EP1092542B1 - Tintenstrahldrucker und Druckverfahren - Google Patents

Tintenstrahldrucker und Druckverfahren Download PDF

Info

Publication number
EP1092542B1
EP1092542B1 EP20000402817 EP00402817A EP1092542B1 EP 1092542 B1 EP1092542 B1 EP 1092542B1 EP 20000402817 EP20000402817 EP 20000402817 EP 00402817 A EP00402817 A EP 00402817A EP 1092542 B1 EP1092542 B1 EP 1092542B1
Authority
EP
European Patent Office
Prior art keywords
electrodes
jet
ink
pair
drops
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20000402817
Other languages
English (en)
French (fr)
Other versions
EP1092542A1 (de
Inventor
Stéphane Vago
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Markem Imaje SAS
Original Assignee
Imaje SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imaje SA filed Critical Imaje SA
Publication of EP1092542A1 publication Critical patent/EP1092542A1/de
Application granted granted Critical
Publication of EP1092542B1 publication Critical patent/EP1092542B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/07Ink jet characterised by jet control
    • B41J2/105Ink jet characterised by jet control for binary-valued deflection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/02Ink jet characterised by the jet generation process generating a continuous ink jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/07Ink jet characterised by jet control
    • B41J2/075Ink jet characterised by jet control for many-valued deflection
    • B41J2/08Ink jet characterised by jet control for many-valued deflection charge-control type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/02Ink jet characterised by the jet generation process generating a continuous ink jet
    • B41J2/03Ink jet characterised by the jet generation process generating a continuous ink jet by pressure
    • B41J2002/033Continuous stream with droplets of different sizes

