EP1121511B1 - Procede et dispositif d'actionnement electromagnetique de soupape - Google Patents

Procede et dispositif d'actionnement electromagnetique de soupape Download PDF

Info

Publication number
EP1121511B1
EP1121511B1 EP99947575A EP99947575A EP1121511B1 EP 1121511 B1 EP1121511 B1 EP 1121511B1 EP 99947575 A EP99947575 A EP 99947575A EP 99947575 A EP99947575 A EP 99947575A EP 1121511 B1 EP1121511 B1 EP 1121511B1
Authority
EP
European Patent Office
Prior art keywords
armature
actuator according
velocity
valve
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99947575A
Other languages
German (de)
English (en)
Other versions
EP1121511A1 (fr
Inventor
Calogero Fiaccabrino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Controls Automotive Electronics SAS
Original Assignee
Johnson Controls Automotive Electronics SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Controls Automotive Electronics SAS filed Critical Johnson Controls Automotive Electronics SAS
Publication of EP1121511A1 publication Critical patent/EP1121511A1/fr
Application granted granted Critical
Publication of EP1121511B1 publication Critical patent/EP1121511B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means

Definitions

  • the invention relates to electromagnetic actuators intended to move in translation a valve to bring it alternately in an open position and a position of closing. It finds a particularly important application in the control of the valves of an internal combustion engine, spark or compression ignition.
  • US-A-4 614 170 an electromagnetic actuator, having a ferromagnetic material frame or pallet valve stem drive, return means elastics designed to keep the valve at rest in a middle position between the fully open and closing, and electromagnetic means for bringing alternately the valves in the two positions.
  • Ways electromagnetic described in document US-A-4 614 170 have a first electromagnet with ferromagnetic core placed on one side of the palette and whose excitement attracts the palette in one direction tending to close the valve and a second electromagnet, placed the other side of the palette, whose excitement tends to bring the valve in the fully open position.
  • the electromagnetic means of this last actuator have a single coil mounted on a circuit ferromagnetic construction as it presents, in combination with frame, two stable flow paths magnetic corresponding both to a low value, generally zero, air gap between the armature and the circuit ferromagnetic.
  • Electromagnetic means allow to exercise forces for bringing the armature into a “high” position that we will suppose to correspond to the closing of the valve, and a so-called “low” position, corresponding to the opening, and maintain the armature in these positions.
  • the crew compresses a mechanical energy storage spring as long as a suitable current in a coil or the single coil retains the frame.
  • the spring propels the moving part towards the “low” position.
  • Rod attached to frame pushes valve stem and compresses the valve closing spring.
  • a holding current is established in the coil or a suitable coil to keep the valve open.
  • the valve closing spring in turn stores energy and in turn propels the valve and armature upward when the holding current is cut.
  • the additional energy to be supplied must be sufficient to guarantee a complete stroke of the armature, but not be excessive in order to avoid a terminal shock which would cause noise and wear.
  • the speed at impact should not exceed a few hundredths of a meter per second to maintain wear and noise to an acceptable level.
  • the present invention aims in particular to provide a method and an electromagnetic valve actuator allowing satisfactory control of the applied energy, without however require a sensor.
  • the invention uses the fact that one can constitute the ferromagnetic circuit of electromagnetic means so such that there is an almost linear relationship between the reluctance R (x) and the air gap x during the last fractions of millimeter of the path before bonding the reinforcement against the ferromagnetic circuits.
  • This property is encountered in particular in the case of electromagnetic means at a single coil of the kind described in patent application No. 98 12489 already mentioned.
  • the inductance L (x) of the coil also varies almost linearly within a range starting immediately beyond the central position of the armature if the notches in the ferromagnetic circuit have substantially the same length as the thickness of the reinforcement.
  • Gold R (x) and L (x) can be calculated from the current i in the coil (or two coils in series), which allows to calculate x almost at any time after passing the central position and deduce the speed.
  • the invention proposes in particular an actuator The electromagnetic valve according to claim 1.
  • the calculation means can deduce the variation of reiuctance of the current measurement during the terminal phase of the approach of the reinforcement, i.e. for weak air gaps and we can deduce the variation of x over time from the variations reluctance.
  • the calculation means are also provided for calculating so repetitive the value of the inductance of electromagnetic means while the air gap exceeds a determined value, this which allows you to determine, for example by tabulations, the values corresponding to x. Under these conditions, regulation can order a speed variation profile on most of it the path of the pallet. In the interval for which the laws of variation of L and R as a function of the air gap x are not very linear, an approximate value of x can be obtained at any instant by barycentric average of the values of x given by supposed linear interpolations of L and R in function of x.
  • the invention also provides a method for controlling valve using such an actuator, according to the claim 10.
  • the area in which there is no linear variation of L or R can be very narrow.
  • R in fact varies almost linearly as a function of x as long as the air gap x does not exceed a value x 1 of about 0.5 mm, in the case of an actuator whose electro-mechanical parts have the constitution shown in patent application n ° 98 12489.
  • the inductance L varies almost linearly as a function of x as soon as x exceeds a value x 2 which is typically about 1 mm, when the thickness of the armature is substantially equal to that of the notches in the magnetic circuit.
  • L and R as a function of x can be obtained on other types of magnetic circuit, derived from that described in application No. 98 12489.
  • the actuator 10 shown in Figure 1 consists of a assembly intended to be mounted on the cylinder head 12 of an engine. he has a housing made up of several parts 14 and 16 stacked and assembled by means not shown, such as screws. These parts are made of non-ferromagnetic material, for light alloy example.
  • the housing can be fixed on the cylinder head 12 by means of a shim 20 also made of non-material ferromagnetic.
  • the actuator has a movable armature in the form of a pallet 22.
  • This frame is made of ferromagnetic material, advantageously laminated to reduce losses. It is fixed on a rod 24 for driving the valve 25.
  • a rod 24 for driving the valve 25.
