EP1131539B1 - Elektromagnetischer antrieb (stellantrieb für ein ventil eines verbrennungsmotors) - Google Patents

Elektromagnetischer antrieb (stellantrieb für ein ventil eines verbrennungsmotors) Download PDF

Info

Publication number
EP1131539B1
EP1131539B1 EP99958033A EP99958033A EP1131539B1 EP 1131539 B1 EP1131539 B1 EP 1131539B1 EP 99958033 A EP99958033 A EP 99958033A EP 99958033 A EP99958033 A EP 99958033A EP 1131539 B1 EP1131539 B1 EP 1131539B1
Authority
EP
European Patent Office
Prior art keywords
lever
force
valve
valve stem
electromagnetic actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99958033A
Other languages
English (en)
French (fr)
Other versions
EP1131539A1 (de
Inventor
Heinz Leiber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19852605A external-priority patent/DE19852605A1/de
Priority claimed from DE19924793A external-priority patent/DE19924793A1/de
Application filed by Individual filed Critical Individual
Publication of EP1131539A1 publication Critical patent/EP1131539A1/de
Application granted granted Critical
Publication of EP1131539B1 publication Critical patent/EP1131539B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • F01L9/21Valve-gear or valve arrangements actuated non-mechanically by electric means actuated by solenoids
    • F01L2009/2105Valve-gear or valve arrangements actuated non-mechanically by electric means actuated by solenoids comprising two or more coils
    • F01L2009/2109The armature being articulated perpendicularly to the coils axes