Definitions

  • the invention lies in the field of continuous ink jet printers. It also relates to a selective projection process parts of a conductive liquid jet and in particular a continuous inkjet printing process.
  • the method and the printer according to the present invention can be used in particular in all industrial fields related to industrial writing, marking, coding, addressing and decoration.
  • a continuous jet printer The typical operation of a continuous jet printer can be described as follows. Electrically conductive ink maintained under pressure escapes from a calibrated nozzle. Under the action of a periodic stimulation device, the ink jet thus formed is broken at regular time intervals at a single point in space. Downstream of the break point of the jet, the continuous jet is transformed into a train of identical and regularly spaced ink drops. In the vicinity of the breaking point is placed a first group of electrodes whose function usually recognized is to selectively transfer, at each drop of the jet, a predetermined amount of electric charge.
  • the set of drops thus selectively loaded then passes through a second arrangement of electrodes in which there is a constant electric field which will modify the trajectory of the charged drops.
  • the amount of charge transferred to the drops of the jet is variable.
  • Each drop records, during the passage in the second arrangement of constant-field electrodes, an increasing deflection with the electrical load previously assigned to it and is oriented towards a specific point of the print medium.
  • This technology thanks to these multiple levels of deflection, allows a single nozzle to print, by segment or frame, - point line of a given height -, the entirety of a pattern.
  • the passage from one segment to another is effected by the continuous displacement, perpendicularly to said segment, of the substrate relative to the print head.
  • the second variant is that of the binary continuous stream.
  • This technique differs mainly from the previous one in that the level of charge drops is binary.
  • drops When passing through the deflection electrodes, drops are uniformly deflected or undirected depending on the load they have received.
  • the printing of characters or patterns therefore generally requires the use of multi-nozzle print heads, the spacing of the orifices coinciding with that of the impacts on the print medium.
  • the drops intended for printing are the non-deflected drops, that is to say the binary level of charge is zero.
  • the ink which is not used to mark the substrate is directed to an unused gutter or ink recuperator and is recycled in a circuit which is ink so that it returns to the print nozzles.
  • a process for breaking down the jet into drops is very well described, for example, in a patent number US-A-4,220,958 invented by Mr. CROWLEY.
  • the conductive ink jet passes through electrodes worn periodically at a relatively high potential. Under the action of these electrodes, the ink jet is charged. The charges are attracted to the electrodes so that a force transverse to the jet deforms the surface of the jet. The speed of the jet and the transverse movement of the surface of the jet combine so that at a certain distance from the electrodes, the jet breaks in a succession of drops.
  • the ink emission nozzles are vibrated.
  • the liquid jet is excited electro-hydrodynamically with an electro-hydrodynamic exciter (EHD).
  • EHD electro-hydrodynamic exciter
  • a third technique is to impose a pressure variation on the liquid at the nozzle by means of a piezoelectric crystal introduced into a cavity for feeding the nozzle. This latter technique is dominant in the literature and is used for example in the IBM 6640 machine (registered trademark).
  • the invention of CROWLEY relates to an electro-hydrodynamic exciter in which the length of the electrodes traversed by the ink jet is equal to half the distance between the drops.
  • thermoresistive elements Another method of stimulating the ink jet for its transformation into drops is described, for example in US-A-4,638,328 DRAKE et al. It is an activation by thermoresistive elements.
  • EP 0 949 077 shows an example of this type of printer.
  • a second so-called drop-on-demand ink printing family is essentially used in office printers. This is to print text or graphic patterns in color on paper or plastic. In contrast to continuous jet printing, drop-on-demand technologies generate directly and only the ink drops actually needed to print the desired patterns. We do not therefore, there is no recirculating electrode or gutter between the exit face of a nozzle and the print medium. Drop-on-demand printers are necessarily multibus machines and require an ink ejection actuator per orifice.
  • U.S. Patent 4,230,558 discloses a biological cell sorting apparatus based on the creation, on demand, of a droplet within a continuous stream of fluid. During operation, the jet takes the appearance of a series of isolated drops, framed by fluid sections of varying lengths.
  • EHD stimulation and intermittent jet stimulation can be found in the U.S. Patent 4,220,958 (JM Crowley) and in an article by DW Hrdina and JM Crowley (IEEE Transactions on Industry Applications, Vol 25, No. 4, July / August 1989, entitled “Drop-on-demand Operation of Continuous Jets”). Using EHD Techniques "(pages 705-710).
  • the object of the present invention is to retain the advantages of continuous jet technology while combining it with some of the advantages of the on-demand drop technique.
  • the invention aims at a suppression for each jet of the set of individual electrodes for charging the drops and the control circuit associated with this set of individual electrodes. It also aims to eliminate the crosstalk between different jets of the same print head. It has been seen that according to the prior art, the ink jet under pressure is divided into a succession of drops. The sorting of the drops to be printed on the substrate is made downstream of the point where the droplets, said breaking point, are formed by an arrangement of electrodes. It is this arrangement of individual electrodes at each of the nozzles which creates, on the one hand, a complexity of realization and, on the other hand, problems of crosstalk.
  • the sorting of the drops to be deflected towards the substrate or towards a recovery gutter is performed according to data coming from a set of generally digital data defining the pattern to be printed.
  • the digital data defining the print pattern is no longer used downstream of drop formation, but upstream. It is these data that will determine or not the formation of drops.
  • the ink jet of a nozzle will no longer be divided into a succession of drops but into a succession of sections and drops.
  • each nozzle is equipped with a means for forming ink drops.
  • Each ink drop forming means is coupled to the print control means.
  • the means for sorting the drops and sections for each of the jets are common to all the jets.
  • the sections are deflected towards the ink recovery means and the drops reach the substrate. This provides a considerable simplification of all the sorting means of the drops since it eliminates all the individual electrodes charge drops of each jet of the prior art.
  • Each nozzle of the multi-nozzle device has its own means of forming drops in the jet. This means is controlled by signals formed from digital data relating to the line printed by the nozzle.
  • the zone where the drops are formed will be protected from the influence of the electric field caused by deflection means of the sections.
  • the means for protecting the drops against the influence of the deflection field of the sections will be formed by one or more electrodes or pairs of electrodes placed upstream of the deflection electrodes and arranged to protect the drop formation zone from the influence of the field created by the deflection electrodes of the sections.
  • the drops will thus be formed in an area of zero or negligible electrical potential.
  • each section will be at the moment of drop formation and therefore at the moment of detachment of the upstream part of the section from the remainder of the jet in a zone of non-zero potential.
  • the section will be electrically charged and will be influenced by the deflection field.