  • several valves are mounted side by side and we only have of small width for each actuator in the direction perpendicular to that of Figure 1. This leads to give the palette a rectangular shape. Pallet cannot rotate in the part 16.
  • the rod 24 can be guided by a ring 26 fixed to an annular extension of the part 16.
  • Two return springs 28a and 28b are provided to maintain the valve at rest in a substantially middle position between the closed position and the full open position.
  • a springs 28a is compressed between a plate 30 fixed to the rod 24 and the extension of part 16.
  • the other spring 28b is compressed between a plate 31 fixed to the valve stem and the bottom valve well in the cylinder head.
  • the distribution game between the lifted rod and the closed valve guarantees tightness.
  • the actuator can just as easily be used with a spring single working in traction / compression and / or supplemented by elastic shock absorber ensuring sealing when closing the valve, as indicated in French patent No. 98 11 670, this which makes it possible to constitute the stem and the stem of valve of a single piece.
  • the housing contains a core of ferromagnetic material 36, advantageously laminated, delimiting a ferromagnetic circuit with the pallet, and a coil 38 placed in the core.
  • the core represented can be in two complementary parts, in support one against the other or in one piece.
  • the constituent sheets of each half of the nucleus are E-shaped.
  • the branches upper 42 engage in the coil 36 which they support via a mandrel 44.
  • the other two branches of each half delimits a volume of movement of the pallet.
  • the support of the pallet against the bottom 46 of the volume defines the valve fully open position.
  • the ceiling 48 of volume is in a location relative to the valve seat such that the support of the armature does not prevent the valve from closing.
  • a middle notch 49, corresponding to the rest position of the pallet 22, can be provided in the chamber, length slightly greater than the thickness of the pallet. Above and below the notch, the volume wall leaves only the clearance necessary for travel to reduce reluctance.
  • the assembly consisting of the pallet, the valve and the spring constitutes an oscillating system having a natural frequency.
  • the coil is fed to bring the crew mobile in its extreme position then under a holding current weaker, until the displacement of the moving crew in the other direction.
  • the reluctance R (x) of the magnetic circuit varies in a substantially linear manner as long as the value x of one of the air gaps is less than a value x 1 which is generally about 0.5 mm.
  • the inductance L (x) also varies substantially linearly as a function of x when the air gap exceeds a value x 2 of approximately 2 mm.
  • the current is slaved, using a regulation loop, by comparing the current i measured with a set value.
  • the gap observed allows the command to be corrected analogically.
  • the voltage Un is known by construction of the circuit of switching and does not necessarily have to be acquired in real time.
  • the current I representative of i (t) is presented to the computer after the sampler-blocker 66 has it sampled at an instant undisturbed by the commutations of the modulator and that an anti-aliasing filter has attenuated the harmonics beyond fe / 2.
  • the integral of r * i (T) is calculated numerically by a method of the cumulative, simple or trapezoidal, integration surfaces.
  • a derivation operation in a speed calculation module 65 After filtering the estimated value of x and x by a filter digital with a cutoff frequency of a few kHz, a derivation operation in a speed calculation module 65 provides an estimate v and of the speed during the whole course of a transition, without the need for a sensor specific. For an automobile engine, a frequency fe of 20 kHz and a cutoff frequency of 75 kHz generally give good results.
  • the current setpoint results from a servo loop which digitally slaves the flow ⁇ (t) contributing to the realization of the magnetic force.
  • This approach makes the force control robust against positioning uncertainties, in particular for small air gaps.
  • the force setpoint that the corrector 62 calculates is translated by a module 63 into a setpoint on the magnitude of the total flux ⁇ (t) which is none other than the flux useful at the force of the leakage flux linked to the inductance Lf leakage.
  • the set flow ⁇ c will be compared to the estimated total flow
  • This formula uses terms already available from the position estimator 64 and involves the inductance of Lf leakage, determined by simulation and tests.
  • Such a system thus works with three closed loops nested; the first involves speed, the second the useful flux, and the third the current i in the coil.
  • the position estimator 64 receives a digitized signal I representing the current i measured. From I, from the flow ⁇ and and from stored tables R (x, i) and L (x, i), it develops, at each sampling instant from the start T 0 of a cycle, information of position which is transmitted to the module 65 for calculating the estimated real speed.
  • the corrector 62 compares the real speed profile with the speed profile v c setpoint and provides a signal representative of the force to be exerted F (t) to the module 68 for calculating a setpoint flow ⁇ c taking account of the inductance leakage Lf and the coefficient ⁇ .
  • the setpoint current i c necessary to create the flow ⁇ c is calculated in a module 72 from the difference between ⁇ c and the estimated total actual flow ⁇ and (t).
  • This estimated total real flux is given by a module 70 on the basis of stored values r and Te, of the signal representative of the measured current i, of the nominal voltage of the generator and of the RCO.
  • the digital signal representing the setpoint current is supplied to the pulse width modulator 58 by the digital to analog converter 60, and it compares this signal to I.
  • the corrector 62 can be provided to take into account also, on certain fractions of the course, a force profile setpoint fc.
  • the modules can be made up of micro-electronic components or program elements.
  • the current loop is deleted.
  • the current calculation module setpoint is replaced by a module 74 which calculates directly RCO (t) and applies it to modulator 58 which controls the intervals of application time of the voltage u.
  • the pallet is advantageously laminated and with bevelled edges parallel to the poles of the nucleus.
  • the inductance tabulation and reluctance as a function of current and air gap allows accurately find the position and speed of the pallet the fact that the armature is not magnetically saturated in its operating range and the flow closes in passing mainly by the reinforcement thanks to the shape of the pole pieces of the nucleus.
  • the natural asymmetry of the upper flow circuit by relation to the lower flow path can be accentuated (for shorten start-up time) by tilting different to the upper 80 and lower polar surfaces 82, the facing polar surfaces remaining parallel between they.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Magnetically Actuated Valves (AREA)
  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

