wobei eine erneute Kraftstoffeinspritzung erfolgt. Durch den unteren Ventilsitz kann Kraftstoff in den Ventilniederdruckraum 18 eindringen. Dabei wird durch eine in dem Leckageablaufkanal 19 angeordnete Drossel 32 der Druck jedoch nicht sofort abgebaut. Die kurzzeitige Druckerhöhung in dem Ventilniederdruckraum 18 bewirkt eine hydraulische Gegenkraft, welche die Stellbewegung des Ventilgliedes 2 derart abbremst, daß das Ventilschließglied 13 in seiner Mittelstellung zwischen den beiden Ventilsitzen 14, 15 stabilisiert wird.
    Nach dem Druckabbau in dem Ventilniederdruckraum 18 durch den Leckageablaufkanal 19 bewegt sich das Ventilschließglied 13 in seine Schließstellung zum oberen Ventilsitz 14. Somit wird durch jede Ansteuerung (Bestromen oder Beenden des Bestromens) der piezoelektrischen Einheit eine Kraftstoffeinspritzung ermöglicht.
    Wenn das Ventilschließglied 13 von seinem unteren Ventilsitz 15 abgehoben ist, wird dem Kanal 27 der Befülleinrichtung 26 Hochdruck p_R aus dem Ventilsteuerraum 12 zugeführt, so daß die Leckageverluste in dem Niederdruckbereich 16 ausgeglichen werden können.
    Da stets ein bestimmter Systemdruck p_sys benötigt wird, muß die Drosselbohrung 28 so dimensioniert sein, daß die Bereitstellung des Systemdrucks p_sys auch bei einem minimalen Hochdruck p_R_min noch gesichert ist. Andererseits nimmt mit steigendem Hoch- bzw. Raildruck p_R auch die Leckage in den Niederdruckbereich 16 zu. Deshalb öffnet das Überdruckventil 30 um so mehr, je höher der dem Kanal 27 zugeführte Hochdruck p_R ist, um zur Einhaltung des konstanten Systemdrucks p_sys überschüssige Hydraulikflüssigkeit bzw. Kraftstoff abzulassen.
    In Figur 3 ist ein Diagramm ersichtlich, welches zeigt, daß die Drosselbohrung 28 dabei deutliche Vorteile gegenüber der Realisierung der Befüllung des Niederdruckbereiches 16 mit einem herkömmlichen Befüllstift hat.
    Dabei ist ein Verlauf einer druckabhängigen Leckmenge Q_d bei der erfindungsgemäßen Drosselbohrung 28 im Vergleich zu einer druckabhängigen Leckmenge Q_s1 bei einem Befüllstift ohne Spaltaufweitung und einer druckabhängigen Leckmenge Q_s2 bei einem Befüllstift mit Spaltaufweitung dargestellt.
    Damit der Systemdruck p_sys gehalten werden kann, muß schon bei einem relativ niedrigen Hochdruck p_R von z.B. 200 bar die Leckage durch die Drosselbohrung 28 größer sein als die Verluste aus dem Niederdruckbereich 16, wodurch sich ein minimaler Durchfluß Q_min von hier 5 Liter/Std. ergibt.
    Die Verläufe der Durchflußmengen zeigen, daß die Durchflußmenge Q_d durch die Drosselbohrung 28 mit ansteigendem Druck p_R nicht in dem Maße zunimmt wie bei einem Befüllstift. Betrachtet man die Unterschiede der Durchflußmengen formelmäßig, so kann der Volumenstrom Q_d durch die Drosselbohrung 28 bei Vereinfachung der zahlreichen neben der Druckdifferenz zu berücksichtigenden Faktoren auf einen Durchflußfaktor A folgendermaßen beschrieben werden: Q_d(p) = A (p_R - p_sys)
    Mit steigendem Hoch- bzw. Raildruck p_R nimmt der Durchfluß und damit die überschüssige Menge, die durch das Überdruckventil 30 abgelassen wird, nur in der Wurzel zu. Eine Befüllung des Niederdruckbereichs 16 mit einem Befüllstift kann hingegen mit vereinfachtem Durchflußfaktor B durch nachfolgenden Zusammenhang beschrieben werden: Q_s(p) = B(p_R - p_sys)
    Die Gleichung ist linear bezüglich der Druckdifferenz. Der Durchfluß Q_s nimmt somit bei hohem Raildruck p_R linear zu.
    Während die Befüllung mit Befüllstift und mit Drosselbohrung bei einem Hochdruck p_R von 200 bar noch dieselbe nötige Mindestmenge Zulauf zum Niederdruckbereich 16 ergeben, erzeugt der Befüllstift bereits ohne Spaltaufweitung mit steigendem Hochdruck p_R eine erheblich größere Leckmenge Q_s1 als die Drosselbohrung. Wird am Befüllstift weiterhin berücksichtigt, daß sich der Leckspalt durch den Hochdruck p_R zusätzlich aufweitet, wie es der Verlauf des Volumenstroms Q_s2 zeigt, erweist sich die Befüllung mit der Drosselbohrung 28 als noch günstiger hinsichtlich des Wirkungsgrades des gesamten Systems.