  • the drop forming means will be constituted by heating elements used as actuators. These actuators cause local heating of the ink on demand and for a predetermined time to modify at least one physical characteristic of the ink capable of causing a disturbance in the jet. This disturbance is translated at a predetermined distance by the formation of drops from the jet.
  • this means of producing drops mention may be made of heat-resistive elements as described, for example, in the DRAKE patent, in number equal to that of the nozzles of the print head and placed near the nozzles. It may also be electro-hydrodynamic means as one of those described in the CROWLEY patent. It may also be as in the prior art a piezoelectric crystal placed in a cavity feeding the nozzle. Note that in this case, the signal is not periodic, the pulse shape of the signal must be adapted so as not to generate residual vibrations hindering the operation of the print head.
  • the rising edge and the falling edge of a pulse to deform the piezoelectric crystal must be shaped such that no annoying residual vibrations of the crystal remain after the passage of the pulse. These residual vibrations could lead to unwanted drop formations.
  • the deflection of the parts of the non-directed ink towards the substrate is obtained by means of an electric field created downstream of the drop formation points, and preferably, the zone containing all the points of creation of the drops. drops of the jet is protected from the influence of the electric deflection field.
  • the electrical characteristics - field and potential - of the regions of space traversed by all the jets are spatially variable, constant in time and identical for each jet.
  • the jets are from nozzles whose axes are aligned.
  • the axes of the nozzles are therefore contained in a plane P.
  • the regions of the space traversed by the jets are therefore regions centered on this plane P and delimited by N planes perpendicular to this plane P or by intersecting surfaces at the plane P at a line common to the plane P and to a plane N.
  • the zone of creation of the drops is contained in a region of zero or negligible potential, so that the drops are electrically neutral or lightly charged. At least a portion of the section located downstream of each drop, is at the moment of detachment of said drop in a region of significant potential so that this section is electrically charged at the moment of its detachment of the jet.
  • a region of the space downstream of the drop formation zone is the seat of a field electrical device allowing the significant deflection of electrically charged ink sections.
  • the load regions of the sections and the deflection of the sections are merged or partially merged, but preferably, the deflection region or part of this region will be downstream of the load region of the sections.
  • Fig. 1 shows a schematic view of a first electrode arrangement of a printer 100 according to an embodiment of a multibuse continuous paced jet printer based on the method according to the invention.
  • the printer 100 comprises a pressurized tank 1 equipped with a plurality of calibrated nozzles 2 from which ink jets 3 escape. At each nozzle is associated a stimulation device 4 placed in the tank 1 and controlled by an external electronic circuit 5.
  • the stimulation device 4 associated with a nozzle allows the creation on demand of a drop.
  • Each drop is formed on the axis of the jet to which it belongs, at a predetermined distance from the nozzle. This distance is the same for all the jets so that the drops are formed in a zone of elongate shape centered on a line DB secant substantially perpendicular to each of the jets 3.
  • the stimulation device 4 is preferably constituted by means causing a local heating of the ink for a predetermined duration, for example thermoresistive elements, in number equal to that of the nozzles of the print head, placed near the nozzles 2 and individually controlled by an external circuit 5.
  • thermoresistive elements in number equal to that of the nozzles of the print head, placed near the nozzles 2 and individually controlled by an external circuit 5.
  • US Pat. No. 4,638,328 (DRAKE et al.) describes an example of such a device based on thermoresistive elements, its operation as well as an embodiment using chemical machining techniques. from the microelectronics industry.
  • the stimulation device 4 could also be constituted by a piezoelectric element.
  • a known variant shown in dashed lines in FIGS. 1 to 4 consists of replacing the thermal or piezoelectric stimulation inside the tank 1 by an electro-hydrodynamic stimulation performed by one or more electrodes 4 'placed near the jets immediately downstream of the nozzle.
  • An arrangement of electrodes common to all the jets and whose operation will be examined later is placed in the vicinity of the line DB connecting the nominal points of creation of the drops of each of the jets.
  • the charged ink portions referenced 10 in FIGS. 1 to 4 and which are in the form of sections are directed towards a recovery gutter 11 which recycles them to a general ink circuit 12.
  • the electric fields created by the arrangement of FIG. electrodes do not significantly affect the trajectory of the drops referenced 13 which can strike a printing medium 14.
  • the electrode arrangement consists of two groups of electrodes, a first group 6 of electrodes and a second group 26.
  • the electrodes of the first group 6 are consisting of a central pair of electrodes 15, 16.
  • the electrodes 15, 16 of the first group 6 are located on either side of the set of jets 3.
  • the pair of electrodes 25 is placed so that to include the drop forming position DB 13.
  • the drop formation position DB will be located in the immediate vicinity of the downstream edges of the this pair of electrodes.
  • the electrodes 15, 16 forming the central pair of electrodes 25 are connected to one and the same source of potential, preferably equal to the potential at which the ink of the tank 1 is generally connected to ground, so as to create an electric field zero in the inter-electrode space.
  • the pair of electrodes 15, 16 could be replaced by a single U-shaped electrode having two legs 15, 16.
  • the branches 15, 16 of the U are equivalent to the electrodes 15, 16 of the pair 25.
  • This alternative mode has been shown in phantom, FIG. 1. It will be seen later that the electrode group 6 may comprise additional pairs of electrodes. Whenever the electrodes of a pair are connected to the same potential source, the pair may alternatively be replaced by a U-shaped electrode, each of the two branches of the U replacing an electrode of the pair.
  • the electrode 26 of the second group 7 is located downstream of the first electrode group 6. The electrode 26 is brought to a high constant electrical voltage, and creates an electric field in the surrounding space.
  • the electric field prevailing in the immediate vicinity of the line DB is zero or very weak because this space is protected by the first group of electrodes 6.
  • the intensity of the electric field existing in the vicinity of the downstream part of the segments d The ink at the electrode 26 is high enough to exert an electrostatic influence on them. After breaking the jet, the trajectory of the sections that are electrically charged by the electrode 26 will be modified by the electric field, while the trajectory of the drops will undergo a very small influence.
  • the sections are directed towards the ink recuperator 11 while the drops 13 are directed towards the substrate 14.
  • a second embodiment schematized in FIG. 2 differs from the first embodiment shown in FIG. 1 in that the first group of electrodes 6 constituting the protective electrodes is split into two pairs of electrodes 21, 22, a pair upstream 21 and a downstream pair 22.
  • the pair 21 consists of two electrodes 17, 18.
  • the pair of electrodes 22 consists of two electrodes 19, 20.
  • the electrodes 17 and 18 of the pair 21 are located on both sides. 3.
  • the electrodes 19, 20 of the pair 22 are also located on either side of the zone of the jets 3.
  • the electrodes of the pair 21 are subjected to the same constant electrical voltage V1 and those of the pair 22 are subjected to the same constant voltage of opposite sign V2 preferably equal to -V1.
  • the main feature of a group of electrodes such as 21 and 22 is the existence of an approximately plane region ⁇ of the space lying axially between the upstream edges and the downstream edges, respectively of the pairs of electrodes 21, 22 in which the potential is zero or negligible.