L'invention concerne les actionneurs électromagnétiques destinés à déplacer en translation une soupape pour l'amener alternativement dans une position d'ouverture et une position de fermeture. Elle trouve une application particulièrement importante dans la commande des soupapes d'un moteur à combustion interne, à allumage par étincelles ou par compression.
On connaít (US-A-4 614 170) un actionneur électromagnétique, ayant une armature ou palette en matériau ferromagnétique d'entraínement de la queue de soupape, des moyens de rappel élastiques prévus pour maintenir au repos la soupape dans une position médiane entre les positions d'ouverture complète et de fermeture, et des moyens électromagnétiques permettant d'amener alternativement les soupapes dans les deux positions. Les moyens électromagnétiques décrits dans le document US-A-4 614 170 ont un premier électro-aimant à noyau ferromagnétique placé d'un côté de la palette et dont l'excitation attire la palette dans un sens tendant à fermer la soupape et un second électro-aimant, placé de l'autre côté de la palette, dont l'excitation tend à amener la soupape dans la position de pleine ouverture.
Un autre actionneur électromagnétique est décrit dans le document FR-A-2 784 222. Les moyens électromagnétiques de ce dernier actionneur ont une bobine unique montée sur un circuit ferromagnétique de construction telle qu'il présente, en combinaison avec l'armature, deux cheminements stables de flux magnétique correspondant l'un et l'autre à une valeur faible, généralement nulle, d'entrefer entre l'armature et le circuit ferromagnétique.
Le mode d'actionnement de ces actionneurs électromagnétiques est le suivant. Les moyens électromagnétiques permettent d'exercer des forces d'amenée de l'armature dans une position « haute » qu'on supposera correspondre à la fermeture de la soupape, et une position dite « basse », correspondant à l'ouverture, et de maintenir l'armature dans ces positions. En position « haute » l'équipage comprime un ressort de stockage d'énergie mécanique tant qu'un courant adapté dans une bobine ou la bobine unique retient l'armature. Lorsque le courant de maintien est supprimé, le ressort propulse l'équipage mobile vers la position « basse ». Une tige fixée à l'armature pousse la queue de soupape et comprime le ressort de fermeture de la soupape. En fin de course de l'armature, on établit un courant de maintien dans la bobine ou une bobine appropriée pour que la soupape reste ouverte. Le ressort de fermeture de soupape stocke à son tour de l'énergie et propulse à son tour la soupape et l'armature vers le haut quand le courant de maintien est coupé.
Une partie de l'énergie mécanique est perdue par frottements, chocs, courants de Foucault et travail résistant des forces de contrepression, en particulier à l'échappement. En conséquence, il faut exercer une force additionnelle, dite d'appel, s'ajoutant à la force exercée par les ressorts pour compenser les pertes d'énergie à chaque passage de l'armature d'une position extrême à l'autre.
L'énergie supplémentaire à fournir doit être suffisante pour garantir une course complète de l'armature, mais ne pas être excessive afin d'éviter un choc terminal qui provoquerait du bruit et de l'usure. Pratiquement, la vitesse à l'impact ne doit pas dépasser quelques centièmes de mètre par seconde pour maintenir l'usure et le bruit à un niveau acceptable.
Les procédés et dispositifs électromagnétiques existants parviennent difficilement à remplir simultanément les deux conditions ci-dessus de façon simple. Ou bien ils doivent tolérer une vitesse d'impact élevée, ou bien ils exigent la présence d'un capteur de position et/ou de vitesse qui complique le procédé et le dispositif et qui augmente le coût de réalisation.
On connaít cependant (JP-A-09 320841) un actionneur conforme au préambule de la revendication 1.
La présente invention vise notamment à fournir un procédé et un dispositif d'actionnement électromagnétique de soupape permettant un contrôle satisfaisant de l'énergie appliquée, sans pour autant nécessiter un capteur.
Pour cela, l'invention utilise le fait qu'on peut constituer le circuit ferromagnétique des moyens électromagnétiques de façon telle qu'il y ait une relation quasi linéaire entre la réluctance R (x) et l'entrefer x au cours des dernières fractions de millimètre du parcours avant collage de l'armature contre le circuit ou les circuits ferromagnétiques. Cette propriété se rencontre notamment dans le cas de moyens électromagnétiques à une seule bobine du genre décrit dans la demande de brevet n° 98 12489 déjà mentionnée. Dans un tel actionneur, l'inductance L(x) de la bobine varie également de façon quasi-linéaire dans une plage commençant immédiatement au-delà de la position centrale de l'armature si les encoches du circuit ferromagnétique ont sensiblement la même longueur que l'épaisseur de l'armature. Or R (x) et L (x) peuvent être calculés à partir du courant i dans la bobine (ou deux bobines en série), ce qui permet de calculer x presque à tout moment après le dépassement de la position centrale et d'en déduire la vitesse.
En conséquence l'invention propose notamment un actionneur électromagnétique de soupape suivant la revendication 1.
Les moyens de calcul peuvent déduire la variation de réiuctance de la mesure du courant pendant la phase terminale de l'approche de l'armature, c'est-à-dire pour des entrefers faibles et on peut déduire la variation de x dans le temps des variations de réluctance.
Dans un mode avantageux de réalisation de l'invention, les moyens de calcul sont également prévus pour calculer de façon répétitive la valeur de l'inductance des moyens électro-magnétiques alors que l'entrefer dépasse une valeur déterminée, ce qui permet de déterminer, par exemple par tabulations, les valeurs correspondantes de x. Dans ces conditions, la régulation peut commander un profil de variation de vitesses sur la majeure partie du parcours de la palette. Dans l'intervalle pour lequel les lois de variation de L et R en fonction de l'entrefer x ne sont pas très linéaires, une valeur approchée de x peut être obtenue à tout instant en faisant la moyenne barycentrique des valeurs de x données par des interpolations supposées linéaires de L et R en fonction de x.
Grâce à cette constitution, on peut effectuer une véritable régulation, par opposition à une simple commande en boucle ouverte ou par opposition à un simple réglage du courant fourni au cours d'un cycle à partir des résultats obtenus au cours d'un cycle précédent d'oscillation de l'armature.
L'invention propose également un procédé de commande de soupape utilisant un tel actionneur, suivant la revendication 10.
