EP1103165B1 - Ballast electronique destine a au moins une lampe a decharge basse tension - Google Patents

Ballast electronique destine a au moins une lampe a decharge basse tension Download PDF

Info

Publication number
EP1103165B1
EP1103165B1 EP00927003A EP00927003A EP1103165B1 EP 1103165 B1 EP1103165 B1 EP 1103165B1 EP 00927003 A EP00927003 A EP 00927003A EP 00927003 A EP00927003 A EP 00927003A EP 1103165 B1 EP1103165 B1 EP 1103165B1
Authority
EP
European Patent Office
Prior art keywords
lamp
heating
electronic ballast
ballast according
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00927003A
Other languages
German (de)
English (en)
Other versions
EP1103165A1 (fr
Inventor
Dietmar Klien
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tridonicatco GmbH and Co KG
Original Assignee
Tridonicatco GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tridonicatco GmbH and Co KG filed Critical Tridonicatco GmbH and Co KG
Publication of EP1103165A1 publication Critical patent/EP1103165A1/fr
Application granted granted Critical
Publication of EP1103165B1 publication Critical patent/EP1103165B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/295Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps with preheating electrodes, e.g. for fluorescent lamps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/295Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps with preheating electrodes, e.g. for fluorescent lamps
    • H05B41/298Arrangements for protecting lamps or circuits against abnormal operating conditions
    • H05B41/2981Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the circuit against abnormal operating conditions
    • H05B41/2985Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the circuit against abnormal operating conditions against abnormal lamp operating conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S315/00Electric lamp and discharge devices: systems
    • Y10S315/07Starting and control circuits for gas discharge lamp using transistors