  • the plane ⁇ is substantially perpendicular to the set of jets 3. If the line DB which is the place of formation of drops of the different jets 3 is included in this region of the space comprising the plane ⁇ , the created drops will carry a negligible electric charge.
  • the sections 10 coming off the jet will be subjected to the influence of the electric field formed by the deflection electrode 26 and will undergo a deflection during their passage in the vicinity of the electrode 26.
  • the protective electrode arrangement of the zone where the drops are formed comprises three pairs of electrodes 21, 22, 25.
  • the third pair of electrodes 25 comprising the electrodes 15 and 16 is located at an axial height between the heights of the pairs 21 and 22.
  • the electrodes 17, 18 of the pair of electrodes 21 are connected to a constant voltage V1.
  • the electrodes of the pair 22 are subjected to a constant voltage V2 of opposite sign to that of the voltage V1 of value preferably equal to -V1.
  • the electrodes of the pair 25 are connected to a source of constant voltage preferentially to ground.
  • this configuration makes it possible to increase the volume of the zero or negligible potential region with respect to the reference potential in which it is possible to form drops. Consequently, the position of the line DB has wider tolerances, which makes it possible to relax the precision constraints at the level of the drop formation means.
  • the electrode arrangements described in connection with FIGS. 1 to 3 comprise only two groups of electrodes.
  • a first group 6, comprising a pair, two pairs or three pairs of electrodes and a second group 7.
  • the electrodes of group 6 have the function of imposing a zone of no or negligible electric field in the zone where the line DB is located at a predetermined distance from the nozzles 2. In this way, the drops are not electrically charged and undergo virtually no influence from the electrodes of the second group 7.
  • this group 7 of deflection electrodes may, as represented in FIGS. 1 to 4, consist of a simple plate 26. It may also consist of a pair of plates parallel to each other, each plate of the pair being brought to a different potential. It may also consist of curved conductive elements.
  • the deflection can be operated with any known means of arranging electrodes to deflect drops of ink.
  • any known arrangement of electrodes creating an elongated zone of zero or low electrical potentials may be used. This zone will then house the line of formation of the drops.
  • the electrode groups 6 for protection and 7 for deflection are completed by a third electrode group 30.
  • the electrodes of this group 30 are like those of groups 6 and 7 common to all jets 3.
  • this group 30 is composed of a pair 27 of electrodes 28, 29.
  • the electrodes of the group 30 are situated downstream of the protection electrodes of the group 6 and upstream of the deflection electrodes of the group 7.
  • the electrodes of the group 6 have been represented in the form of a pair of electrodes 25 placed and connected in the configuration described in connection with Figure 1. It is clear that these group 6 electrodes could have other configurations, particularly those described in relation to Figures 2 or 3.
  • the electrodes of the group 6 comprise an upstream pair 21 and a downstream pair 22.
  • the downstream pair is preferably brought to a potential different from that of the reservoir from which the jets. Because of this potential difference, the downstream pair subjects the trunks to a load.
  • the electrodes of the group 30 constitute a complementary group of charge electrodes.
  • the electrodes of the upstream pair 21 and the electrodes of the downstream pair 22 are at potentials such that there is a potential zone of zero between the upstream edge of the upstream electrodes and the downstream edge of the downstream electrodes. This is the main function of these electrodes. This function will generally be achieved by bringing these pairs of electrodes to opposite potentials. Although these pairs of electrodes 21,22 bring a load to the sections 10, the electrodes of the group 30 will be distinguished from the electrodes of the downstream pair 22, in that their potential of use is such that these electrodes of the group 30 bring a charge added to that provided by the electrodes of the downstream pair 22 of the group 6.
  • the electrode arrangement comprises a group (30) of charge electrodes in addition to the group 7 of deflection electrodes, it is necessary to achieve the group 6 electrodes to protect the drop formation zone DB of the combined influence of the two electric fields, charging and deflection.
  • the electrodes 15, 16 are brought to a constant potential, preferably that to which the ink is carried, usually the electrical mass of the printer.
  • the electrodes 28, 29 of the third group are subjected to a constant voltage V.
  • the assembly shown in FIG. 4 allows an improved control of the trajectories of the sections 10 of unused ink for printing, by separating the load functions of the sections and the deflection of the sections and attributing them to the electrodes of the third 30 and second 7 groups of electrodes. , respectively.
  • each electrode, 15, 16; 17, 18; 19, 20; 26, 28, 29 of the first 6, second 7 and possibly third groups is said to be common to all the jets because it is in principle a single conductive piece acting on all the jets. It may also be for one or more electrodes of different conductive parts connected to the same source of potential.
  • all the electrodes 15-20; 26, 28, 29 have, in projection on a plane parallel to the plane P containing the axes of the nozzles, a substantially rectangular shape, a large side of the rectangle extending in a direction perpendicular to the axes of the nozzles.
  • the main function of the electrodes of the group 6 for protecting the drop formation zone DB is to create a zone of zero or negligible potential encompassing the line DB.
  • the electric field prevailing between the two electrodes of a pair of protective electrodes is relative to the reference potential, zero or negligible in the absence of the jet, since, as we have seen, the electrodes of a pair are at the same potential.
  • the presence of the jet does not disturb this state of affairs, in the case where this potential is that of the ink, which is the case for the central pair when it is present.
  • the electrodes of a pair such as, for example, the electrodes of the upstream or downstream pairs are at a potential different from that of the ink
  • the presence of the inkjet disturbs the field between the jet and each of the electrodes of the pair. the pair.
  • the resultant of the field vectors on the axial line of the jets is zero because of the local geometrical symmetry and thus there is no deviation of the jet without the action of the electric forces.
  • the electrodes of the group 7 for deflection of the sections are distinguished from the protection or charge electrodes in that these electrodes create, in the absence of a jet, an electric field in a direction substantially perpendicular to the axes of the jets and the plane P containing the jets.
  • the field is disturbed by the jet.
  • the field is constantly oriented in a direction perpendicular to the jet.
  • this circuit is connected to a digital data storage memory 31.
  • this memory (bit-map) 31 sequentially supplies a succession of n line memories 32 referenced 32-1 to 32-n.
  • Data transfers between memory (bit-map) 31 and line memories 32 are controlled in a manner known per se by a sequencer.
  • the sequencer receives signals from a print clock 34 and an encoder of the position of the substrate.
  • the digital data output of memories 32-1 to 32-n each supply a succession 36 of digital-to-analog converters (DACs) referenced 36-1 to 36-n.
  • DACs digital-to-analog converters
  • each of these converters 36-1 to 36-n supplies a circuit 37-1 to 37-n respectively.
  • Each circuit 37-1 to 37-n is an amplification and shaping circuit which delivers or does not deliver, as a function of the signal received at the input, a signal intended to actuate the means 4 or 4 'for forming drops.
  • the circuit 5 is formed of the elements 32 to 37. It comprises at least as many outputs, an output of the circuit 5 consisting of an amplification circuit output 37-1 to 37-n, as nozzles 2. advantage, especially if it is an integrated circuit adaptable on printers of different models, each model having its own number of nozzles 2.