Definitions

  • the invention relates to an electromagnetic drive with the features of the preamble of claim 1.
  • Such an electromagnetic drive is known from DE 196 28 860A1 known.
  • the anchor As swivel Lever formed.
  • the center of the anchor is closer to Swivel axis as the other end of the lever, which on the Shank, or a connecting part with the shaft of the Valve rests and acts on this (Gear ratio i ⁇ 1).
  • the area of influence of the lever is within the effective range of the two on the Anchor acting electromagnets, which is why the shaft the Yoke of a magnet must prevail.
  • a valve spring acts in the closing direction of the valve on.
  • the opposing second spring acts on the Lever over one yoke of the other electromagnet penetrating plunger.
  • the invention is based on the object, the structure of the improve electromagnetic drive.
  • the Using a lever acting on the torsion spring for Generation of at least part of the valve in the Opening direction acting spring force facilitates the Structure of the drive also because the corresponding Coil spring omitted or at least made smaller can be.
  • the torsion spring can also be a part or generate the entire counter spring force. This is reduced very much the weight.
  • the torsion bar has the advantage over a helical spring, that no high longitudinal vibrations occur, the an additional burden.
  • the torsion bar or the torsion spring has a very high working frequency Natural frequency, which is not a significant additional Generates loads.
  • Transverse displacement At the large transmission forces of the valve train arises a large frictional force in the transverse direction leading to wear leads. At the same time, this lateral force acts on the Valve guide.
  • the core idea of this invention part thus includes the direct actuation of the valve stem or the Power transmission by the overlying lever arm and the use, e.g. a flexible valve stem, which the small remaining amount .DELTA.S of the Axialversatzes, which occurs as a result of the pivoting movement, at least partially on the deflection absorbs.
  • the lever is on the valve stem in such a way that the two parts against each other slide, but preferably can roll.
  • the axial displacement .DELTA.S by Pivoting movement of the lever is created by the evasion member added. Due to the rolling movement arises only low friction due to the rolling parts. Of the flexible valve stem resembles another part of the Axial offset from. The generated by the evasion member Transverse forces on the valve guide are thus relatively low.
  • the lever / valve stem has to be designed to float so to further reduce the lateral forces.
  • the contact area is floatingly mounted at the valve stem end, z. B. as a floating plate.
  • a total of it is advantageous to at least part of the valve stem made of a material with a low thermal expansion coefficient, e.g. Invar to make essential To avoid length changes of the valve.
  • Fig. 1 shows the basic structure of the invention.
  • the lever 1 is pivotally mounted with a pivot axis 3 and with a lying in the pivot axis 3 torsion spring 4 is connected.
  • the lever 1 is located on a head 5 of a power transmission part 6, at 7 with a valve stem. 8 connected is.
  • a valve spring 9 acts via a valve disk 10 on the valve stem and holds without further Forces the valve in the closed position.
  • the Valve spring 9 alone or together with a spring force part the torsion spring 4 generate the upwardly acting spring force.
  • the counter spring force is here alone by the Torsion spring 4 generated.
  • the power transmission part 6 is formed flexible, so that z. B.
  • Fig. 2 differs from the Fig. 1 substantially only in that a rotation of the valve easily allows becomes.
  • the anchor lever 1 transmits the driving force on the head 5 of the valve stem, whose Upper part 8a is formed here flexible.
  • About one Plate 11 and an axial ball bearing 12 is the force the spring 9 transmitted to the valve plate 10.
  • the ball bearing 12 now allows both a rotation of the valve, as well as a lateral shift due to the Deflection of the valve stem 8a. This will be additional the resulting from the deflection of the valve spring Transverse forces reduced to the valve guide.
  • Fig. 3 the valve is passed through one on the valve stem 20 acting spring 21 in the direction of the closed position of Valve pressed and the lever 22 is located on the valve stem 20 on.
  • the points of contact between the two Divide 20 and 22 are rounded and leave a rolling movement approximately transversely to the axis of the shaft 20th to.
  • the shaft 20 is here divided into an outer tube 20a, on which the spring 21 acts directly and an inner shaft 20b, which in the upper area is relatively thin and so that it is flexible.
  • the force of the spring 21st is transferred to the inner shaft 20b.
  • the interior shaft 20b is in such contact with the lever 22, that the parts roll on each other during the pivoting movement. Nevertheless, there is a deflection of the valve stem. In the process, it can also be a small Sliding movement come.
  • the pivoting of the lever 22 occurring transverse offset is thus partially due to the Rolling motion, but sometimes by bending the Inner shaft balanced 20b.
  • the inner shaft 20b in particular the upper, flexible part z. B. from Invar to large Extensions of the shaft due to heat and thus increase To prevent the frictional forces at the point of contact.
  • the inner shaft is approximately in the middle of the valve with the outer tube 20a conclusively connected.
  • the end of the flexible valve stem 30 with a floating plate 33 provided to the caused by the lever 32 lateral forces on the shaft 30, if the rolling motion is not perfect can be designed.
  • the plate 33 is on the sliding underside with a low friction material Provided.
  • the outer centering spring 34 performs the Plate back to the middle position when in the back Closed position of the valve, where the armature from the magnet M1 is attracted, and thus the transfer force of the Levers is very small.
  • a double evasive link provided, namely the floating Plate with the centering spring and the flexible shaft. On he could be dispensed with
  • Fig. 5a shows a similar constellation as Fig. 3.
  • the spring 20 of Fig. 3 is replaced by a pair of coaxial spring pair 61a and 61b.
  • the points of attack on the valve plate 62a and 62b of the two springs 61a and 61b are offset by 180 ° from each other, as shown in FIG. 5b and this is also shown in Fig. 5c (in another constellation).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)
  • Magnetically Actuated Valves (AREA)