    Claims (10)

    1. Ventil zum Steuern von Flüssigkeiten, mit einer piezoelektrischen Einheit (3) zur Betätigung eines Ventilglieds (2), welches in einer Bohrung (8) eines Ventilkörpers (9) axial verschiebbar ist und an einem Ende ein Ventilschließglied (13) aufweist, das mit wenigstens einem an dem Ventilkörper (9) vorgesehenen Sitz (14, 15) zum Öffnen und Schließen des Ventils (1) zusammenwirkt, wobei das Ventilschließglied (13) einen Niederdruckbereich (16) mit einem Systemdruck (p_sys) von einem Hochdruckbereich (17) trennt, und wobei eine Befülleinrichtung (26) zum Ausgleich einer Leckagemenge des Niederdruckbereiches (16) durch Entnahme von Hydraulikflüssigkeit des Hochdruckbereichs (17) vorgesehen ist, dadurch gekennzeichnet, daß die Befülleinrichtung (26) mit einem Kanal (27) mit einer Drosselbohrung (28) ausgebildet ist, deren Durchmesser derart ausgelegt ist, daß ein die Drosselbohrung (28) passierender Volumenstrom aus dem Hochdruckbereich (17) bei einem definierten minimalen Hochdruck (p_R_min) die Leckagemenge des Niederdruckbereiches (16) ausgleicht.
    2. Ventil nach Anspruch 1, dadurch gekennzeichnet, daß das Ventilglied (2) geteilt ausgebildet ist mit wenigstens einem ersten Kolben (7) und einem zweiten Kolben (10), die durch eine Hydraulikkammer (11) voneinander getrennt sind, wobei der erste Kolben (7) an die piezoelektrische Einheit (3) grenzt und in einem an die Bohrung (8) des Ventilkörpers (9) anschließenden Bereich von einem Ventilsystemdruckraum (20) umgeben ist, und der zweite Kolben (10) an einen den wenigstens einen Ventilsitz (14, 15) und einen Leckageablaufkanal (19) aufweisenden Ventilniederdruckraum (18) grenzt, wobei der Kanal (27) der Befülleinrichtung (26) auf der dem Niederdruckbereich (16) zugewandten Seite der Drosselbohrung (28) in einen den ersten (7) oder den zweiten Kolben (10) umgebenden Spalt (24, 25) mündet und auf der dem Hochdruckbereich (17) zugewandten Seite der Drosselbohrung (28) in den Ventilniederdruckraum (18) mündet.
    3. Ventil nach Anspruch 2, dadurch gekennzeichnet, daß der Kanal (27) der Befülleinrichtung (26) auf der dem Niederdruckbereich (16) zugewandten Seite der Drosselbohrung (28) in den den ersten Kolben (7) umgebenden Spalt (24) mündet.
    4. Ventil nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, daß das Ventilschließglied (13) mit zwei in dem Ventilniederdruckraum (18) angeordneten Ventilsitzen (14, 15) zum Öffnen und Schließen des Ventils (1) derart zusammenwirkt, daß es in einer Schließstellung den Ventilniederdruckraum (18) von einem unter Hochdruck stehenden Ventilsteuerraum (12) trennt und in einer Zwischenstellung zwischen den Ventilsitzen (14, 15) den Ventilniederdruckraum (18) mit dem Ventilsteuerraum (12) strömungsmäßig verbindet.
    5. Ventil nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß ein Überdruckventil (30) zum Einstellen des Systemdruckes (p_sys) zwischen einem dem Niederdruckbereich (16) zugewandten Bereich des Kanals (27) und dem Ventilniederdruckraum (18) vorgesehen ist.
    6. Ventil nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, daß die Hydraulikkammer (11) mit Systemdruck (p_sys) als Toleranzausgleichselement zum Ausgleich von Längungstoleranzen der piezoelektrischen Einheit (3) und/oder weiterer Ventilbauteile (9) und als hydraulische Übersetzung ausgebildet ist.
    7. Ventil nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, daß der Ventilsystemdruckraum (20) durch ein Dichtelement (25) begrenzt ist.
    8. Ventil nach Anspruch 7, dadurch gekennzeichnet, daß das den Ventilsystemdruckraum (20) begrenzende Dichtelement als faltenbalgartige Membran (25) ausgebildet ist, die derart mit dem Ventilglied (2) und mit dem Ventilkörper (9) verbunden ist, daß die piezoelektrische Einheit (3) vor einem Kontakt mit der zu steuernden Flüssigkeit geschützt ist.
    9. Ventil nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Drosselbohrung (28) einen Durchmesser von wenigstens annähernd 40 Mikrometer bis 60 Mikrometer, vorzugsweise 50 Mikrometer, aufweist.
    10. Ventil nach einem der Ansprüche 1 bis 9, gekennzeichnet durch seine Verwendung als Bestandteil eines Kraftstoffeinspritzventils für Brennkraftmaschinen, insbesondere eines Common-Rail-Injektors (1).
    EP00974318A 1999-09-30 2000-09-09 Ventil zum steuern von flüssigkeiten Expired - Lifetime EP1135593B1 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE19946833 1999-09-30
    DE19946833A DE19946833C2 (de) 1999-09-30 1999-09-30 Ventil zum Steuern von Flüssigkeiten
    PCT/DE2000/003138 WO2001023743A1 (de) 1999-09-30 2000-09-09 Ventil zum steuern von flüssigkeiten