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Claims (12)

  1. Tintenstrahldrucker (100), umfassend eine Druckdüse (2), die einen Tintenstrahl (3) unter Druck entlang einer Düsenachse ausstößt,
    - Mittel (4,4') zur Bildung von Tintentröpfchen, die auf den von der Düse (2) ausgestoßenen Strahl durch Aufbrechen des Strahls (3) in einem vorbestimmten axialen Abstand zur Düse einwirkt,
    - Mittel (11,12) zur Zurückgewinnung von Tinte, die nicht von einem Druckträger (14) aufgenommen wird,
    - einen Speicher (31) zur Speicherung von digitalen Daten, welche zusammen ein Druckmotiv darstellen,
    - Mittel (5,32-37) zur Steuerung des Drucks mit einem Eingang und einem Ausgang, wobei der Eingang mit dem Speicher (31) gekoppelt ist, um sequentiell mindestens einen Teil der zusammen ein zu druckendes Motiv darstellenden digitalen Daten zu empfangen,

    dadurch gekennzeichnet, dass der Ausgang der Mittel (5,32-37) zur Drucksteuerung mit dem Mittel (4,4') zur Tröpfchenbildung gekoppelt ist, wobei dieses Mittel (4,4') den Strahl bei Empfang jedes der Steuersignale aufbricht und dabei den Strahl in eine Abfolge von Tröpfchen (13) und von Teilstücken (10) umformt, und dadurch, dass er (der Drucker) (100) eine Gruppe (7) von Ablenkungselektroden (26) umfasst, welche die Teilstücke (10) zu den Mitteln (11) zum Zurückgewinnen der Tinte hin ablenkt.
  2. Drucker (100) nach Anspruch 1, dadurch gekennzeichnet, dass er umfasst:
    - zusätzliche Druckdüsen (2),
    - zusätzliche Mittel (4,4') zur Bildung von Tintentröpfchen, wobei jedes zusätzliche Mittel (4,4') auf den Strahl (3) einer zusätzlichen Düse (2) durch Aufbrechen des Strahls (3) an einem in einem vorbestimmten axialen Abstand befindlichen Punkt der zusätzlichen Düse einwirkt, wobei die Gesamtheit der Aufbrechungspunkte des Strahls eine Aufbrechungszone (DB) bildet,