Description

Die Erfindung betrifft einen elektromagnetischen Antrieb mit den Merkmalen des Oberbegriffs des Anspruchs 1.
Ein derartiger elektromagnetischer Antrieb ist aus der DE 196 28 860A1 bekannt. Dort ist der Anker als schwenkbarer Hebel ausgebildet. Das Zentrum des Ankers liegt näher zur Schwenkachse als das andere Ende des Hebels, das auf dem Schaft, bzw. einem Verbindungsteil mit dem Schaft des Ventils aufliegt und auf diesen einwirkt (Übersetzungsverhältnis i<1). Der Einwirkbereich des Hebels liegt innerhalb des Wirkbereichs der beiden auf den Anker einwirkenden Elektromagnete, weshalb der Schaft das Joch des einen Magneten durchsetzen muß. Auf das Ventil wirkt eine Ventilfeder in Schließrichtung des Ventils ein. Die entgegen gerichtete zweite Feder wirkt auf den Hebel über einen das Joch des andern Elektromagneten durchsetzenden Stößel ein.
Ein sehr ähnlich aufgebauter elektromagnetischer Antrieb ist aus der WO97/17S61 bekannt.
Aus der DE 24 40359 A1 ist eine Ventilbetätigung für Kolbenmaschinen bekannt, bei der der Schaft des Ventils in einem Kipphebel gelenkig gelagert ist und einen elastisch verformbaren Bereich aufweist. Hierdurch kann die vom Kipphebel beschriebene Kreisbahn ausgeglichen werden.
Der Erfindung liegt die Aufgabe zu Grunde, den Aufbau des elektromagnetischen Antriebs zu verbessern.
Die Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst.
Die Unteransprüche enthalten Weiterbildungen der Erfindung. Wesentlich bei der Erfindung ist, daß einmal der Krafteinwirkbereich des Hebels auf den Schaft, bzw. das Kraftübertragungsglied aus dem Wirkbereich des Elektromagneten heraus nach außen verlegt wird, so daß die die Magnete durchsetzenden Kanäle für den Schaft und für den Stößel für die Federkraftübertragung auf den Hebel entfallen können, was die Wirkung der Elektromagnete verbessert. Zusätzlich wird dadurch das Verhältnis i des Abstands des Zentrums des Elektromagneten von der Schwenkachse zu dem Abstand des Einwirkbereichs des Hebels auf den Ventilschaft weiter verkleinert, was den Wirkungsgrad der Elektromagnete in dieser Anordnung verbessert. Die Verwendung einer am Hebel angreifenden Torsionsfeder zur Erzeugung wenigstens eines Teils der auf das Ventil in Öffnungsrichtung wirkenden Federkraft, erleichtert den Aufbau des Antriebs ebenfalls, weil die entsprechende Schraubenfeder entfallen oder wenigstens kleiner ausgebildet werden kann. Die Torsionsfeder kann auch ein Teil oder die gesamte Gegenfederkraft erzeugen. Diese reduziert sehr wesentlich das Gewicht.
Der Drehstab hat gegenüber einer Schraubenfeder den Vorteil, daß keine hohe Längsschwingungen auftreten, die zu einer zusätzlichen Belastung führen. Der Drehstab oder die Torsionsfeder hat eine zur Arbeitsfrequenz sehr hohe Eigenfrequenz, welche keine nennenswerten zusätzlichen Belastungen erzeugt. Beim vorgenannten Stand der Technik erfolgt durch die Schwenkbewegung des Hebels und die Kraftübertragung eine Gleitbewegung quer über den Schaft des Übertragungsgliedes entsprechend der vom Radius und Schwenkwinkel abhängigen Querbewegung, d.h. Querversatz. Bei den großen Übertragungskräften des Ventiltriebes entsteht eine große Reibkraft in Querrichtung die zu Verschleiß führt. Zugleich wirkt diese Querkraft auf die Ventilführung.
Bei dem Vorschlag entsprechend den Ansprüchen wirkt der Übertragungshebel an seinem Ende außerhalb der Magnete auf einen Schaft eines Ausweichgliedes, das mit dem Ventil in Verbindung steht und auf dieses die Kraft überträgt. Durch diese Anordnung ist ein großer konstruktiver Spielraum für die Anordnung der Ventilfeder gegeben. Diese kann zur Minimierung der Bauhöhe, z. B. dicht an den Schwenkhebel heranreichen. Das Ausweichglied kann ein verbiegbares Schaftteil oder ein verbiegbares Kraftübertragungsteil sein. Die Ausweichmöglichkeit kann jedoch auch in einer nachgiebigen Verbindung des Schafts mit einem Kraftübertragungsteil liegen.