    Publications (2)

    Publication Number Publication Date
    EP1135593A1 EP1135593A1 (de) 2001-09-26
    EP1135593B1 true EP1135593B1 (de) 2005-01-12

    Family

    ID=7923814

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP00974318A Expired - Lifetime EP1135593B1 (de) 1999-09-30 2000-09-09 Ventil zum steuern von flüssigkeiten

    Country Status (8)

    Country Link
    US (1) US6530555B1 (de)
    EP (1) EP1135593B1 (de)
    JP (1) JP2003510506A (de)
    KR (1) KR20010101059A (de)
    AT (1) ATE287039T1 (de)
    CZ (1) CZ20011879A3 (de)
    DE (2) DE19946833C2 (de)
    WO (1) WO2001023743A1 (de)

    Families Citing this family (24)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE10003863B4 (de) * 2000-01-28 2004-11-18 Robert Bosch Gmbh Einspritzdüse
    DE10019767A1 (de) * 2000-04-20 2001-10-31 Bosch Gmbh Robert Ventil zum Steuern von Flüssigkeiten
    DE10019765B4 (de) * 2000-04-20 2004-12-09 Robert Bosch Gmbh Ventil zum Steuern von Flüssigkeiten
    DE10019764B4 (de) * 2000-04-20 2004-09-23 Robert Bosch Gmbh Ventil zum Steuern von Flüssigkeiten
    DE10043625C2 (de) * 2000-09-05 2003-03-27 Bosch Gmbh Robert Hydraulisch übersetztes Ventil
    DE10046416C2 (de) * 2000-09-18 2002-11-07 Orange Gmbh Ventilausbildung für Steuerventile
    DE10048933A1 (de) * 2000-10-04 2002-05-02 Bosch Gmbh Robert Ventil zum Steuern von Flüssigkeiten
    DE10136186A1 (de) * 2001-07-25 2003-02-06 Bosch Gmbh Robert Ventil zum Steuern von Flüssigkeiten
    DE10139857B4 (de) 2001-08-14 2009-09-10 Robert Bosch Gmbh Ventil zum Steuern von Flüssigkeiten
    DE10139871B4 (de) * 2001-08-14 2010-08-26 Robert Bosch Gmbh Ventil zum Steuern von Flüssigkeiten
    DE10140799A1 (de) * 2001-08-20 2003-03-06 Bosch Gmbh Robert Brennstoffeinspritzventil
    DE10147493A1 (de) * 2001-09-26 2003-04-17 Bosch Gmbh Robert Ventil zum Steuern von Flüssigkeiten
    DE10155390A1 (de) * 2001-11-10 2003-05-22 Bosch Gmbh Robert Verfahren und Vorrichtung zum Laden und Entladen eines piezoelektrischen Elementes
    DE10160191A1 (de) * 2001-12-07 2003-06-26 Bosch Gmbh Robert Kraftstoffinjektor mit fremdbetätigtem Steller und optimierter Systemdruckversorgung
    EP1511932B1 (de) * 2002-04-04 2006-11-29 Siemens Aktiengesellschaft Einspritzventil
    DE10236985A1 (de) * 2002-08-13 2004-02-26 Robert Bosch Gmbh Ventil zum Steuern von Flüssigkeiten
    WO2004051071A1 (de) * 2002-12-05 2004-06-17 Robert Bosch Gmbh Kraftstoffeinspritzvorrichtung mit einem 3/3-wege-steuerventil zur einspritzverlaufsformung