Dans la pratique, la zone dans laquelle il n'y a pas variation linéaire de L ou de R peut être très étroite. R varie en effet quasi linéairement en fonction de x aussi longtemps que l'entrefer x ne dépasse pas une valeur x1 d'environ 0,5 mm, dans le cas d'un actionneur dont les parties électro-mécaniques ont la constitution montrée dans la demande de brevet n° 98 12489. L'inductance L varie de façon quasi linéaire en fonction de x dès que x dépasse une valeur x2 qui est typiquement d'environ 1 mm, lorsque l'épaisseur de l'armature est sensiblement égale à celle des encoches pratiquées dans le circuit magnétique.
Les caractéristiques de L et R en fonction de x peuvent être obtenues sur d'autres types de circuit magnétique, dérivés de celui décrit dans la demande n° 98 12489.
Les caractéristiques ci-dessus ainsi que d'autres, avantageusement utilisables en liaison avec les précédentes mais pouvant l'être indépendamment, apparaítront mieux à la lecture de la description qui suit de modes particuliers de réalisation, donnés à titre d'exemples non limitatifs.
La description se réfère aux dessins qui l'accompagnent, dans lesquels :
  • la figure 1 montre un actionneur de soupape selon un mode de réalisation, en coupe suivant un plan passant par l'axe de la soupape ;
  • la figure 2 est une vue de détail destinée à montrer les paramètres qui interviennent ;
  • la figure 3 est un diagramme de fonctionnement ;
  • la figure 4 montre une variante de la figure 3.
  • la figure 5 montre une variante de circuit magnétique utilisable.
L'actionneur 10 montré en figure 1 est constitué d'un ensemble destiné à être monté sur la culasse 12 d'un moteur. Il comporte un boítier constitué de plusieurs pièces 14 et 16 empilées et assemblées par des moyens non représentés, tels que des vis. Ces pièces sont en matériau non ferromagnétique, par exemple en alliage léger. Le boítier peut être fixé sur la culasse 12 par l'intermédiaire d'une cale 20 également en matériau non ferromagnétique.
L'actionneur comporte une armature mobile en forme de palette 22. Cette armature est en matériau ferromagnétique, avantageusement feuilleté pour réduire les pertes. Elle est fixée sur une tige 24 d'entraínement de la soupape 25. En général, plusieurs soupapes sont montées côte-à-côte et on ne dispose que d'une largeur faible pour chaque actionneur dans la direction perpendiculaire à celui de la figure 1. Cela conduit à donner à la palette une forme rectangulaire. La palette ne peut pas tourner dans la pièce 16. La tige 24 peut être guidée par une bague 26 fixée à un prolongement annulaire de la pièce 16.
Deux ressorts de rappel 28a et 28b sont prévus pour maintenir la soupape au repos dans une position sensiblement médiane entre la position de fermeture et la position de pleine ouverture. Un des ressorts 28a est comprimé entre un plateau 30 fixé à la tige 24 et le prolongement de la pièce 16. L'autre ressort 28b est comprimé entre un plateau 31 fixé à la queue de soupape et le fond du puits de soupape ménagé dans la culasse. Le jeu de distribution entre la tige levée et la soupape fermée garantit l'étanchéité. L'actionneur peut tout aussi bien être utilisé avec un ressort unique travaillant en traction/compression et/ou complété d'un amortisseur élastique assurant l'étanchéité à la fermeture de la soupape, comme indiqué dans le brevet français No. 98 11 670, ce qui permet de constituer la tige et la queue de soupape d'une seule pièce.
Le boítier contient un noyau en matériau ferromagnétique 36, avantageusement feuilleté, délimitant un circuit ferromagnétique avec la palette, et une bobine 38 placée dans le noyau. Le noyau représenté peut être en deux parties complémentaires, en appui l'une contre l'autre ou d'un seul tenant. Les tôles constitutives de chaque moitié du noyau sont en forme de E. Les branches supérieures 42 s'engagent dans la bobine 36 qu'elles supportent par l'intermédiaire d'un mandrin 44. Les deux autres branches de chaque moitié délimitent un volume de débattement de la palette. L'appui de la palette contre le fond 46 du volume définit la position de pleine ouverture de la soupape. Le plafond 48 du volume est à un emplacement par rapport au siège de soupape tel que l'appui de l'armature n'empêche pas la soupape de se fermer. Une encoche médiane 49, correspondant à la position de repos de la palette 22, peut être prévue dans la chambre, de longueur légèrement supérieure à l'épaisseur de la palette. En-dessus et en-dessous de l'encoche, la paroi du volume ne laisse que le jeu nécessaire au débattement pour réduire la réluctance.
L'ensemble constitué par la palette, la soupape et le ressort constitue un système oscillant ayant une fréquence propre. En régime permanent, on alimente la bobine pour amener l'équipage mobile dans sa position extrême puis sous un courant de maintien plus faible, jusqu'à ce qu'on provoque le déplacement de l'équipage mobile dans l'autre sens.
Dans un actionneur tel que représenté, la reluctance R(x) du circuit magnétique varie de façon sensiblement linéaire aussi longtemps que la valeur x d'un des entrefers est inférieure à une valeur x1 qui est généralement d'environ 0,5 mm. L'inductance L(x) varie également de façon sensiblement linéaire en fonction de x lorsque l'entrefer dépasse une valeur x2 d'environ 2 mm.
Pour mettre en oeuvre l'invention, l'actionneur comporte un circuit d'alimentation (figure 2) ayant un capteur 50 du courant i dans la bobine. La sortie est exploitée par un circuit de calcul 52 qui commande la tension appliquée par un générateur 54. Une solution commode, car elle permet des calculs numériques, consiste à échantillonner le signal i. Une fréquence d'échantillonnage de 20 kHz donnera généralement des résultats satisfaisants. Si la bobine est alimentée sous une tension u, l'inductance L(t) et la reluctance R(t) peuvent être obtenus par un programme de calcul d'intégrale :
Figure 00080001
R(t)=n2 L(t) où :
  • r est la résistance connue de la bobine (éventuellement corrigée en fonction de la température),
  • L'instant To est choisi tel que L(To) *i (To) soit connu. On choisira souvent To tel que i (To) = 0,
  • n est le nombre de spires de la bobine.
Le courant est asservi, à l'aide d'une boucle de régulation, en comparant le courant i mesuré à une valeur de consigne. L'écart observé permet de corriger analogiquement la commande.
Il est avantageux d'utiliser un montage du genre illustré en figure 3, où le calculateur est constitué de plusieurs modules et règle la tension u appliquée à la bobine, sous forme d'impulsions à fréquence fixe fe, par commande d'un commutateur de puissance, constituant le générateur 54, par un modulateur de largeur d'impulsions 58. Le modulateur 58 fournit un signal de sortie périodique, à une fréquence fe de quelques dizaines de kHz ayant un rapport cyclique d'ouverture RCO.