Der Kerngedanke dieses Erfindungsteils beinhaltet somit die direkte Betätigung des Ventilschafts oder des Kraftübertragungsteils durch den aufliegenden Hebelarm und die Verwendung, z.B. eines biegsamen Ventilschafts, welcher den kleinen noch verbleibenden Betrag ΔS des Axialversatzes, der infolge der Schwenkbewegung auftritt, zumindest teilweise über die Durchbiegung aufnimmt.
Diese Ventilübertragung außerhalb der Magnete kombiniert mit einer vorwiegend als Drehstab oder Torsionsfeder wirkenden Gegenfeder zur Ventilfeder bildet eine optimale Anordnung bei der die Ankerlage im Schwenkhebel zu kleinen Übersetzungsverhältnissen optimiert werden. Damit entsteht eine kleine Baueinheit mit nahezu verschleißfreier Kraftübertragung und mit geringer beweglicher Masse. Während die Ankermasse bei einem elektromechanischen Ventiltrieb mit einem üblichen Übersetzungsverhältnis von i = 1 : 1 etwa 50% der gesamten beweglichen Masse ausmacht, kann diese mit oben genannter Anordnung bei i = 0,5 auf 20% reduziert werden, da ja das Übersetzungsverhältnis quadratisch eingeht.
Bei der Erfindung liegt also der Hebel auf dem Ventilschaft auf derart auf, daß die beiden Teile gegeneinander gleiten, vorzugsweise jedoch abrollen können. Hier wird bei der Schwenkbewegung der Axialversatz ΔS, der durch Schwenkbewegung des Hebels entsteht, von dem Ausweichglied aufgenommen. Durch die Abrollbewegung entsteht nur eine geringe Reibung durch die abrollenden Teile. Der biegsame Ventilschaft gleicht einen weiteren Teil des Axialversatzes aus. Die von dem Ausweichglied erzeugten Querkräfte auf die Ventilführung sind dadurch relativ gering.
Es ist zur weiteren Verbesserung der oben diskutierten Lösung vorteilhaft, zumindest eine der Berührungsflächen Hebel/Ventilschaft zusätzlich schwimmend auszubilden, um so die Querkräfte weiter zu reduzieren. Vorzugsweise wird am Ventilschaftende die Berührungsfläche schwimmend gelagert, z. B. als schwimmend gelagerte Platte. Insgesamt ist es vorteilhaft, wenigstens einen Teil des Ventilschafts aus einem Material mit geringem Wärmeausdehnungskoeffizienten, z.B. Invar zu fertigen, um wesentliche Längenänderungen des Ventils zu vermeiden.
Schließlich wird zur Querkräftereduzierung vorgeschlagen, die Ventilfeder durch ein Ventilfederpaar mit einer später erläuterten Ausgestaltung zu ersetzen.
Anhand der Zeichnung werden Ausführungsbeispiele der Erfindung erläutert.
Es zeigen:
Fig.1
den Grundaufbau einer erfindungsgemäßen Stelleinrichtung;
Fig.2
eine Ausführungsform mit Verdrehmöglichkeit des Ventils;
Fig.3 und 4
Ausführungsbeispiele mit Rollberührungen zwischen Hebel und Ventilschaft;
Fig. 5
ein Ausführungsbeispiel mit zwei Ventilfedern.
Fig.1 zeigt den Grundaufbau der Erfindung. Es sind zwei Elektromagnete M1 und M2 vorgesehen, die auf einen in einem Hebel 1 integrierten Anker 2 einwirken. Der Hebel 1 ist schwenkbar mit einer Schwenkachse 3 gelagert und mit einer in der Schwenkachse 3 liegenden Drehfeder 4 verbunden. Der Hebel 1 liegt auf einem Kopf 5 eines Kraftübertragungsteils 6 auf, das bei 7 mit einem Ventilschaft 8 verbunden ist. Eine Ventilfeder 9 wirkt über einen Ventilteller 10 auf den Ventilschaft ein und hält ohne weiter Kräfte das Ventil in der Geschlossenstellung. Die Ventilfeder 9 allein oder zusammen mit einem Federkraftteil der Drehfeder 4 erzeugen die nach oben wirkende Federkraft. Die Gegenfederkraft wird hier alleine durch die Drehfeder 4 erzeugt. Das Kraftübertragungsteil 6 ist biegsam ausgebildet, so daß z. B. bei der Abwärtsbewegung des Hebels 1 der auf dem Kopf 5 aufliegende Bereich des Hebels 1 darauf abrollt. Hierbei wird durch die Krafteinwirkung während der Schwenkbewegung eine Verbiegung des Kraftübertragungsteils 6 aus der Ventilachse bewirkt. Die Querkräfte sind durch eine hohe Elastizität des Ausweichglieds gering.