    und dadurch, dass
    - die Mittel (5,32-37) zur Drucksteuerung zusätzliche Ausgänge umfassen, wobei jeder zusätzliche Ausgang mit einem der zusätzlichen Mittel (4,4') zur Tröpfchenbildung gekoppelt ist, und

    schließlich dadurch, dass
    - die Gruppe (7) von die Teilstücke zu den Mitteln (11,12) zur Zurückgewinnung der Tinte ablenkenden Elektroden (26) den gesamten Strahlen (3) gemeinsam ist.
  3. Drucker (100) nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass er außerdem eine Gruppe (6) aus elektrischen Schutz-Elektroden (21,22,25) des Tröpfchenbildungspunktes oder der Tröpfchenbildungszone umfasst, wobei diese Gruppe (6) sich stromab der Düse(n) (2) und stromauf der Gruppe (7) zur Ablenkung der Teilstücke (10) befindet, wobei die Elektroden (15-20) dieser Gruppe (6) den gesamten Strahlen (3) gemeinsam sind.
  4. Drucker (100) nach Anspruch 3, dadurch gekennzeichnet, dass die Gruppe (6) von elektrischen Schutzelektroden eine zentrale Elektrode (25) in Form eines U mit zwei Zweigen (15,16) umfasst, oder ein zentrales Paar (25) von Elektroden (15,16), das eine erste (15) und eine zweite (16) Elektrode umfasst, wobei diese Zweige (15,16) oder Elektroden (15,16) mit ein- und derselben ersten Potentialquelle gekoppelt sind, und dadurch, dass der/die erste (15) und der/die zweite (16) Zweig oder Elektrode der Schutz-Elektrode oder des zentralen Schutzpaars (25) auf beiden Seiten der Achse oder der gesamten Achsen der Düsen angeordnet sind.
  5. Drucker (100) nach Anspruch 3, dadurch gekennzeichnet, dass die Gruppe (6) von elektrischen Schutzelektroden des Tröpfchenbildungspunktes oder der Tröpfchenbildungszone eine Elektrode (21) mit zwei Zweigen oder ein stromaufwärtiges Paar (21) und eine stromabwärtige Elektrode mit zwei Zweigen oder ein stromabwärtiges Paar (22) umfassen, wobei die Elektrode oder das stromaufwärtige Paar (21) eine(n) erste(n) (17) und eine(n) zweite(n) (18) Zweig oder Elektrode umfassen, wobei die Elektrode oder das stromabwärtige Paar (22) eine(n) erste(n) (19) und eine(n) zweite(n) (20) Zweig oder Elektrode umfassen, wobei der/die Zweig(e) oder Elektroden (17,19;18,20) stromauf (21) und stromab (22) auf beiden Seiten der Achse oder der gesamten Achsen der Düse (2) angeordnet sind, wobei ein stromaufwärtiger Rand der Elektrode oder des stromaufwärtigen Paars (21) sich in einem axialen Abstand von einer der Düsen (2) befindet, der kleiner ist als der vorbestimmte Abstand, und wobei ein stromabwärtiger Rand der Elektrode oder des stromabwärtigen Paars (22) sich in einem axialen Abstand von dieser Düse (2) befindet, der größer ist als der vorbestimmte Abstand.
  6. Drucker (100) nach Anspruch 5, dadurch gekennzeichnet, dass die Gruppe (6) von elektrischen Schutzelektroden außerdem eine Elektrode (25) mit zwei Zweigen (15,16) oder ein zentrales Paar (25) von Elektroden (15,16) umfasst, wobei sich die Zweige oder Elektroden (15,16) dieses zentralen Paars (25) auf beiden Seiten der Achse oder der gesamten Achsen der Düsen (2) befinden, wobei die stromaufwärtige Elektrode oder das stromaufwärtige Paar (21)sich stromauf der Elektrode oder des zentralen Paars befinden, und die stromabwärtige Elektrode oder das stromabwärtige Paar (22) sich stromab des zentralen Paars (25) befinden.
  7. Drucker (100) nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass er außerdem eine Gruppe (30) von Ladeelektroden umfasst, die den gesamten Strahlen (3) gemeinsam sind, welche sich stromab der Schutzelektroden-Gruppe (6) und stromauf der Ablenkungselektroden-Gruppe (7) befinden.
  8. Drucker (100) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Mittel (4,4') zur Bildung von Tintentröpfchen aus wärmebeständigen Elementen oder piezoelektrischen Elementen (4) gebildet sind, die stromauf der Düsen (2) angeordnet sind.
  9. Drucker (100) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Tintentröpfchen-Bildungsmittel aus Elektroden gebildet sind, die eine in Nähe der Tintenstrahlen (3) stromab der Düsen (2) angeordnete elektro-hydrodynamische Vorrichtung bilden.
  10. Verfahren zum Ausstoßen einer leitenden Flüssigkeit, die auf einem elektrischen Bezugspotential gehalten wird, wobei:
    - die leitende Flüssigkeit druckbeaufschlagt wird, um mindestens einen Strahl (3) in einer Axialrichtung zu bilden,
    - jeder der Strahlen (3) an Strahlaufbrechungspunkten aufgebrochen wird, wobei die Aufbrechungspunkte zusammen eine Tröpfchenbildungszone definieren, wobei diese Zone räumlich und zeitlich festgelegt und auf einer Geraden (DB) senkrecht zu den Strahlen ausgerichtet ist,
    - ein Teil der leitenden Flüssigkeit jedes Strahls in einer zur Axialrichtung unterschiedlichen Richtung abgelenkt wird,