Definitions

  • the present invention relates to an electronic ballast for operation at least one low-pressure discharge lamp according to the preamble of claim 1.
  • Ballasts are usually used nowadays high-frequency alternating voltage to the gas discharge lamps or fluorescent tubes submit. Apart from the power supply, such electronic ones are used Ballasts also to preheat the electrodes of the gas discharge lamps and gently ignite and operate the lamps. With their help the Efficiency of the lamps increased, a longer lifespan achieved and a Operation under reduced lamp power (dimming) enables.
  • Electrodes or the filaments of the lamp usually for a certain time preheated, which means a gentler lamp start and thus a longer service life the lamp is achieved.
  • the preheating takes place with the help of a spiral heating, which causes a current to flow through the two coils.
  • a heating transformer is used, the Primary winding is connected to the output of an inverter and the two Has secondary windings, each with one of the two lamp filaments are coupled.
  • the Resonance frequency of the series resonance circuit such a changed frequency for the the AC voltage output set that the at the Discharge lamp applied voltage initially does not cause the lamp to ignite.
  • the ballast should also monitor the condition of the lamp Take up a function in order to be able to record any malfunctions and take appropriate measures.
  • a malfunction can, for example then exist if one of the two coils or both are defective or if the lamp has been completely removed.
  • the voltage drop is in series with the Primary winding of the transformer resistance and thus the heating current measured to detect whether there is a filament break or whether the lamp is out of the Arrangement was removed.
  • the procedure just mentioned provides information about the condition of the lamp, but not about what type of lamp it is. Lamps are often different Not externally, but have different electrical parameters and one different power consumption. Then accidentally one in their Features not compatible with the electronic ballast incorrect control can occur. This affects in lighting in simpler cases, but may also be in more serious cases damage the lamp. Such problems could be avoided by determining the type of lamp in a short control measurement before ignition and appropriate measures are initiated. This can mean that the Lamp is not preheated and ignited if it is of the wrong type or even better, that one corresponding to the performance characteristics of the lamp Activation takes place.
  • EP / A / 889675 describes an electronic ballast with an additional one Circuit for recognizing the lamp type using a filament resistance determination known.
  • EP / A / 722263 is a circuit arrangement for coil preheating known from fluorescent lamps.
  • an electronic ballast for operating a Low pressure gas discharge lamp specify that with the lowest possible Material and circuit expenditure the functions just described, that is Lamp detection, lamp condition detection and controllable in their power Filament heating, fulfilled.
  • ballast which has the features of claim 1 has, solved.
  • An essential feature of the ballast is an evaluation circuit, those for recognizing the type and condition of the lamp by the primary winding of the heating transformer current and in addition also through at least one of the two heating circuits flowing current detected and evaluated.
  • the identification the lamp type is done by measuring the lamp filament flowing current, which is a suitable measure of the spiral resistance.
  • filament resistance is a characteristic feature of using lamps distinguish the same appearance but different performance features.
  • the Current through the primary winding provides information about the condition of the lamp.
  • the transformer transforms the heating voltage on the primary winding to the Lamp down strongly, so that the filament resistances in turn to Primary winding are transformed upwards. The behavior of the transformer therefore strongly depends on whether the coils are intact or whether, for example, one The coil is defective and the associated secondary heating circuit is interrupted.
  • a first development of the invention is an optimal control of the heating current and thus to enable the filament heating.
  • This is according to claim 5 thereby achieved that the connection of the primary winding of the heating transformer to the Output of the inverter through one consisting of two switches bidirectional switch is regulated, the between the two switches Primary winding of the heating transformer and a coupling capacitor are arranged.
  • the bidirectional switch can be switched by two series and opposite oriented field effect transistors are formed, which are preferably by a common pulse width modulated signal can be controlled, the Duty cycle of this signal determines the degree of heating. With the help of this arrangement an intermediate discharge of a coupling capacitor contained in the heating circuit avoided and thus achieved a symmetrical heating voltage.
  • the resistance value is one of the two coils. This is above the peak value of the so-called pin current certainly.
  • a short test can be carried out whether the filaments are actually cold. This way misinterpretations can be made during lamp detection, which can occur after a short-term power failure, be avoided.
  • the current measurements are preferably carried out in each case Measurements of the voltage drops across two in the heating circuit of the primary winding or Measuring resistors arranged in the secondary heating circuit of a lamp filament.
  • the electronic ballast is designed such that that the control of the filament heating and adjusting the frequency of the AC voltage, which is applied to the load circuit with the lamp, depending from the previously determined lamp type.
  • the degree of dimming of the lamp can be determined that the Dimming the lamp causes the lamp current to drop due to the Heating current should be substantially balanced.
  • the height of the setpoint for the Pen current i.e. for the sum of lamp current and heating current, is based on this according to the electronic parameters of the lamp.
  • a control measurement at regular intervals detect a possible breakage of the filament or removal of the lamp.
  • the inverter of the ballast is formed by a half bridge from two electronic switches S1 and S2 connected in series, one switch each consisting of a MOS field effect transistor.
  • the two switches S1 and S2 are activated via two connections A1 and A2 connected to the gates of the transistors, which lead to a control / evaluation circuit, not shown.
  • the lower output of the half-bridge is grounded, while the DC voltage U BUS is present at its input, which can be generated, for example, by shaping the usual mains voltage using a combination of radio interference suppressor and rectifier.
  • any other DC voltage source can also be present at the input of the half bridge.
  • the load circuit containing the discharge lamp LA At the exit of the half bridge, i.e. to the common junction of the two Switches S1 and S2 is the load circuit containing the discharge lamp LA connected.
  • This consists of a series resonance circuit consisting of a Choke coil L1 and a resonance capacitor C2 is composed. Between the Choke coil L1 and the resonance capacitor C2 is also a coupling capacitor C1 arranged.
  • the connection node between the two capacitors C1 and C2 is the upper of the two cathodes of the low-pressure gas discharge lamp LA connected.
  • the two cathodes of the lamp LA each have two connections, between each of which a heating coil W1 or W2 for heating the cathodes is provided.
  • the lower cathode of the LA lamp is in turn over two in series switched resistors R1 and R3 connected to ground.
  • the same is the second Connection of the resonance capacitor C2 connected to ground, so that the lamp LA and the resonance capacitor C2 are parallel to each other.
  • the function of the second Resistor R3 will be described later.
  • a heating transformer is provided for heating the two coils W1 and W2. that of a primary winding Tp and two secondary windings Ts1 and Ts2 consists.
  • the secondary windings Tsl and Ts2 are each connected in series a filament W1 or W2 of the lamp LA connected, so that two separate secondary Heating circuits are formed.
  • the resistor R3 is inside the secondary Heating circuit of the lower filament W1 arranged so that both one through the lamp LA flowing lamp current as well as the flowing through the lower filament W1 The heating current flows in the same direction through the measuring resistor R3.
  • the Primary winding Tp is part of a series circuit that also has a Coupling capacitor C3 and two controllable switches S3 and S4, between which the Primary winding Tp and the coupling capacitor C3 are arranged.
  • This Series connection is at its lower end via a further resistor R2 to ground connected and at its upper end to the common node of the two switches S1 and S2 of the half-bridge connected, so that they are parallel to the Load circuit and the lower branch of the half-bridge lies.
  • the two switches S3 and S4 each consist of a field effect transistor, but are - like FIG. 1 can be removed - oriented opposite to each other, so that a bidirectional switch is formed.