Dans le mode de réalisation illustré, l'intégrale donnant L(t) est calculée dans un estimateur de flux total, à partir de la connaissance, au travers d'un échantillonneur-bloqueur 60, du rapport cyclique RCO(k) appliqué sur la période k d'échantillonnage, de durée Te = i/fe et de la tension nominale Un appliquée par le commutateur 54 :
Figure 00090001
où KO est tel que TO = KO*te K est tel que T = K*te
La tension Un est connue par construction du circuit de commutation et n'a pas besoin d'être nécessairement acquise en temps réel.
Le courant I représentatif de i(t) est présenté au calculateur après que l'échantillonneur-bloqueur 66 l'ait échantillonné à un instant non perturbé par les commutations du modulateur et qu'un filtre anti-repliement ait atténué les harmoniques au delà de fe/2. L'intégrale de r*i(T) est calculée numériquement par une méthode du type cumul, simple ou trapézoïdal, des surfaces d'intégration.
L et R peuvent ainsi être calculés à des instants t successifs ; puis
  • Une cartographie donnant R en fonction de x et i permet de tirer x par interpolation linéaire, connaissant R et i pour x inférieur à x1.
  • Une cartographie donnant L en fonction de x et i permet de tirer x par interpolation linéaire, connaissant L et i pour supérieur à x2.
Entre x1 et x2, on peut estimer x par une moyenne barycentrique des interpolations linéaires à partir de R et à partir de L.
Après filtrage de la valeur estimée de x and de x par un filtre numérique dont la fréquence de coupure est de quelques kHz, une opération de dérivation dans un module de calcul de vitesse 65 permet d'obtenir une estimation v and de la vitesse durant tout le parcours d'une transition, sans qu'il soit besoin d'un capteur spécifique. Pour un moteur d'automobile, une fréquence fe de 20 kHz et une fréquence de coupure de 75 kHz donnent généralement de bons résultats.
Avant de décrire davantage le montage représenté en figure 3, on exposera les principes adoptés pour son fonctionnement.
La comparaison de la vitesse estimée v and avec un profil de vitesse de consigne déterminé par simulation et expérimentalement permet d'élaborer, au travers d'un correcteur 62, le profil de la force d'appel F(t) en réalisant un compromis entre puissance consommée et retard dans l'application des forces de correction.
Pour améliorer la maítrise de la force F(t) appliquée, il est avantageux que la consigne de courant découle d'une boucle d'asservissement qui asservit numériquement le flux (t) contribuant à la réalisation de la force magnétique. Cette approche rend robuste la commande en force vis-à-vis des incertitudes de positionnement, en particulier pour les faibles entrefers. Ainsi, la consigne de force que calcule le correcteur 62 est traduite par un module 63 en consigne sur la grandeur du flux total (t) qui n'est autre que le flux utile à la force du flux de fuite lié à l'inductance de fuite Lf. Le flux utile u peut s'écrire : (t) = αF(t)1/2 où α est un facteur d'échelle lié à la géométrie du circuit magnétique et déterminé par simulation et essais.
La consigne de flux total, élaborée dans un module 63, est donnée par la formule : c = u + Lp.i(T)c = u + Lp x i(T)
Le flux de consigne c sera comparé au flux total estimé
Figure 00110001
Cette formule utilise des termes déjà disponibles issus de l'estimateur de position 64 et fait intervenir l'inductance de fuite Lf, déterminée par simulation et essais.
Un tel système fonctionne ainsi avec trois boucles fermées imbriquées ; la première fait intervenir la vitesse, la seconde le flux utile, et la troisième le courant i dans la bobine.
Dans le schéma de la figure 3, l'estimateur de position 64 reçoit un signal numérisé I représentant le courant i mesuré. A partir de I, du flux  and et de tables mémorisées R(x,i) et L(x,i), il élabore, à chaque instant d'échantillonnage à partir du début T0 d'un cycle, une information de position qui est transmise au module 65 de calcul de la vitesse réelle estimée. Le correcteur 62 compare le profil de vitesse réelle au profil de vitesse vc de consigne et fournit un signal représentatif de la force à exercer F(t) au module 68 de calcul d'un flux de consigne c tenant compte de l'inductance de fuite Lf et du coefficient α. Le courant de consigne ic nécessaire pour créer le flux c est calculé dans un module 72 à partir de l'écart entre c et le flux total réel estimé  and(t). Ce flux total réel estimé est donné par un module 70 à partir de valeurs mémorisées r et Te, du signal représentatif du courant mesuré i, de la tension nominale du générateur et du RCO.
Le signal numérique représentant le courant de consigne est fourni au modulateur de largeur d'impulsions 58 par le convertisseur numérique analogique 60, et il compare ce signal à I.
Le correcteur 62 peut être prévu pour prendre en compte également, sur certaines fractions du parcours, un profil de force de consigne fc.
On trouve, sur la figure 3, les trois boucles imbriquées mentionnées plus haut :
  • la boucle de courant constituée du modulateur 58, du capteur 50 et du commutateur 54 ;
  • la boucle de flux, constituée de l'estimateur de flux total, du module de calcul du flux de consigne et du module 72, se refermant sur la précédente ;
  • la boucle de vitesse comprenant l'estimateur de position 64 et le module de calcul de force, se refermant sur la précédente.
Les modules peuvent être constitués par des composants micro-électroniques ou des éléments de programme.
Dans une variante de réalisation, montrée en figure 4, la boucle de courant est supprimée. Le module de calcul du courant de consigne est remplacée par un module 74 qui calcule directement RCO(t) et l'applique au modulateur 58 qui commande les intervalles de temps d'application de la tension u.
Dans une autre variante encore, montrée en figure 5, la palette est avantageusement feuilletée et à bords biseautés parallèlement aux pôles du noyau. La tabulation de l'inductance et de la réluctance en fonction du courant et de l'entrefer permet de retrouver avec précision la position et la vitesse de la palette du fait que l'armature n'est pas saturée magnétiquement dans sa plage de fonctionnement et que le flux se referme en passant principalement par l'armature grâce à la forme des pièces polaires du noyau.
La dissymétrie naturelle du circuit de flux supérieur par rapport au circuit de flux inférieur peut être accentuée (pour raccourcir le temps de démarrage) en donnant des inclinaisons différentes aux surfaces polaires supérieures 80 et inférieures 82, les surfaces polaires en regard restant parallèles entre elles.