    DE10260349B4 (de) * 2002-12-20 2013-12-12 Robert Bosch Gmbh Brennstoffeinspritzventil
    DE10302863B3 (de) * 2003-01-25 2004-09-16 Robert Bosch Gmbh Hydraulischer Koppler für Piezo-Injektoren mit verbesserter Befüllung
    DE10352736A1 (de) * 2003-11-12 2005-07-07 Robert Bosch Gmbh Kraftstoffinjektor mit direkter Nadeleinspritzung
    DE102005015997A1 (de) * 2004-12-23 2006-07-13 Robert Bosch Gmbh Kraftstoffinjektor mit direkter Steuerung des Einspritzventilgliedes
    DE102012006658A1 (de) * 2012-04-03 2013-10-10 Burkhard Büstgens Mikro-Pilotventil
    DE102013012444A1 (de) 2013-07-29 2015-01-29 Astrium Gmbh Ventilanordnung zum Schalten und/oder Regeln eines Medienstroms eines Raumfahrttriebwerks und Raumfahrttriebwerk
    CN111878272B (zh) * 2020-06-30 2021-10-29 潍柴动力股份有限公司 高压油泵的排气装置及排气方法

    Family Cites Families (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    ATE192263T1 (de) * 1990-09-25 2000-05-15 Siemens Ag Anordnung für einen in hubrichtung wirkenden adaptiven, mechanischen toleranzausgleich für den wegtransformator eines piezoelektrischen aktors
    DE19540155C2 (de) * 1995-10-27 2000-07-13 Daimler Chrysler Ag Servoventil für eine Einspritzdüse
    FI101738B1 (fi) * 1996-01-30 1998-08-14 Waertsilae Nsd Oy Ab Ruiskutusventtiilijärjestely
    DE19624001A1 (de) * 1996-06-15 1997-12-18 Bosch Gmbh Robert Kraftstoffeinspritzvorrichtung für Brennkraftmaschinen
    US5779149A (en) * 1996-07-02 1998-07-14 Siemens Automotive Corporation Piezoelectric controlled common rail injector with hydraulic amplification of piezoelectric stroke
    DE19708304C2 (de) 1997-02-28 1999-09-30 Siemens Ag Vorrichtung zur Übertragung einer Bewegung und Einspritzventil mit einer Vorrichtung zur Übertragung einer Bewegung
    DE29708369U1 (de) 1997-05-09 1997-07-10 FEV Motorentechnik GmbH & Co. KG, 52078 Aachen Steuerbares Einspritzventil für die Kraftstoffeinspritzung an Brennkraftmaschinen
    DE19732802A1 (de) 1997-07-30 1999-02-04 Bosch Gmbh Robert Kraftstoffeinspritzvorrichtung für Brennkraftmaschinen
    DE19742943C1 (de) * 1997-09-29 1999-04-22 Siemens Ag Vorrichtung in einem Einspritzventil zum Halten einer formschlüssigen Verbindung
    US5875764A (en) * 1998-05-13 1999-03-02 Siemens Aktiengesellschaft Apparatus and method for valve control
    DE19949848A1 (de) * 1999-10-15 2001-04-19 Bosch Gmbh Robert Druckübersetzer für ein Kraftstoffeinspritzsystem für Brennkraftmaschinen