Die Fig. 2 unterscheidet sich von der Fig. 1 im wesentlichen nur dadurch, daß eine Drehung des Ventils leicht ermöglicht wird. Der Ankerhebel 1 überträgt die Antriebskraft auf den Kopf 5 des Ventilschaftes, dessen oberer Teil 8a hier biegsam ausgebildet ist. Über einen Teller 11 und über ein Axialkugellager 12 wird die Kraft der Feder 9 auf den Ventilteller 10 übertragen. Das Kugellager 12 ermöglicht nun sowohl eine Drehung des Ventils, als auch eine seitliche Verschiebung infolge der Durchbiegung des Ventilschaftes 8a. Dadurch werden zusätzlich die bei der Durchbiegung der Ventilfeder entstehenden Querkräfte auf die Ventilführung reduziert.
In Fig. 3 wird das Ventil durch eine auf den Ventilschaft 20 wirkende Feder 21 in Richtung der Schließstellung des Ventils gedrückt und der Hebel 22 liegt auf dem Ventilschaft 20 auf. Die Berührungsstellen zwischen den beiden Teilen 20 und 22 sind abgerundet ausgebildet und lassen eine Abrollbewegung etwa quer zur Achse des Schafts 20 zu. Der Schaft 20 ist hier geteilt in ein Außenrohr 20a, auf das die Feder 21 direkt einwirkt und einen Innenschaft 20b, der in dem oberen Bereich relativ dünn und damit biegsam ausgebildet ist. Die Kraft der Feder 21 wird auf den Innenschaft 20b übertragen. Der Innenschaft 20b steht mit dem Hebel 22 in einer solchen Berührung, daß die Teile bei der Schwenkbewegung aufeinander abrollen. Trotzdem kommt es zu einer Verbiegung des Ventilschafts. Bei dem Vorgang kann es auch zu einer kleinen Gleitbewegung kommen. Der bei Schwenkung des Hebels 22 auftretende Querversatz wird somit teilweise durch die Rollbewegung, teilweise aber auch durch Verbiegung des Innenschafts 20b ausgeglichen.
Zusätzlich kann der Innenschaft 20b, insbesondere der obere, biegsame Teil z. B. aus Invar bestehen, um große Ausdehnungen des Schafts durch Wärme und damit Erhöhung der Reibungskräfte an der Berührungsstelle zu verhindern. Der Innenschaft ist ungefähr in Ventilmitte mit dem Außenrohr 20a schlüssig verbunden.
In Fig. 4 ist das Ende des biegsamen Ventilschafts 30 mit einer schwimmend gelagerten Platte 33 versehen, um die durch den Hebel 32 verursachten Querkräfte auf den Schaft 30 zu verringern, wenn die Abrollbewegung nicht vollkommen gestaltet werden kann. Die Platte 33 ist auf der gleitenden Unterseite mit einem Material geringer Reibung versehen. Die außen liegende Zentrierfeder 34 führt die Platte wieder in die Mittellage zurück, wenn in der Schließstellung des Ventils, bei der der Anker vom Magneten M1 angezogen ist, und damit die Übertragungskraft des Hebels sehr klein ist. Hier ist somit ein zweifaches Ausweichglied vorgesehen, nämlich die schwimmend gelagerte Platte mit der Zentrierfeder und der biegsame Schaft. Auf ihn könnte verzichtet werden
Fig. 5a zeigt eine ähnliche Konstellation wie Fig. 3. Jedoch ist hier die Feder 20 der Fig. 3 durch ein koaxial zueinander liegendes Federpaar 61a und 61b ersetzt. Außerdem sind die Angriffspunkte am Ventilteller 62a und 62b der beiden Federn 61a und 61b um 180° gegeneinander versetzt, wie dies die Fig. 5b zeigt und dies auch in Fig. 5c (in anderer Konstellation) gezeigt ist. Die Federn sind so bemessen, daß am Ventilteller Kräftegleichgewicht herrscht, d. h. unter Berücksichtigung der Radien ra und rb der Federn und der Federkräfte FA und Fb muß gelten Fa x ra= Fb x rb
Dann treten am Schaft keine durch die Federkraft hervorgerufenen Querkräfte auf.