Claims (10)

  1. Actionneur électromagnétique de soupape comprenant une armature d'entraínement de la soupape (25), des moyens élastiques de rappel (28a,28b) prévus pour maintenir au repos la soupape dans une position déterminée, sensiblement médiane entre deux positions extrêmes, dont une position de fermeture de la soupape, des moyens électro-magnétiques (38) à noyau ferro-magnétique placés des deux côtés de l'armature et un circuit d'alimentation alternée des dits moyens électromagnétiques, caractérisé par des moyens de calcul de la vitesse avec laquelle l'armature approche de chacune de ses positions extrêmes et des moyens d'envoi dans les moyens électro-magnétiques d'un courant de commande de la dite vitesse, les moyens de calcul de la vitesse effectuant le calcul à partir de la mesure du courant d'excitation dans les moyens électro-magnétiques et les moyens d'envoi asservissant la variation de la vitesse à un profil de consigne determiné.
  2. Actionneur selon la revendication 1, caractérisé en ce que les moyens de calcul sont également prévus pour calculer de façon répétitive la valeur de l'inductance et la reluctance des moyens électro-magnétiques pendant que l'entrefer dépasse une valeur déterminée, et le circuit d'alimentation commande un profil de variation de vitesses sur la majeure partie du parcours de l'armature.
  3. Actionneur selon la revendication 2, caractérisé en ce que les moyens électro-magnétiques ont une bobine unique montée sur un circuit ferromagnétique de construction telle qu'il présente, en combinaison avec l'armature, deux cheminements stables de flux magnétique correspondant l'un et l'autre à une valeur faible, généralement nulle, d'entrefer entre l'armature et le circuit ferromagnétique.
  4. Actionneur selon la revendication 1, 2 ou 3, caractérisé en ce que les moyens de calcul sont prévus pour déterminer l'inductance L(t) et la reluctance R(t) par calcul de :
    Figure 00150001
    R(t)=n2 L(t) où :
    r est la résistance, connue, de la bobine (éventuellement corrigée en fonction de la température),
    To est tel que L(To) *i (To) soit connu,
    n est le nombre de spires des moyens électro-magnétiques.
  5. Actionneur selon la revendication 2 ou 3, caractérisé en ce que les moyens électro-magnétiques sont alimentés par un commutateur (54) commandés par un modulateur de largeur d'impulsions (58) qui fournit un signal de sortie périodique, à une fréquence fe de quelques dizaines de kHz ayant un rapport cyclique d'ouverture contrôlé pour annuler l'écart entre un profil de vitesse estimé v and et un profil de consigne.
  6. Actionneur selon l'une quelconque des revendications 2 à 5, caractérisé en ce que les moyens de calcul sont prévus pour transformer la consigne de courant en consigne de flux et pour comparer le flux total créé par le courant réel estimé au flux de fuite.
  7. Actionneur selon la revendication 6, caractérisé en ce que les moyens de calcul constituent une boucle de courant, une boucle de flux utile et une boucle de vitesse mutuellement imbriquées.
  8. Actionneur selon l'une quelconque des revendications 1 à 7, à une seule bobine, à palette feuilletée et à surfaces polaires biseautées et parallèles aux pôles du noyau.
  9. Actionneur selon la revendication 8, caractérisé en ce que, pour augmenter la dissymétrie naturelle du circuit de flux supérieur par rapport au circuit de flux inférieur, les surfaces polaires de la palette ont des valeurs différentes.
  10. Procédé de commande de soupape, utilisant un actionneur selon la revendication 1, suivant lequel on échantillonne le courant d'excitation qui parcourt les moyens électromagnétiques, on déduit du courant les variations de l'inductance L(t) et de la reluctance R(t) par le calcul, puis les variations de l'entrefer (x) par référence à des tables mémorisées, on déduit la vitesse des variations de l'entrefer dans le temps et on commande l'application d'une tension aux moyens électro-magnétiques de façon à asservir les variations dans le temps de l'entrefer (x) et de la vitesse (v) à un profil prédéterminé.
EP99947575A 1998-10-15 1999-10-14 Procede et dispositif d'actionnement electromagnetique de soupape Expired - Lifetime EP1121511B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9812940 1998-10-15
FR9812940A FR2784712B1 (fr) 1998-10-15 1998-10-15 Procede et dispositif d'actionnement electromagnetique de soupape
PCT/FR1999/002495 WO2000022283A1 (fr) 1998-10-15 1999-10-14 Procede et dispositif d'actionnement electromagnetique de soupape