  • the two are in the circuit diagram Free-wheeling diodes D3 and D4 of the two transistors S3 and S4 are shown.
  • the gates of the two switches S3 and S4 are controlled by the control / evaluation circuit with a pulse width modulated signal via connection A3.
  • the common one Node between the output of diode D1 and the gate of the switch S3 is parallel via a capacitor C4 and one to this capacitor C4 switched resistor R4 with the common node of the two switches S1 and S2 of the half-bridge connected.
  • the circuit shows three with the Control / evaluation circuit connected outputs A4, A5 and A6 to that for measurement of voltage drops across resistors R2 and R3 are used.
  • the measuring signals at the outputs A4, A5 and A6 are used to recognize the Lamp type and to record the status of the lamp, i.e. to check whether it is intact or whether one of the two coils is broken.
  • the control / evaluation circuit regulates the clock signals to the Connections A1 and A2 the AC voltage supplied to the load circuit and through the Pulse width modulated signal at connection A3 heating the coils W1 and W2.
  • FIG. 2 shows a typical timing diagram of the control signals present at the three inputs A1, A2 and A3 and the resultant state of the four switches S1 to S4 for an already ignited and slightly dimmed operating state of the lamp LA.
  • alternating signals are regularly applied to the connections A1 and A2 of the two half-bridge switches S1 and S2 between a high level H and a low level L, such that one of the two switches S1 or S2 is opened (I) and the other is closed (0) is.
  • a high-frequency AC voltage with the period length ⁇ 0 or the frequency 1 / ⁇ 0 is generated at the center of the half-bridge and fed to the load circuit.
  • the degree of dimming of the gas discharge lamp is essentially determined by the deviation of the frequency 1 / ⁇ 0 of the AC voltage from the resonance frequency of the load circuit.
  • a high deviation means high dimming.
  • the selected period length ⁇ 0 actually causes a certain dimming of the lamp.
  • the two electrodes In order to counteract premature aging of the lamp, the two electrodes must be heated by an additional heating current so that they are kept at their emission temperature.
  • the heating takes place by a low-frequency connection of the primary heating circuit to the center of the half-bridge at regular intervals ⁇ H and for a predetermined period ⁇ HH .
  • capacitor C3 then decouples the DC voltage component, so that a symmetrical square-wave voltage with a peak value of U BUS / 2 results in the primary winding Tp of the heating transformer.
  • the coupling capacitor C3 should not be discharged so that a symmetrical voltage signal can be generated at the primary winding Tp at any time. This is particularly important in those cases in which a multi-lamp device is formed in which the peak value of the primary voltage has to be placed close to the transverse discharge voltage of the low-resistance filaments. If the heating circuit were connected to the center of the half-bridge with the help of a single switch (for example only through the lower transistor S4), the coupling capacitor C3 would discharge via the internal freewheeling diode D4 of this transistor in the periods in which the lower switch S2 of the Half bridge is closed.
  • a bidirectional switch is formed from the two field effect transistors S3 and S4, the gates of the two transistors S3 and S4 being controlled by the common pulse-width-modulated signal A3.
  • the mode of operation of this bidirectional switch can also be seen from the curves in FIG. 2. If the signal A3 has a low level L, both switches S3 and S4 are open and the filament heating is switched off. If the control signal A3 changes to a high level H at the beginning of a heating pulse ⁇ HH , the lower transistor switches through and switch S4 is thus closed (I). However, as long as the upper switch S1 of the half-bridge is closed (I), the transistor S3 remains blocked and the second switch S3 is open (0).
  • the PWM signal A3 is switched to a low level and the transistor S4 is thus blocked.
  • the gate of transistor S3 is then no longer controlled via diode D1, and transistor S3 is now kept passively blocked via resistor R4.
  • the additional capacitor C4 ensures that there is no unwanted switching on of the transistor S3 during the off phase ⁇ HL due to the Miller capacitance.
  • both switches S3 and S4 are thus open and discharging of the coupling capacitor C3 via one of the two freewheeling diodes D3 or D4 is also excluded.
  • the period length ⁇ H of the signal A3 is significantly longer than the period length ⁇ 0 of the high-frequency clock signals A1 and A2.
  • the choice of low frequency 1 / ⁇ H depends on several considerations. On the one hand, a frequency 1 / ⁇ H that is too high or a period ⁇ H that is too short should not be selected, since otherwise the heating power is roughly graded. Since switching on the heating circuit influences the light output of the lamp, flickering can occur. On the other hand, the frequency 1 / ⁇ H must not be chosen too low, since the two filaments W1 and W2 otherwise cool down too much during the off phase ⁇ HL , which can have a negative effect on the life of the lamp LA.
  • the frequency 1 / ⁇ H of the pulse width modulated signal A3 should therefore be chosen in any case so that an essentially constant electrode temperature is established.
  • the effective value of the heating voltage and thus the degree of heating power is determined by the pulse duty factor of the pulse-width-modulated signal A3 or by the temporal relationship between high-phase ⁇ HH and low-phase ⁇ HL . It is preferably set in accordance with the degree of dimming and the type of lamp LA. The corresponding procedure for setting the heating output will be explained later. If the already lit lamp LA is operated in the vicinity of the resonance frequency of the load circuit and thus with almost maximum power, the filament heating can be switched off completely in order to reduce power losses. This does not significantly affect the life of the lamp LA, since in this case the operating temperature of the electrodes is sufficient.
  • a relatively high heating power is selected during the preheating of the filaments W1 or W2 in order to enable a short preheating time and a quick ignition of the lamp LA.
  • the half-bridge is also operated at a very high frequency 1 / ⁇ 0 of almost 120 kHz. Since this frequency is far above the resonance frequency of the load circuit, premature and unwanted ignition is avoided.
  • the lamp LA is ignited in a known manner. If closer to that for explanatory recording of the lamp status and the lamp detection none Malfunctions are detected, the after a predetermined heating time Frequency of the alternating voltage emitted by the half-bridge is reduced and the Approximate resonance frequency of the load circuit. This increases the lamp LA applied voltage until finally ignition occurs.
  • This procedure is to control the current flowing from the lower coil W1.
  • This so-called pen stream is made up of two parts, one of which is from the ignited lamp LA flowing lamp current and on the other hand from that of the heating transformer generated average heating current.
  • the goal now is to have this pen flow roughly on one to keep the specified setpoint or within a specified range. Because namely the lamp LA is dimmed by changing the AC voltage frequency, this reduces the lamp current and the electrode temperature.
  • a measure of the additional heating of the electrodes can now be selected, for example, that the current reduction caused by the dimming by the heating current should be balanced again.
  • the control / evaluation circuit is therefore preferred formed so that it measures the pin current and the pulse width of the control signal on Port A3 modulated accordingly.
  • the current is measured by a Brief measurement of the voltage drop across the measuring resistor R3 by one to the Outputs A5 and A6 connected (not shown) voltmeter, the one Part of the control / evaluation circuit or the measurement result to it forwards.
  • the value specified for the pin current depends, among other things, on the type and the power consumption of the LA lamp.
  • the electronic ballast is like this trained that the lamp type with its special electrical parameters (e.g.
  • Preheating current, lamp current, lamp power automatically detects and the control then the lamp LA and the filament heating via the signals A1, A2 and A3 accordingly. Because lamps with different parameters are external can often distinguish very little or not at all, can by an automatic Lamp detection also incorrect control at the same time, resulting in a unsatisfactory light output or even damage can be avoided.
  • the lamp is recognized by a Measure the resistance of one of the two coils.
  • This spiral resistance is a sufficient feature around lamps that fit in a common socket have different performance parameters.
  • a measurement of the peak value of the pin current the in the circuit shown in Fig. 1 also by the voltage drop on Measuring resistor R3 is detected via outputs A5 and A6. This is preferably done Measurement of the coil resistance at the beginning and at the end of the preheating phase. There during preheating - before lighting the LA lamp - none yet Lamp current flows, in this case the voltage drop between the Connection A6 and mass are measured.