Claims (8)

  1. Elektromagnetischer Antrieb mit wenigstens einem Elektromagneten (M1, M2), der einen Hebel (1) abwechselnd in zwei unterschiedliche Endstellungen bringt, wobei dieser Hebel (1) an seinem einen Ende (Schwenkachse 3) schwenkbar gelagert ist und an seinem andern Ende auf dem Ventilschaft (8) eines anzutreibenden Ventils eines Verbrennungsmotors oder auf einem mit dem Ventilschaft (8) in Verbindung stehenden Kraftübertragungsglied (6) aufliegt, und wobei auf den Hebel (1) zwei entgegengesetzt wirkende Federkräfte (4, 9) einwirken, die den Hebel (1) ohne Magneterregung in eine Zwischenstellung stellen, dadurch gekennzeichnet, daß nur ein Teil (2) des Hebels (1) als Anker ausgebildet ist, der den Polen des wenigstens einen Elektromagneten (M1, M2) gegenübersteht, daß der Kraftwirkbereich des Hebels (1) auf den Ventilschaft (8) oder des damit verbunden Kraftübertragungsglieds (6) außerhalb des Wirkbereichs des wenigstens einen Elektromagneten (M1, M2) liegt, daß der Ventilschaft (8) und/oder das damit verbundene Kraftübertragungsglied (6) ein Ausweichglied aufweist, das den aufgrund der Schwenkbewegung des Hebels (1) bei der Kraftübertragung vom Hebel (1) auf den Ventilschaft (8) oder auf das Kraftübertragungsglied (6) auftretenden Versatz des Hebels (1) auf dem Ventilschaft (8) oder dem Kraftübertragungsglied (6) durch Ausweichen eines Teils des Schafts (8) und/oder ds damit verbundenen Kraftübertragungsglieds (6) wenigstens teilweise aufnimmt, und daß wenigstens ein Teil der in Richtung der Öffnung des Ventils wirkenden Federkraft durch einen auf den Hebel (1) einwirkenden, in der Schwenkachse angeordneten Drehstab (4) erbracht wird.
  2. Elektromagnetischer Antrieb nach Anspruch 1, dadurch gekennzeichnet, daß das Ausweichglied durch wenigstens eine Biegezone (6, 8a) gebildet wird.
  3. Elektromagnetischer Antrieb nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Ausweichglied ein am Ventilschaft oder Kraftübertragungsglied angebrachtes schwimmend gelagertes Teil (33) ist, das durch Hebelbewegung quer zur Ventilachse verschoben und durch Federkräfte (34) rückgestellt wird.
  4. Elektromagnetischer Anspruch nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß wenigstens ein Teil der entgegen gerichteten Federkraft ebenfalls durch den Drehstab (4) erbracht wird.
  5. Elektromagnetischer Antrieb nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Federkraft der Ventilfeder (9) über ein, eine Verdrehung des Ventilschafts (8) zulassendes, Kugellager (12) auf den Ventilschaft (8) einwirkt.
  6. Elektromagnetischer Antrieb nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Berührungsteile am Hebel (22) und Ventilschaft (20) oder Kraftübertragungsteil (20b) derart ausgebildet sind, daß bei der Schwenkbewegung eine Abrollbewegung zustande kommt (Fig. 3).
  7. Elektromagnetischer Antrieb nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß wenigstens eines der Berührungsteile (32, 33), insbesondere das Ventilschaftende (33) ein schwimmend gelagertes Teil aufweist.
  8. Elektromagnetischer Antrieb nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der Schaft des Ventils (8) wenigstens teilweise aus einem Material besteht, das einen nur geringen Wärmeausdehnungskoeffizienten aufweist (z. B. Invar).
EP99958033A 1998-11-14 1999-11-12 Elektromagnetischer antrieb (stellantrieb für ein ventil eines verbrennungsmotors) Expired - Lifetime EP1131539B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19852605A DE19852605A1 (de) 1998-11-14 1998-11-14 Stellantrieb für ein Ventil eines Verbrennungsmotors
DE19852605 1998-11-14
DE19924793A DE19924793A1 (de) 1999-05-29 1999-05-29 Stellantrieb für ein Ventil eines Verbrennungsmotors
DE19924793 1999-05-29
PCT/EP1999/008745 WO2000029722A1 (de) 1998-11-14 1999-11-12 Elektromagnetischer antrieb (stellantrieb für ein ventil eines verbrennungsmotors)