Publications (2)

Publication Number Publication Date
EP1121511A1 EP1121511A1 (fr) 2001-08-08
EP1121511B1 true EP1121511B1 (fr) 2003-04-16

Family

ID=9531606

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99947575A Expired - Lifetime EP1121511B1 (fr) 1998-10-15 1999-10-14 Procede et dispositif d'actionnement electromagnetique de soupape

Country Status (7)

Country Link
US (1) US6397798B1 (fr)
EP (1) EP1121511B1 (fr)
JP (1) JP2002527662A (fr)
KR (1) KR100679344B1 (fr)
DE (1) DE69907008T2 (fr)
FR (1) FR2784712B1 (fr)
WO (1) WO2000022283A1 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8839815B2 (en) 2011-12-15 2014-09-23 Honeywell International Inc. Gas valve with electronic cycle counter
US8899264B2 (en) 2011-12-15 2014-12-02 Honeywell International Inc. Gas valve with electronic proof of closure system
US8905063B2 (en) 2011-12-15 2014-12-09 Honeywell International Inc. Gas valve with fuel rate monitor
US8947242B2 (en) 2011-12-15 2015-02-03 Honeywell International Inc. Gas valve with valve leakage test
US9074770B2 (en) 2011-12-15 2015-07-07 Honeywell International Inc. Gas valve with electronic valve proving system
US9234661B2 (en) 2012-09-15 2016-01-12 Honeywell International Inc. Burner control system
US9557059B2 (en) 2011-12-15 2017-01-31 Honeywell International Inc Gas valve with communication link
US9995486B2 (en) 2011-12-15 2018-06-12 Honeywell International Inc. Gas valve with high/low gas pressure detection
US10024439B2 (en) 2013-12-16 2018-07-17 Honeywell International Inc. Valve over-travel mechanism
US10215291B2 (en) 2013-10-29 2019-02-26 Honeywell International Inc. Regulating device

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69908057T2 (de) * 1998-10-06 2004-03-18 Johnson Controls Automotive Electronics Elektromagnetischer Ventil-Aktuator
JP2001102213A (ja) * 1999-09-28 2001-04-13 Honda Motor Co Ltd アクチュエータ制御装置
IT1321181B1 (it) * 2000-05-04 2003-12-30 Magneti Marelli Spa Metodo e dispositivo per la stima della posizione di un corpoattuatore in un azionatore elettromagnetico per il comando di una
FR2810153B1 (fr) * 2000-06-07 2006-09-22 Peugeot Citroen Automobiles Sa Actionneur electromagnetique notamment de soupape de moteur a combustion interne
FR2812683B1 (fr) 2000-08-01 2002-10-25 Sagem Procede et dispositif de commande de soupape a commande electromagnetique
JP3758496B2 (ja) * 2000-11-06 2006-03-22 株式会社日立製作所 関節駆動装置
ITBO20000678A1 (it) * 2000-11-21 2002-05-21 Magneti Marelli Spa Metodo di controllo di un azionatore elettromagnetico per il comando di una valvola di un motore
JP4803882B2 (ja) * 2001-01-19 2011-10-26 本田技研工業株式会社 電磁アクチュエータ制御装置
GB0117904D0 (en) * 2001-07-23 2001-09-12 Lucas Industries Ltd Motor control system
US6741441B2 (en) * 2002-02-14 2004-05-25 Visteon Global Technologies, Inc. Electromagnetic actuator system and method for engine valves
FR2836755B1 (fr) * 2002-03-01 2004-08-20 Johnson Contr Automotive Elect Actionneur electromagnetique a force d'attraction controlee
US7086636B2 (en) * 2002-07-02 2006-08-08 Borgwarner Inc. Gaseous fluid metering valve
US20050001702A1 (en) * 2003-06-17 2005-01-06 Norton John D. Electromechanical valve actuator
WO2005013295A1 (fr) * 2003-07-31 2005-02-10 Continental Teves Ag & Co. Ohg Procede pour determiner le flux magnetique dans au moins une electrovanne pouvant etre commandee electriquement par l'intermediaire d'un etage d'excitation
US20050076866A1 (en) * 2003-10-14 2005-04-14 Hopper Mark L. Electromechanical valve actuator
US7255073B2 (en) * 2003-10-14 2007-08-14 Visteon Global Technologies, Inc. Electromechanical valve actuator beginning of stroke damper
FR2868526B1 (fr) * 2004-04-06 2007-04-20 Peugeot Citroen Automobiles Sa Capteur de position d'un actionneur de soupape d'un moteur a combustion interne
US7305942B2 (en) * 2005-02-23 2007-12-11 Visteon Global Technologies, Inc. Electromechanical valve actuator
US7305943B2 (en) * 2005-02-23 2007-12-11 Visteon Global Technologies, Inc. Electromagnet assembly for electromechanical valve actuators
EP1869308B1 (fr) 2005-03-08 2014-08-06 BorgWarner, Inc. Soupape rge presentant une position de repos
US7640899B2 (en) * 2005-04-15 2010-01-05 Ford Global Technologies, Llc Adjusting electrically actuated valve lift
CN100430158C (zh) * 2006-08-08 2008-11-05 合肥美亚光电技术有限责任公司 高速电磁气动机构
US9835265B2 (en) 2011-12-15 2017-12-05 Honeywell International Inc. Valve with actuator diagnostics
US9851103B2 (en) 2011-12-15 2017-12-26 Honeywell International Inc. Gas valve with overpressure diagnostics
US9846440B2 (en) 2011-12-15 2017-12-19 Honeywell International Inc. Valve controller configured to estimate fuel comsumption
US10422531B2 (en) 2012-09-15 2019-09-24 Honeywell International Inc. System and approach for controlling a combustion chamber
US9841122B2 (en) 2014-09-09 2017-12-12 Honeywell International Inc. Gas valve with electronic valve proving system
US9645584B2 (en) 2014-09-17 2017-05-09 Honeywell International Inc. Gas valve with electronic health monitoring
US10503181B2 (en) 2016-01-13 2019-12-10 Honeywell International Inc. Pressure regulator
US10564062B2 (en) 2016-10-19 2020-02-18 Honeywell International Inc. Human-machine interface for gas valve
DE102017210607A1 (de) * 2017-06-23 2018-12-27 Robert Bosch Gmbh Verfahren und Vorrichtung zum Ansteuern eines mittels einer Spule bewegbaren Teils und Magnetventil
US11073281B2 (en) 2017-12-29 2021-07-27 Honeywell International Inc. Closed-loop programming and control of a combustion appliance
US10697815B2 (en) 2018-06-09 2020-06-30 Honeywell International Inc. System and methods for mitigating condensation in a sensor module