  • a relatively low heating output (approx. 5% duty cycle) set to a too strong Avoid heating the coils W1, W2.
  • the half-bridge opens at this time a high frequency of about 120kHz.
  • the pin current is preferably measured at the end of the switch-on phase of the upper switch S 1 of the half bridge and possibly averaged.
  • the measured peak values are then compared in each case with a stored reference value and the lamp type is determined on the basis of the comparison result.
  • Two resistance reference values are therefore required for each lamp type, one for the cold filaments W1, W2 and one for the preheated filaments W1, W2.
  • the pin current depends not only on the coil resistance, but also on the coil voltage and thus on the bus voltage U BUS supplied to the inverter. In order to avoid possible fluctuations and incorrect measurements, the coil detection is therefore only carried out after the system has settled and the bus voltage U BUS has stabilized.
  • the bus voltage U BUS could also be determined in a separate measurement and the voltage drop across the measuring resistor R3 could be set in relation thereto, for example by forming the differential voltage. In this way it would even be possible to carry out the lamp detection independently of such fluctuations.
  • a further misinterpretation when determining the lamp can occur if the mains voltage supplying the electronic ballast briefly fails or is briefly switched off and on again. This is done by a ballast in each Case interpreted as restarting the lamp LA and thus one more time Preheating and lamp detection performed.
  • the coils are W1, W2 in this case not yet cooled and therefore have a different resistance.
  • the Lamp detection then leads to an incorrect result. To this possibility before the resistance is determined, it is checked whether the coil W1, W2 is cold or hot. If the filament W1, W2 is actually still hot, the lamp turns on LA deliberately preheated with a slightly lower heating output and one Lamp detection only based on the resistance measurement at the end of the preheating phase carried out.
  • the slightly different preheating can be accepted that this case rarely occurs.
  • the distinction between a hot one and a cold coil W1, W2 is carried out by measuring the change in Helix resistance within a predetermined short period of time, for example 10ms. If the change is negative, a hot or warm coil W1, W2 assumed and the reduced preheating performed. However, is not a change Ascertainable, this is interpreted as the presence of a cold coil W1, W2 and therefore the usual preheating and lamp determination performed.
  • This too Control measurement is carried out by two short samples of the pen current and the Voltage drop across the measuring resistor R3, the height of the Changes in resistance, for example, can be assessed using a Schmitt trigger can. Since the coil resistance is also measured in these, the two represent Control measurements also the first resistance measurement for the Lamp detection.
  • the peak value of the pen current measured and with the peak value of the primary current of the Heating transformer compared.
  • the pen current is used just like when controlling the Filament heating and as with lamp detection via the voltage drop on Measuring resistor R3 determined.
  • the through the primary winding Tp of the heating transformer current is due to the voltage drop across resistor R2 certainly. For this reason, between the switch S4 and the measuring resistor R2 the output A4 connected to the control / evaluation circuit is provided.
  • the half-bridge with a as high a frequency as possible of about 120 kHz, around that of the lamp LA to keep the supplied voltage as low as possible and to ignite it prematurely avoid.
  • a low duty cycle of the pulse width modulated Control signal set at terminal A3 so that the two coils W1 and W2 are not to be heated too much. Since a current flowing through the primary winding Tp is to be measured, a measurement time is selected at which at the connection A3 a high level H is present and the coupling capacitor C3 is charged. As with the Lamp detection is therefore also carried out shortly before the end of the switch-on phase of the upper switch S1 of the half bridge.
  • Another advantage of this method is that it provides a statement about the lamp state that is independent of possible fluctuations in the supply voltage U BUS .
  • a fluctuation in the U BUS influences the measurement result of the pin current, but the primary heating current is also changed. It is not necessary to wait until the system has settled and the supply voltage U BUS has stabilized. Furthermore, the influence of possible spiral resistance tolerances is reduced.
  • the lamp state can then be checked at regular intervals during normal operation of the lamp LA in order to detect a filament break occurring during this time. For this purpose, however, the lamp current should not influence the heating current too strongly, for example it should not be more than 10% of the pen current. If a filament break occurs during operation of the lamp or if the lamp is removed, this control measurement can be carried out repeatedly until an intact lamp is recognized in the system again. A restart can then be initiated automatically.
  • FIG. 3 A possible chronological sequence of these measurements for lamp detection and for detecting the lamp state just described is shown in the timing diagram in FIG. 3.
  • the lamp starts at time T 0 . It is assumed here that at this point in time T 0 the system has already settled in and the supply voltage U BUS has stabilized.
  • the control measurement is first carried out to determine whether an intact lamp is inserted or whether there is a broken filament. Since the pin current at resistor R3 is compared here with the primary current of the filament heater at resistor R2, this measurement must be carried out at a time T W at which the control signals at terminals A1 and A3 are at a high level H. As has already been said, all measurements are preferably carried out shortly before the signals A1 and A2 change. Furthermore, a frequency of almost 120 kHz is chosen for these signals.
  • T L1 and T L1 ' are then carried out in order to determine whether the filaments W1, W2 are warm or cold. Since temperature changes or changes in resistance are to be observed, a low duty cycle is selected for the control signal at connection A3 during this time.
  • the distance between T L1 and T L1 ' is approx. 10 ms.
  • the coils W1, W2 are preheated in the period ⁇ VH , the heating output taking place in accordance with the state of the coils W1, W2, that is to say a higher heating output is set, for example, if the resistance measured at the later time T L1 'is not lower than that resistance value measured at time T L1 .
  • a measurement of the filament resistance is carried out again at time T L2 and the lamp type is then determined on the basis of the measurement results at times T L1 , T L1 ' and T L2 . If the filaments W1, W2 were warm, only the result of the third measurement is taken into account. If the filaments were cold, all three measurements can be used for the lamp determination. The ignition of the lamp LA, which is not shown, is then initiated.
  • FIG. 4 shows a simplified one Flow diagram of the individual phases during lamp operation. After this Switching on 100 of the mains voltage or a short mains failure is first in the Query 101 just carried out described whether there is a spiral break. If this is the case or if there is no lamp at all in the system, the query is asked 101 continuously repeated until an intact lamp is finally recognized.
  • the next step 102 will make it short successive pin current measurements checked whether the filaments are cold. are the filaments are actually cold, the lamp is preheated normally and the Lamp detection based on the measurement results before and after the preheating phase 103 carried out. If a warm coil was recognized instead, only a reduced one Preheating 104 performed and the lamp type determined at the end. After this Preheating 103 and 104, finally, ignition 105 of the lamp is carried out, the control of the four switches depending on the detected Lamp type is done.
  • the system After ignition 105, the system is in normal or dimming operation 106 by one corresponding to the lamp type and the desired degree of dimming AC voltage frequency and heating power from the control / evaluation circuit is set.
  • a query 107 is carried out as to whether a spiral break has possibly occurred or whether the lamp was removed. If this is the case, the normal / dimming operation ended and the system in the state of the original spiral break query 101 set back.
  • the inverter it would also be conceivable for the inverter to recognize one Turn off the filament break or another defect in the lamp. With the help of a suitable circuit could then be monitored whether the defective lamp by a new one has been replaced. Finally, an intact lamp in the system detected, a restart can be initiated automatically.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Claims (22)