    wobei das Verfahren dadurch gekennzeichnet ist, dass die Abfolge der Tröpfchenbildungen in jedem Strahl (3) von Tröpfchenbildungssignalen gesteuert wird, die in Abhängigkeit von externen Informationen gebildet werden, wobei auf diese Weise der Strahl in eine Abfolge von Tröpfchen aufgebrochen wird, welche ihre Flugbahn in der Axialrichtung beschreiben, sowie von Teilstücken, die in einer zur Axialrichtung unterschiedlichen Richtung abgelenkt werden.
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass für mehrere Strahlen, deren Achsen parallel und in ein- und derselben Ebene P enthalten sind,
    - die Flugbahn der Teilstücke (10) der leitenden Flüssigkeit abgelenkt wird, ohne die Flugbahn der Tröpfchen (13) abzulenken, in dem Bereiche geschaffen werden, die die Ebene P der Axialrichtungen enthalten, deren elektrische Eigenschaften in Abwesenheit des Strahls zeitlich permanent sind, wobei diese Bereich umfassen:
    - einen geschützten Bereich, dessen elektrische Potentialdifferenz in Bezug auf das Bezugspotential 0 oder vernachlässigbar ist, wobei dieser Bereich die Tröpfchenbildungszone umfasst,
    - mindestens einen Bereich, dessen Potentialdifferenz in Bezug auf das Bezugspotential nicht vernachlässigbar ist, wobei sich mindestens einer der Bereiche unmittelbar stromab des geschützten Bereichs befindet,
    - mindestens einen Bereich, der bei Vorhandensein des Strahls der Sitz eines zur Ablenkung der Teilstücke geeigneten elektrischen Feldes ist.
  12. Ausstoßverfahren nach einem der Ansprüche 10 oder 11, dadurch gekennzeichnet, dass die leitende Flüssigkeit eine Tinte ist, die externen Informationen, welche die Abfolge der Tröpfchenbildung steuern, aus digitalen Daten gebildet sind, welche zusammen ein auf einen Träger (14) zu druckendes Motiv darstellen, und dass die Teilstücke den Träger nicht erreichen.
EP20000402817 1999-10-15 2000-10-12 Tintenstrahldrucker und Druckverfahren Expired - Lifetime EP1092542B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9912881 1999-10-15
FR9912881A FR2799688B1 (fr) 1999-10-15 1999-10-15 Imprimante et procede d'impression par jets d'encre

Publications (2)

Publication Number Publication Date
EP1092542A1 EP1092542A1 (de) 2001-04-18
EP1092542B1 true EP1092542B1 (de) 2006-01-04

Family

ID=9550977

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20000402817 Expired - Lifetime EP1092542B1 (de) 1999-10-15 2000-10-12 Tintenstrahldrucker und Druckverfahren

Country Status (5)

Country Link
EP (1) EP1092542B1 (de)
CN (1) CN1170677C (de)
DE (1) DE60025320T2 (de)
ES (1) ES2254117T3 (de)
FR (1) FR2799688B1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2851495B1 (fr) 2003-02-25 2006-06-30 Imaje Sa Imprimante a jet d'encre
FR2890596B1 (fr) 2005-09-13 2007-10-26 Imaje Sa Sa Dispositif de charge et deflexion de gouttes pour impression a jet d'encre
FR2892052B1 (fr) * 2005-10-13 2011-08-19 Imaje Sa Impression par deflexion differentielle de jet d'encre
FR2906755B1 (fr) 2006-10-05 2009-01-02 Imaje Sa Sa Impression par deflexion d'un jet d'encre par un champ variable.
GB2447919B (en) * 2007-03-27 2012-04-04 Linx Printing Tech Ink jet printing
CN105112965B (zh) * 2015-09-16 2017-08-08 上海圣匡机电科技有限公司 金属件快速成型用打印头、打印装置和打印方法
CN105398218A (zh) * 2015-12-14 2016-03-16 上海美创力罗特维尔电子机械科技有限公司 一种喷码机喷印***
CN105584218A (zh) * 2016-02-01 2016-05-18 厦门英杰华机电科技有限公司 平行双嘴cij喷码***
CN106739506B (zh) * 2016-12-12 2018-07-24 华中科技大学 一种用于电流体喷印的压电式集成喷头
GB201706562D0 (en) * 2017-04-25 2017-06-07 Videojet Technologies Inc Charge electrode