Publications (2)

Publication Number Publication Date
EP1131539A1 EP1131539A1 (de) 2001-09-12
EP1131539B1 true EP1131539B1 (de) 2003-02-05

Family

ID=26050155

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99958033A Expired - Lifetime EP1131539B1 (de) 1998-11-14 1999-11-12 Elektromagnetischer antrieb (stellantrieb für ein ventil eines verbrennungsmotors)

Country Status (3)

Country Link
EP (1) EP1131539B1 (de)
DE (1) DE59904249D1 (de)
WO (1) WO2000029722A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004050013B4 (de) * 2003-10-14 2009-03-19 Visteon Global Technologies Inc., Van Buren Elektromechanischer Ventilauslöser
CN1908386A (zh) 2005-08-02 2007-02-07 丰田自动车株式会社 电磁驱动阀

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1471537A (en) * 1974-12-06 1977-04-27 Venard R Engine valve control
DE3616540A1 (de) * 1986-05-16 1987-11-19 Porsche Ag Vorrichtung zum betaetigen eines gaswechsel-tellerventils einer hubkolben-brennkraftmaschine

Also Published As

Publication number Publication date
WO2000029722A1 (de) 2000-05-25
DE59904249D1 (de) 2003-03-13
EP1131539A1 (de) 2001-09-12

Similar Documents

Publication Publication Date Title
EP0389609B1 (de) Vorrichtung zur betätigung der ventile an verbrennungsmotoren mit veränderlicher ventilerhebungskurve
DE3616540C2 (de)
EP3170997B1 (de) Variabler ventiltrieb mit einem kipphebel
WO2018141332A1 (de) Variabler ventiltrieb eines verbrennungskolbenmotors
DE60117320T2 (de) Elektromagnetischer Aktuator mit lamelliertem Anker zur Betätigung der Ventile einer Brennkraftmaschine
DE19509604A1 (de) Ventiltrieb einer Brennkraftmaschine
WO1998003778A1 (de) Ventiltrieb und zylinderkopf einer brennkraftmaschine
EP0317725A1 (de) Vorrichtung zum Betätigen eines Gaswechsel-Tellerventils
DE19628860A1 (de) Elektromagnetische Betätigungsvorrichtung für ein Brennkraftmaschinen-Hubventil
EP0733783B1 (de) Schwinghebel-Anordnung zur Betätigung eines Hubventils
WO1995000750A1 (de) Schlepphebel für die betätigung von gaswechselventilen
DE19939476C2 (de) Ventil zum Steuern von Flüssigkeiten
EP1131539B1 (de) Elektromagnetischer antrieb (stellantrieb für ein ventil eines verbrennungsmotors)
WO1994003709A1 (de) Motorventilabschaltung mittels nockenrollenverlagerung
EP1050669B1 (de) Vorrichtung zur Betätigung eines Ventiles mit variablem Hub an Brennkraftmaschinen
WO2012175070A1 (de) Schlepphebel und verbrennungsmotor mit einem solchen
WO1999056008A1 (de) Abstützelement für einen schlepphebel eines ventiltriebs einer brennkraftmaschine
EP0970298B1 (de) Elektromagnetischer ventilantrieb
EP1414080B1 (de) Piezoelektrisches Aktorsystem
EP0865566A2 (de) Ventiltrieb einer brennkraftmaschine
DE19607019A1 (de) Vorrichtung zur elektromagnetischen Betätigung eines Gaswechselventiles für Verbrennungsmotoren
DE102006026694A1 (de) Variable Ventilvorrichtung eines Verbrennungsmotors
DE10137072A1 (de) Vorrichtung zum Antrieb von wenigstens einem Ventil eines Hubkolbenmotors
DE19839861C2 (de) Stelleinheit
WO2005026503A2 (de) Vollvariable hubventilsteuerung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010615

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20020409

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030205

REF Corresponds to:

Ref document number: 59904249

Country of ref document: DE

Date of ref document: 20030313

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

EN Fr: translation not filed
26N No opposition filed

Effective date: 20031106

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20131126

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59904249

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150602