  1. Ballast électronique pour au moins une lampe à décharge basse pression (LA), comportant un onduleur, qui est alimenté par une tension continue (UBUS) et dont la sortie est reliée à un circuit de charge contenant des contacts de raccordement pour la lampe (LA), un transformateur de chauffage, qui comporte un enroulement primaire (Tp), qui est relié à la sortie de l'onduleur, et respectivement un enroulement secondaire (Ts1, Ts2), qui est situé dans un circuit de chauffage comportant un filament (W1, W2) pour chauffer chacune des deux électrodes de la lampe (LA), comportant un circuit série qui est branché en parallèle avec le circuit de charge et qui contient un enroulement primaire (Tp) du transformateur de chauffage et un dispositif de commutation électronique (S3, S4), et un circuit d'évaluation, qui mesure le courant qui traverse le circuit série comportant l'enroulement primaire (Tp) et le dispositif de commutation électronique (S3,S4), caractérisé en ce que le circuit d'évaluation mesure également simultanément, en plus du courant traversant le circuit série indiqué, le courant qui circule dans au moins l'un des deux circuits de chauffage, et évalue les amplitudes ou la variation dans le temps des deux courants mesurés pour identifier le type de lampe et l'état de la lampe.
  2. Ballast électronique selon la revendication 1, caractérisé en ce que pour mesurer le courant traversant le circuit série comportant l'enroulement primaire (Tp) et le dispositif de commutation électronique (S3,S4), une première résistance de mesure (R2) est branchée en série avec ce dispositif de commutation et que le circuit d'évaluation évalue la tension qui est produite aux bornes de la première résistance de mesure (R2) par le courant (IR2) traversant cette résistance de mesure.
  3. Ballast électronique selon la revendication 1 ou 2, caractérisé en ce que pour la mesure du courant traversant l'un des deux circuits de chauffage, ce circuit de chauffage contient une seconde résistance de mesure (R3) et que la tension, qui chute dans cette seconde résistance de mesure (R3) et qui est produite par le courant (IR3) traversant cette résistance, est envoyée au circuit d'évaluation.
  4. Ballast électronique selon la revendication 3, caractérisé en ce que la seconde résistance de mesure (R3) est disposée dans l'un des deux circuits de chauffage de telle sorte qu'un courant de lampe, qui après l'amorçage de la lampe (LA) circule dans la lampe (LA), circule dans le même sens qu'un courant de chauffage produit par le transformateur de chauffage et qui circule dans la seconde résistance de mesure (R3).
  5. Ballast électronique selon l'une des revendications 1 à 4, caractérisé en ce que le dispositif électronique de commutation (S3,S4) est formé par deux transistors à effet de champ (S3,S4) orientés en des sens opposés et que l'enroulement primaire (Tp) du transformateur de chauffage ainsi qu'un condensateur de couplage (C3), branché en série avec cet enroulement primaire, sont disposés entre les deux transistors à effet de champ (S3,S4).
  6. Ballast électronique selon la revendication 5, caractérisé en ce que les grilles des deux transistors à effet de champ (S3,S4) sont commandées par l'intermédiaire d'un signal commun (A3) modulé selon une modulation d'impulsions en durée.
  7. Ballast électronique selon la revendication 4 et la revendication 6, caractérisé en ce qu'après l'amorçage de la lampe (LA), pour le signal (A3) modulé selon une modulation d'impulsions en durée un taux d'impulsions est réglé de telle sorte que le courant (IR3), qui circule dans la seconde résistance de mesure (R3), est essentiellement égal à une valeur de consigne.
  8. Ballast électronique selon la revendication 7, caractérisé en ce que la valeur de consigne est fixée par le type de lampe, qui est détecté par le circuit d'évaluation.
  9. Ballast électronique selon l'une des revendications 1 à 8, caractérisé en ce que l'onduleur contient un demi-pont constitué par des interrupteurs électroniques (S1, S2) branchés en série, qui sont ouverts et fermés alternativement et que le circuit de charge, qui contient la lampe (LA), et le circuit série comportant l'enroulement primaire (Tp) et le dispositif de commutation électronique (S3,S4) sont branchés en parallèle avec l'un des deux interrupteurs électroniques (S1,S2).
  10. Ballast électronique selon la revendication 9 et l'une des revendications 5 à 8, caractérisé en ce qu'une diode (D2) est disposée entre les deux grilles des transistors à effet de champ (S3,S4) et que la grille de l'un des deux transistors à effet de champ (S3,S4) est reliée par l'intermédiaire d'une résistance (R4) à la sortie de l'onduleur.
  11. Ballast électronique selon la revendication 10, caractérisé en ce qu'un autre condensateur (C4) est branché en parallèle avec la résistance (R4).
  12. Ballast électronique selon l'une des revendications précédentes, caractérisé en ce qu'il contient un redresseur, qui est relié au réseau et qui produit la tension continue (UBUS) devant être envoyée à l'onduleur.
  13. Ballast électronique selon l'une des revendications précédentes, caractérisé en ce que le circuit de charge contient une bobine d'arrêt (L1) branchée en série avec la lampe (LA), et un condensateur de résonance (C2) branché en parallèle avec la lampe (LA).
  14. Ballast électronique selon l'une des revendications précédentes, caractérisé en ce que pour l'identification du type de la lampe (LA), le courant (IR3), qui circule dans l'un des deux circuits de chauffage et dépend de la résistance hélicoïdale respective, est mesuré et est évalué par le circuit d'évaluation.
  15. Ballast électronique selon la revendication 14, caractérisé en ce que pour l'identification du type de la lampe (L1), le circuit d'évaluation compare la valeur maximale du courant (IR3), mesuré dans l'un des deux circuits de chauffage, à des valeurs de référence.
  16. Ballast électronique selon la revendication 14 ou 15, caractérisé en ce que des mesures pour identifier le type de lampe sont exécutées respectivement au début et à la fin d'une phase de préchauffage de la lampe (L1).
  17. Ballast électronique selon la revendication 16, caractérisé en ce que lors d'une mesure de contrôle pour établir une distinction entre un filament chaud et un filament froid (W1, W2) avant la phase de préchauffage de la lampe (L1), le circuit d'évaluation compare les amplitudes ou les valeurs maximales de deux courants (IR3) d'une manière très rapprochée l'un après l'autre, circulant dans l'un des deux circuits de chauffage.
  18. Ballast électronique selon les revendications 16 et 17, caractérisé en ce que seul le résultat de la mesure à la fin de la phase de préchauffage de la lampe (LA) est utilisé pour identifier le type de lampe dans le cas où un filament chaud (W1,W2) a été identifié lors de la mesure de contrôle.
  19. Ballast électronique selon l'une des revendications précédentes, caractérisé en ce que pour l'identification d'un changement de lampe ou d'un défaut de la lampe, le circuit d'évaluation évalue des valeurs maximales mesurées simultanément des courants (IR2, IR3) traversant le circuit série comportant l'enroulement primaire (Tp) et le dispositif de commutation électronique (S3,S4) ainsi que traversant l'un des deux circuits de chauffage.
  20. Ballast électronique selon la revendication 19, caractérisé en ce que le circuit d'évaluation forme le rapport entre les deux valeurs maximales mesurées simultanément et évalue le résultat.
  21. Ballast électronique selon la revendication 19 ou 20, caractérisé en ce qu'une mesure servant à identifier un changement de lampe ou un défaut de la lampe est exécutée juste après le branchement du ballast.
  22. Ballast électronique selon l'une des revendications 19 à 21, caractérisé en ce qu'après un amorçage de la lampe (LA), une mesure est effectuée à des intervalles réguliers pour identifier un changement de lampe ou un défaut de la lampe.
EP00927003A 1999-05-25 2000-04-19 Ballast electronique destine a au moins une lampe a decharge basse tension Expired - Lifetime EP1103165B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19923945 1999-05-25
DE19923945A DE19923945A1 (de) 1999-05-25 1999-05-25 Elektronisches Vorschaltgerät für mindestens eine Niederdruck-Entladungslampe
PCT/EP2000/003573 WO2000072640A1 (fr) 1999-05-25 2000-04-19 Ballast electronique destine a au moins une lampe a decharge basse tension