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3596275A (en) 1964-03-25 1971-07-27 Richard G Sweet Fluid droplet recorder
US4230558A (en) 1978-10-02 1980-10-28 Coulter Electronics, Inc. Single drop separator
US4220958A (en) 1978-12-21 1980-09-02 Xerox Corporation Ink jet electrohydrodynamic exciter
JPS57201668A (en) * 1981-06-08 1982-12-10 Fuji Xerox Co Ltd Charge control type ink jet printer
JPH0829590B2 (ja) * 1985-03-04 1996-03-27 株式会社日立製作所 インクジエツト記録装置
US4638328A (en) 1986-05-01 1987-01-20 Xerox Corporation Printhead for an ink jet printer
FR2777211B1 (fr) * 1998-04-10 2000-06-16 Toxot Science Et Applic Procede de projection d'un liquide electriquement conducteur et dispositif d'impression par jet d'encre continu utilisant ce procede

Also Published As

Publication number Publication date
CN1293111A (zh) 2001-05-02
DE60025320D1 (de) 2006-03-30
CN1170677C (zh) 2004-10-13
EP1092542A1 (de) 2001-04-18
FR2799688B1 (fr) 2001-11-30
DE60025320T2 (de) 2006-08-31
ES2254117T3 (es) 2006-06-16
FR2799688A1 (fr) 2001-04-20

Similar Documents

Publication Publication Date Title
EP1628832B1 (de) Tintenstrahldrucker
EP0521764B1 (de) Verfahren zum Ausstossen von Flüssigkeit und Vorrichtung zum hochauflösenden Drucken an einem kontinuierlich arbeitenden Tintenstrahldrucker und Verfahrensdurchführung
EP0949077B1 (de) Verfahren zum Ausstossen einer elektrisch leitenden Flüssigkeit und kontinuierliche Tintenstrahldruckvorrichtung für ein solches Verfahren
EP1469997B1 (de) Doppeldüsendruckkopf mit konvergierenden achsen und damit ausgerüsteter drucker
KR960015882B1 (ko) 고밀도 잉크 분사 프린트 헤드용 측벽 작동기
EP1234670B1 (de) Druckkopf und Drucker mit verbesserten Ablenkelektroden
US8641175B2 (en) Variable drop volume continuous liquid jet printing
FR2892052A1 (fr) Impression par deflexion differentielle de jet d'encre
US20040095441A1 (en) Method and apparatus for printing ink droplets that strike print media substantially perpendicularly
EP1092542B1 (de) Tintenstrahldrucker und Druckverfahren
JPH11216867A (ja) 2進静電偏向による連続式インクジェットプリンタ
US8740359B2 (en) Continuous inkjet printing system and method for producing selective deflection of droplets formed from two different break off lengths
EP1238804A3 (de) Flüssigkeitsstrahlvorrichtung und Verfahren zu deren Steuerung
GB9802871D0 (en) Operation of droplet deposition apparatus
EP0365454B1 (de) Kontinuierliche, mittels Trabantentintentropfen betriebene Druckvorrichtung mit hoher Auflösung
EP2714405B1 (de) System und verfahren zum flüssigkeitsausstoss
EP0782095A3 (de) Tintenstrahldrucker und Steuerungsverfahren
EP0913259A3 (de) Apparat zum generieren kleinvolumiger Hochgeschwindigkeitstropfen in einem Tintenstrahldrucker
EP1092544A3 (de) Tintenstrahldruckvorrichtung, Tintenstrahldruckverfahren und Tintenstrahldruckkopf
JP3600246B2 (ja) インクジェット印刷方法及びそのような方法を実施するためのインクジェット印刷ヘッド
FR2975632A1 (fr) Imprimante a jet d'encre continu binaire
JP2001506938A (ja) 連続式インクジェットプリントヘッドの制御
JPH10138513A (ja) インクジェット記録装置
US8684483B2 (en) Drop formation with reduced stimulation crosstalk
JP2001146015A (ja) インクジェットプリンタおよびインクジェットヘッドの製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010917

AKX Designation fees paid

Free format text: DE ES GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060104

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60025320

Country of ref document: DE

Date of ref document: 20060330

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060321

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2254117

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061005

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101022

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101025

Year of fee payment: 11

Ref country code: GB

Payment date: 20101021

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20111021

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121012

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130501

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60025320

Country of ref document: DE

Effective date: 20130501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121012

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121013