    Also Published As

    Publication number Publication date
    WO2001023743A1 (de) 2001-04-05
    KR20010101059A (ko) 2001-11-14
    DE19946833C2 (de) 2002-02-21
    US6530555B1 (en) 2003-03-11
    CZ20011879A3 (cs) 2002-04-17
    JP2003510506A (ja) 2003-03-18
    ATE287039T1 (de) 2005-01-15
    EP1135593A1 (de) 2001-09-26
    DE19946833A1 (de) 2001-05-03
    DE50009213D1 (de) 2005-02-17

    Similar Documents

    Publication Publication Date Title
    EP1135593B1 (de) Ventil zum steuern von flüssigkeiten
    DE19946828C1 (de) Ventil zum Steuern von Flüssigkeiten
    EP0828936B1 (de) Einspritzventil
    EP1185787B1 (de) Ventil zum steuern von flüssigkeiten
    DE19946827C1 (de) Ventil zum Steuern von Flüssigkeiten
    DE19946831C1 (de) Ventil zum Steuern von Flüssigkeiten
    EP1276985A1 (de) Ventil zum steuern von flüssigkeiten
    DE10019764B4 (de) Ventil zum Steuern von Flüssigkeiten
    EP1137876A1 (de) Ventil zum steuern von flüssigkeiten
    EP1317619B1 (de) Common-rail-system
    DE19949527A1 (de) Injektor für ein Kraftstoffeinspritzsystem für Brennkraftmaschinen mit in den Ventilsteuerraum ragender Düsennadel
    DE102012220027A1 (de) Schaltventil für einen Kraftstoffinjektor
    EP1425526B1 (de) Ventil zum steuern von flüssigkeiten
    DE10043625C2 (de) Hydraulisch übersetztes Ventil
    EP0920583B1 (de) Ventil zum steuern von flüssigkeiten
    WO2002061265A1 (de) Ventil zum steuern von flüssigkeiten
    EP1276983B1 (de) Ventil zum steuern von flüssigkeiten
    DE10233574B4 (de) Ventil zum Steuern von Flüssigkeiten
    EP2126333A1 (de) Kraftstoffinjektor mit koppler
    WO2002061266A2 (de) Ventil zum steuern von flüssigkeiten
    DE102006027484A1 (de) Kraftstoffinjektor mit kraftausgeglichenem Steuerventil
    EP1165956A1 (de) Ventil zum steuern von flüssigkeiten
    DE10152253A1 (de) Ventil zum Steuern von Flüssigkeiten

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    17P Request for examination filed

    Effective date: 20011005

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20050112

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050112

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050112

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050112

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050112

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050112

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 50009213

    Country of ref document: DE

    Date of ref document: 20050217

    Kind code of ref document: P

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050412

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050412

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050423

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

    Effective date: 20050112

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050909

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050909

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050930

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050930

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050930

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050930

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050930

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20051118

    Year of fee payment: 6

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20051013

    EN Fr: translation not filed
    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070403

    BERE Be: lapsed

    Owner name: ROBERT BOSCH G.M.B.H.

    Effective date: 20050930

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050612

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050112