Publications (2)

Publication Number Publication Date
EP1103165A1 EP1103165A1 (fr) 2001-05-30
EP1103165B1 true EP1103165B1 (fr) 2003-07-16

Family

ID=7909138

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00927003A Expired - Lifetime EP1103165B1 (fr) 1999-05-25 2000-04-19 Ballast electronique destine a au moins une lampe a decharge basse tension

Country Status (8)

Country Link
US (1) US6366031B2 (fr)
EP (1) EP1103165B1 (fr)
AT (1) ATE245336T1 (fr)
AU (1) AU761194B2 (fr)
BR (1) BR0006149A (fr)
DE (2) DE19923945A1 (fr)
NZ (1) NZ509309A (fr)
WO (1) WO2000072640A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007047142A1 (de) 2007-10-02 2009-04-09 Tridonicatco Gmbh & Co. Kg Verfahren zum Erkennen des Typs einer mit einem elektronischen Vorschaltgerät zu betreibenden Gasentladungslampe sowie elektronisches Vorschaltgerät
DE102008012453A1 (de) 2008-03-04 2009-09-10 Tridonicatco Gmbh & Co. Kg Verfahren zum Prüfen, ob mindestens zwei mit einem elektronischen Vorschaltgerät zu betreibende Gasentladungslampen vom gleichen Typ sind
DE102008012452A1 (de) * 2008-03-04 2009-09-10 Tridonicatco Gmbh & Co. Kg Schaltung zum Beheizen und Überwachen der Heizwendeln mindestens einer mit einem elektronischen Vorschaltgerät betriebenen Gasentladungslampe auf Wendelbruch
DE102008012454A1 (de) 2008-03-04 2009-09-10 Tridonicatco Gmbh & Co. Kg Verfahren zum Bestimmen von Betriebsparametern einer mit einem elektronischen Vorschaltgerät zu betreibenden Gasentladungslampe sowie ein entsprechendes Vorschaltgerät
DE102008022198A1 (de) 2008-03-04 2009-09-10 Tridonicatco Gmbh & Co. Kg Typerkennung einer mit einem elektronischen Vorschaltgerät zu betreibenden Gasentladungslampe