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3307070C2 (de) 1983-03-01 1985-11-28 FEV Forschungsgesellschaft für Energietechnik und Verbrennungsmotoren mbH, 5100 Aachen Stelleinrichtung für ein zwischen zwei Endstellungen verstellbares Schaltelement
DE3826977A1 (de) * 1988-08-09 1990-02-15 Meyer Hans Wilhelm Stelleinrichtung fuer ein gaswechselventil einer brennkraftmaschine
DE3920976A1 (de) * 1989-06-27 1991-01-03 Fev Motorentech Gmbh & Co Kg Elektromagnetisch arbeitende stelleinrichtung
DE19631909A1 (de) * 1995-08-08 1997-02-13 Fev Motorentech Gmbh & Co Kg Verfahren zur Justierung der Ruhelage des Ankers an einem elektromganetischen Aktuator
DE19531437A1 (de) * 1995-08-26 1997-02-27 Fev Motorentech Gmbh & Co Kg Verfahren zur Erfassung des Ventilspiels an einem durch einen elektromagnetischen Aktuator betätigten Gaswechselventil
DE19615435A1 (de) * 1996-04-19 1997-10-23 Daimler Benz Ag Vorrichtung zur elektromagnetischen Betätigung eines Gaswechselventiles für Verbrennungsmotoren
JPH09317419A (ja) * 1996-05-28 1997-12-09 Toyota Motor Corp 吸排気用電磁駆動弁の異常検出方法
JPH09320841A (ja) * 1996-05-28 1997-12-12 Toyota Motor Corp 電磁アクチュエータ制御装置
DE19623698A1 (de) * 1996-06-14 1997-12-18 Fev Motorentech Gmbh & Co Kg Verfahren zur Steuerung der Antriebe von Hubventilen an einer Kolbenbrennkraftmaschine
DE19723792C1 (de) * 1997-06-06 1998-07-30 Daimler Benz Ag Einrichtung zur Einstellung eines elektromagnetischen Aktuators
DE19723923C2 (de) * 1997-06-06 2000-06-21 Gruendl & Hoffmann Ventilanordnung für einen ventilgesteuerten Verbrennungsmotor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8839815B2 (en) 2011-12-15 2014-09-23 Honeywell International Inc. Gas valve with electronic cycle counter
US8899264B2 (en) 2011-12-15 2014-12-02 Honeywell International Inc. Gas valve with electronic proof of closure system
US8905063B2 (en) 2011-12-15 2014-12-09 Honeywell International Inc. Gas valve with fuel rate monitor
US8947242B2 (en) 2011-12-15 2015-02-03 Honeywell International Inc. Gas valve with valve leakage test
US9074770B2 (en) 2011-12-15 2015-07-07 Honeywell International Inc. Gas valve with electronic valve proving system
US9557059B2 (en) 2011-12-15 2017-01-31 Honeywell International Inc Gas valve with communication link
US9995486B2 (en) 2011-12-15 2018-06-12 Honeywell International Inc. Gas valve with high/low gas pressure detection
US9234661B2 (en) 2012-09-15 2016-01-12 Honeywell International Inc. Burner control system
US10215291B2 (en) 2013-10-29 2019-02-26 Honeywell International Inc. Regulating device
US10024439B2 (en) 2013-12-16 2018-07-17 Honeywell International Inc. Valve over-travel mechanism

Also Published As

Publication number Publication date
EP1121511A1 (fr) 2001-08-08
KR100679344B1 (ko) 2007-02-07
WO2000022283A1 (fr) 2000-04-20
DE69907008D1 (de) 2003-05-22
FR2784712A1 (fr) 2000-04-21
US6397798B1 (en) 2002-06-04
JP2002527662A (ja) 2002-08-27
DE69907008T2 (de) 2004-01-22
KR20010080032A (ko) 2001-08-22
FR2784712B1 (fr) 2001-09-14

Similar Documents

Publication Publication Date Title
EP1121511B1 (fr) Procede et dispositif d'actionnement electromagnetique de soupape
EP0992658B1 (fr) Actionneur électromagnétique de soupape
FR2545574A1 (fr) Electro-aimant pour commander une vanne ou un clapet
FR2792765A1 (fr) Actionneur lineaire electromagnetique a capteur de position
EP1174595B1 (fr) Actionneur de soupapes de moteurs à combustion interne
FR2813703A1 (fr) Dispositif avec un actionneur electromagnetique
FR2784497A1 (fr) Actionneur electromagnetique a palette aimantee
FR2886669A1 (fr) Electrovanne
EP1450013B1 (fr) Actionneur électromécanique de soupape pour moteur à combustion interne et moteur à combustion interne muni d'un tel actionneur
FR2865238A1 (fr) Actionneur electromecanique de commande de soupape pour moteur a combustion interne et moteur a combustion interne muni d'un tel actionneur
EP1174596B1 (fr) Actionneur électromagnétique de soupape de moteur à combustion interne
FR2797297A1 (fr) Dispositif d'actionnement de soupape electrodynamique
WO2002084082A1 (fr) Dispositif de commande de soupape a point mort
FR2873232A1 (fr) Dispositif de commande electromagnetique fonctionnant en basculement
EP1568858B1 (fr) Dispositif d'actionnement électromagnétique de soupape pour moteur à combustion interne
EP1229560B1 (fr) Actionneur électromagnétique à un électroaimant pour soupape de moteur à combustion interne
EP1774143A1 (fr) Dispositif de commande a electroaimant pour une soupape de moteur a combustion interne
FR2812683A1 (fr) Procede et dispositif de commande de soupape a commande electromagnetique
FR2812684A1 (fr) Procede et dispositif de commande d'ouverture de soupape a actionneur electromagnetique
EP1703089B1 (fr) Actionneur électromécanique de commande de soupape pour moteur à combustion interne et moteur à combustion interne muni d'un tel actionneur
EP1215370A1 (fr) Dispositif d'entrainement lineaire d'une soupape au moyen d'aimants mobiles
FR2865312A1 (fr) Dispositif d'entrainement lineaire, notamment pour soupape de moteur a combustion
FR2460533A1 (fr) Actionneur electromagnetique possedant un element mobile entre deux positions stables
FR3047513B1 (fr) Actionneur electromagnetique pour soupape de moteur a combustion interne
FR2853002A1 (fr) Systeme et procede de commande d'une soupape actionnee electromagnetiquement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010322

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: JOHNSON CONTROLS AUTOMOTIVE ELECTRONICS

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69907008

Country of ref document: DE

Date of ref document: 20030522

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031030

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 1121511E

Country of ref document: IE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040119

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081010

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20081020

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081031

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081010

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091102

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091014