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6501235B2 (en) * 2001-02-27 2002-12-31 Stmicroelectronics Inc. Microcontrolled ballast compatible with different types of gas discharge lamps and associated methods
US6577076B2 (en) 2001-09-04 2003-06-10 Koninklijke Philips Electronics N.V. Adaptive control for half-bridge universal lamp drivers
DE10200053A1 (de) * 2002-01-02 2003-07-17 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Betriebsgerät für Entladungslampen mit Vorheizeinrichtung
DE10206731B4 (de) * 2002-02-18 2016-12-22 Tridonic Gmbh & Co Kg Lampensensor für ein Vorschaltgerät zum Betrieb einer Gasentladunslampe
US6909248B2 (en) * 2002-08-26 2005-06-21 Heraeus Holding Gmbh Deuterium arc lamp assembly with an elapsed time indicator system and a method thereof
WO2004036959A1 (fr) * 2002-10-14 2004-04-29 B & S Elektronische Geräte GmbH Procede et dispositif pour creer une liaison entre une lampe et un appareil electronique monte en amont
DE10345610A1 (de) * 2003-09-29 2005-05-12 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Verfahren zum Betreiben mindestens einer Niederdruckentladungslampe
DE102004025774A1 (de) * 2004-05-26 2005-12-22 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Vorschaltgerät für Entladungslampe mit Dauerbetriebs-Regelschaltung
US7193368B2 (en) * 2004-11-12 2007-03-20 General Electric Company Parallel lamps with instant program start electronic ballast
WO2006085262A2 (fr) * 2005-02-14 2006-08-17 Koninklijke Philips Electronics N.V. Procede et montage de circuit permettant le fonctionnement d'une lampe a decharge a haute intensite
DE102005013564A1 (de) * 2005-03-23 2006-09-28 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Schaltungsanordnung und Verfahren zum Betreiben mindestens einer Lampe
CN1856207B (zh) * 2005-04-18 2011-06-29 马维尔国际贸易有限公司 用于荧光灯具的改良的控制***
US7414369B2 (en) * 2005-04-18 2008-08-19 Marvell World Trade Ltd. Control system for fluorescent light fixture
US7560866B2 (en) * 2005-04-18 2009-07-14 Marvell World Trade Ltd. Control system for fluorescent light fixture
DE102005018761A1 (de) 2005-04-22 2006-10-26 Tridonicatco Gmbh & Co. Kg Intelligente Flyback-Heizung
DE102005030115A1 (de) * 2005-06-28 2007-01-18 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Schaltungsanordnung und Verfahren zum Betrieb mindestens einer LED und mindestens einer elektrischen Lampe
DE102005052525A1 (de) * 2005-11-03 2007-05-10 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Ansteuerschaltung für einen schaltbaren Heiztransformator eines elektronischen Vorschaltgeräts und entsprechendes Verfahren
US7586268B2 (en) * 2005-12-09 2009-09-08 Lutron Electronics Co., Inc. Apparatus and method for controlling the filament voltage in an electronic dimming ballast
US7969100B2 (en) * 2007-05-17 2011-06-28 Liberty Hardware Manufacturing Corp. Bulb type detector for dimmer circuit and inventive resistance and short circuit detection
US7855518B2 (en) * 2007-06-19 2010-12-21 Masco Corporation Dimming algorithms based upon light bulb type
US7728525B2 (en) * 2007-07-27 2010-06-01 Osram Sylvania Inc. Relamping circuit for battery powered ballast
US7626344B2 (en) * 2007-08-03 2009-12-01 Osram Sylvania Inc. Programmed ballast with resonant inverter and method for discharge lamps
US7446488B1 (en) 2007-08-29 2008-11-04 Osram Sylvania Metal halide lamp ballast controlled by remote enable switched bias supply
DE102008016752A1 (de) * 2008-03-31 2009-10-01 Tridonicatco Schweiz Ag Erkennung der Belegung eines Anschlusses eines Betriebsgeräts für Leuchtmittel
DE102008021351A1 (de) * 2008-04-29 2009-11-05 Osram Gesellschaft mit beschränkter Haftung Verfahren zum Betreiben einer Entladungslampe sowie Beleuchtungssystem mit einer Entladungslampe
US7880391B2 (en) * 2008-06-30 2011-02-01 Osram Sylvania, Inc. False failure prevention circuit in emergency ballast
EP2364572B1 (fr) * 2008-12-04 2012-10-17 Osram Ag Procédé de fonctionnement d'une lampe et ballast électronique
DE102009007159A1 (de) * 2009-02-03 2010-10-07 Osram Gesellschaft mit beschränkter Haftung Schaltungsanordnung zum Betreiben eines Konverters
US8232727B1 (en) 2009-03-05 2012-07-31 Universal Lighting Technologies, Inc. Ballast circuit for a gas-discharge lamp having a filament drive circuit with monostable control
US20100327759A1 (en) * 2009-06-24 2010-12-30 Koninklijke Philips Electronics N.V. Electronic ballast for a fluorescent lamp
US8324813B1 (en) * 2010-07-30 2012-12-04 Universal Lighting Technologies, Inc. Electronic ballast with frequency independent filament voltage control
DE102010063933A1 (de) * 2010-12-22 2012-06-28 Tridonic Gmbh & Co Kg Betriebsgerät und Verfahren zum Betrieb von Gasentladungslampen
WO2012151712A1 (fr) 2011-05-09 2012-11-15 General Electric Circuit amélioré d'allumage programmé pour ballast
DE102011085659A1 (de) 2011-11-03 2013-05-08 Tridonic Gmbh & Co. Kg Getaktete Heizschaltung für Betriebsgeräte für Leuchtmittel
CN102595747B (zh) * 2012-02-05 2014-03-12 浙江大学 基于数字控制电子镇流器的荧光灯灯类型识别方法及数字通用电子镇流器
US8723429B2 (en) * 2012-04-05 2014-05-13 General Electric Company Fluorescent ballast end of life protection
CN106654817A (zh) * 2017-03-17 2017-05-10 京东方科技集团股份有限公司 准分子激光发生器和准分子激光退火设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5172034A (en) * 1990-03-30 1992-12-15 The Softube Corporation Wide range dimmable fluorescent lamp ballast system
US5656891A (en) * 1994-10-13 1997-08-12 Tridonic Bauelemente Gmbh Gas discharge lamp ballast with heating control circuit and method of operating same
ATE181793T1 (de) * 1995-01-13 1999-07-15 Siemens Ag Schaltungsanordnung zur wendelvorheizung von leuchstofflampen
DE19520999A1 (de) 1995-06-08 1996-12-12 Siemens Ag Schaltungsanordnung zur Wendelvorheizung von Leuchtstofflampen
DE29514817U1 (de) 1995-09-15 1995-11-16 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH, 81543 München Schaltungsanordnung zum Betrieb mindestens einer Niederdruckentladungslampe
US6002214A (en) * 1997-02-12 1999-12-14 International Rectifier Corporation Phase detection control circuit for an electronic ballast
DE19708792A1 (de) * 1997-03-04 1998-09-10 Tridonic Bauelemente Verfahren und Vorrichtung zum Erfassen des in einer Gasentladungslampe auftretenden Gleichrichteffekts
EP0889675A1 (fr) * 1997-07-02 1999-01-07 MAGNETEK S.p.A. Ballast électronique avec reconnaissance du type de lampe

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007047142A1 (de) 2007-10-02 2009-04-09 Tridonicatco Gmbh & Co. Kg Verfahren zum Erkennen des Typs einer mit einem elektronischen Vorschaltgerät zu betreibenden Gasentladungslampe sowie elektronisches Vorschaltgerät
DE102008012453A1 (de) 2008-03-04 2009-09-10 Tridonicatco Gmbh & Co. Kg Verfahren zum Prüfen, ob mindestens zwei mit einem elektronischen Vorschaltgerät zu betreibende Gasentladungslampen vom gleichen Typ sind
DE102008012452A1 (de) * 2008-03-04 2009-09-10 Tridonicatco Gmbh & Co. Kg Schaltung zum Beheizen und Überwachen der Heizwendeln mindestens einer mit einem elektronischen Vorschaltgerät betriebenen Gasentladungslampe auf Wendelbruch
DE102008012454A1 (de) 2008-03-04 2009-09-10 Tridonicatco Gmbh & Co. Kg Verfahren zum Bestimmen von Betriebsparametern einer mit einem elektronischen Vorschaltgerät zu betreibenden Gasentladungslampe sowie ein entsprechendes Vorschaltgerät
DE102008022198A1 (de) 2008-03-04 2009-09-10 Tridonicatco Gmbh & Co. Kg Typerkennung einer mit einem elektronischen Vorschaltgerät zu betreibenden Gasentladungslampe
WO2009109325A1 (fr) * 2008-03-04 2009-09-11 Tridonicatco Gmbh & Co. Kg Identification du type d'une lampe à décharge destinée à fonctionner avec un ballast électronique
CN102027809A (zh) * 2008-03-04 2011-04-20 三多尼克两合股份有限公司 照明***和检测要由电子镇流器操作的至少两个气体放电灯是否属于相同类型的方法
EP2355626A2 (fr) 2008-03-04 2011-08-10 Tridonic GmbH & Co KG Système d'éclairage et procédé destiné à déterminer si au moins deux lampes à décharge devant fonctionner à l'aide d'un ballast sont du même type
CN102027809B (zh) * 2008-03-04 2014-10-01 三多尼克两合股份有限公司 照明***和检测要由电子镇流器操作的至少两个气体放电灯是否属于相同类型的方法

Also Published As

Publication number Publication date
US6366031B2 (en) 2002-04-02
DE19923945A1 (de) 2000-12-28
WO2000072640A1 (fr) 2000-11-30
NZ509309A (en) 2002-08-28
US20010002780A1 (en) 2001-06-07
AU761194B2 (en) 2003-05-29
BR0006149A (pt) 2001-04-17
AU4553600A (en) 2000-12-12
EP1103165A1 (fr) 2001-05-30
ATE245336T1 (de) 2003-08-15
DE50002900D1 (de) 2003-08-21

Similar Documents

Publication Publication Date Title
EP1103165B1 (fr) Ballast electronique destine a au moins une lampe a decharge basse tension
EP1519638B1 (fr) Méthode pour commander une lampe à décharge basse pression
EP1066739B1 (fr) Procede et dispositif permettant de detecter l'effet redresseur apparaissant dans une lampe a decharge
EP0779768B1 (fr) Circuit pour alimenter une lampe à décharge
EP0707438A2 (fr) Ballast pour au moins une lampe à décharge
EP1103166B1 (fr) Ballast electronique destine a au moins une lampe a decharge basse tension
EP1425943B1 (fr) Procede et dispositif destines au fonctionnement economique d'un tube fluorescent
DE102009009915A1 (de) Verfahren, Betriebsgerät und Beleuchtungssystem
DE102009030496A1 (de) Entladungslampen-Beleuchtungseinrichtung und -Beleuchtung
EP2208403B1 (fr) Appareil de commande pour commander le processus d'amorçage d'une lampe
EP1901591B1 (fr) Allumage de lampes à décharge dans des conditions environnementales variables
EP1276355B1 (fr) Circuit ballast pour determiner la puissance de préchauffage
EP2274960B1 (fr) Procédé et agencement de circuits pour faire fonctionner au moins une lampe à décharge
EP1040733B1 (fr) Ballast electronique
EP1048190B1 (fr) Ballast electronique pour lampe a decharge
EP1860925B1 (fr) Appareil de montage de lampe électronique à connexion à chaud
EP2796012B1 (fr) Procédé, appareillage d'alimentation et système d'éclairage, avec détection d'effet de redressement de lampes
EP1040732B1 (fr) Procede de detection de changement de lampe et ballast electronique destine au fonctionnement de lampes a decharge a l'aide d'un tel procede de detection de changement de lampe
DE10127135B4 (de) Dimmbares elektronisches Vorschaltgerät
DE19501695B4 (de) Vorschaltgerät für mindestens eine Gasentladungslampe mit vorheizbaren Lampenwendeln
EP2468078B1 (fr) Ballast électronique et procédé pour faire fonctionner au moins une lampe à décharge
AT505376B1 (de) Steuerschaltung für leuchtmittel-betriebsgeräte
DE19934687A1 (de) Elektronisches Vorschaltgerät für mindestens eine Niederdruck-Entladungslampe
EP2445319A2 (fr) Procédé et dispositif destinés à la définition d'au moins un paramètre de variation de lumière pour une lampe à décharge à haute pression (HID) raccordée à un appareil de fonctionnement multilampes et dotée d'une puissance nominale prédéterminée

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010108

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20020125

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TRIDONICATCO GMBH & CO. KG

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030716

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030716

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030716

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: A. BRAUN, BRAUN, HERITIER, ESCHMANN AG PATENTANWAE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50002900

Country of ref document: DE

Date of ref document: 20030821

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031016

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031016

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031027

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031216

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20030716

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040419

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040419

BERE Be: lapsed

Owner name: *TRIDONICATCO G.M.B.H. & CO. K.G.

Effective date: 20040430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: TRIDONICATCO GMBH & CO. KG

Free format text: TRIDONICATCO GMBH & CO. KG#FAERBERGASSE 15#6851 DORNBIRN (AT) -TRANSFER TO- TRIDONICATCO GMBH & CO. KG#FAERBERGASSE 15#6851 DORNBIRN (AT)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20080424

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20080422

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20090423

Year of fee payment: 10

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20091101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100419

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110427

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110422

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20121228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120419

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140430

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150630

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150419

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50002900

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161101