EP1092542B1 - Ink jet printer and printing process - Google Patents

Ink jet printer and printing process Download PDF

Info

Publication number
EP1092542B1
EP1092542B1 EP20000402817 EP00402817A EP1092542B1 EP 1092542 B1 EP1092542 B1 EP 1092542B1 EP 20000402817 EP20000402817 EP 20000402817 EP 00402817 A EP00402817 A EP 00402817A EP 1092542 B1 EP1092542 B1 EP 1092542B1
Authority
EP
European Patent Office
Prior art keywords
electrodes
jet
ink
pair
drops
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20000402817
Other languages
German (de)
French (fr)
Other versions
EP1092542A1 (en
Inventor
Stéphane Vago
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Markem Imaje SAS
Original Assignee
Imaje SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imaje SA filed Critical Imaje SA
Publication of EP1092542A1 publication Critical patent/EP1092542A1/en
Application granted granted Critical
Publication of EP1092542B1 publication Critical patent/EP1092542B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/07Ink jet characterised by jet control
    • B41J2/105Ink jet characterised by jet control for binary-valued deflection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/02Ink jet characterised by the jet generation process generating a continuous ink jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/07Ink jet characterised by jet control
    • B41J2/075Ink jet characterised by jet control for many-valued deflection
    • B41J2/08Ink jet characterised by jet control for many-valued deflection charge-control type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/02Ink jet characterised by the jet generation process generating a continuous ink jet
    • B41J2/03Ink jet characterised by the jet generation process generating a continuous ink jet by pressure
    • B41J2002/033Continuous stream with droplets of different sizes

Definitions

  • the invention lies in the field of continuous ink jet printers. It also relates to a selective projection process parts of a conductive liquid jet and in particular a continuous inkjet printing process.
  • the method and the printer according to the present invention can be used in particular in all industrial fields related to industrial writing, marking, coding, addressing and decoration.
  • a continuous jet printer The typical operation of a continuous jet printer can be described as follows. Electrically conductive ink maintained under pressure escapes from a calibrated nozzle. Under the action of a periodic stimulation device, the ink jet thus formed is broken at regular time intervals at a single point in space. Downstream of the break point of the jet, the continuous jet is transformed into a train of identical and regularly spaced ink drops. In the vicinity of the breaking point is placed a first group of electrodes whose function usually recognized is to selectively transfer, at each drop of the jet, a predetermined amount of electric charge.
  • the set of drops thus selectively loaded then passes through a second arrangement of electrodes in which there is a constant electric field which will modify the trajectory of the charged drops.
  • the amount of charge transferred to the drops of the jet is variable.
  • Each drop records, during the passage in the second arrangement of constant-field electrodes, an increasing deflection with the electrical load previously assigned to it and is oriented towards a specific point of the print medium.
  • This technology thanks to these multiple levels of deflection, allows a single nozzle to print, by segment or frame, - point line of a given height -, the entirety of a pattern.
  • the passage from one segment to another is effected by the continuous displacement, perpendicularly to said segment, of the substrate relative to the print head.
  • the second variant is that of the binary continuous stream.
  • This technique differs mainly from the previous one in that the level of charge drops is binary.
  • drops When passing through the deflection electrodes, drops are uniformly deflected or undirected depending on the load they have received.
  • the printing of characters or patterns therefore generally requires the use of multi-nozzle print heads, the spacing of the orifices coinciding with that of the impacts on the print medium.
  • the drops intended for printing are the non-deflected drops, that is to say the binary level of charge is zero.
  • the ink which is not used to mark the substrate is directed to an unused gutter or ink recuperator and is recycled in a circuit which is ink so that it returns to the print nozzles.
  • a process for breaking down the jet into drops is very well described, for example, in a patent number US-A-4,220,958 invented by Mr. CROWLEY.
  • the conductive ink jet passes through electrodes worn periodically at a relatively high potential. Under the action of these electrodes, the ink jet is charged. The charges are attracted to the electrodes so that a force transverse to the jet deforms the surface of the jet. The speed of the jet and the transverse movement of the surface of the jet combine so that at a certain distance from the electrodes, the jet breaks in a succession of drops.
  • the ink emission nozzles are vibrated.
  • the liquid jet is excited electro-hydrodynamically with an electro-hydrodynamic exciter (EHD).
  • EHD electro-hydrodynamic exciter
  • a third technique is to impose a pressure variation on the liquid at the nozzle by means of a piezoelectric crystal introduced into a cavity for feeding the nozzle. This latter technique is dominant in the literature and is used for example in the IBM 6640 machine (registered trademark).
  • the invention of CROWLEY relates to an electro-hydrodynamic exciter in which the length of the electrodes traversed by the ink jet is equal to half the distance between the drops.
  • thermoresistive elements Another method of stimulating the ink jet for its transformation into drops is described, for example in US-A-4,638,328 DRAKE et al. It is an activation by thermoresistive elements.
  • EP 0 949 077 shows an example of this type of printer.
  • a second so-called drop-on-demand ink printing family is essentially used in office printers. This is to print text or graphic patterns in color on paper or plastic. In contrast to continuous jet printing, drop-on-demand technologies generate directly and only the ink drops actually needed to print the desired patterns. We do not therefore, there is no recirculating electrode or gutter between the exit face of a nozzle and the print medium. Drop-on-demand printers are necessarily multibus machines and require an ink ejection actuator per orifice.
  • U.S. Patent 4,230,558 discloses a biological cell sorting apparatus based on the creation, on demand, of a droplet within a continuous stream of fluid. During operation, the jet takes the appearance of a series of isolated drops, framed by fluid sections of varying lengths.
  • EHD stimulation and intermittent jet stimulation can be found in the U.S. Patent 4,220,958 (JM Crowley) and in an article by DW Hrdina and JM Crowley (IEEE Transactions on Industry Applications, Vol 25, No. 4, July / August 1989, entitled “Drop-on-demand Operation of Continuous Jets”). Using EHD Techniques "(pages 705-710).
  • the object of the present invention is to retain the advantages of continuous jet technology while combining it with some of the advantages of the on-demand drop technique.
  • the invention aims at a suppression for each jet of the set of individual electrodes for charging the drops and the control circuit associated with this set of individual electrodes. It also aims to eliminate the crosstalk between different jets of the same print head. It has been seen that according to the prior art, the ink jet under pressure is divided into a succession of drops. The sorting of the drops to be printed on the substrate is made downstream of the point where the droplets, said breaking point, are formed by an arrangement of electrodes. It is this arrangement of individual electrodes at each of the nozzles which creates, on the one hand, a complexity of realization and, on the other hand, problems of crosstalk.
  • the sorting of the drops to be deflected towards the substrate or towards a recovery gutter is performed according to data coming from a set of generally digital data defining the pattern to be printed.
  • the digital data defining the print pattern is no longer used downstream of drop formation, but upstream. It is these data that will determine or not the formation of drops.
  • the ink jet of a nozzle will no longer be divided into a succession of drops but into a succession of sections and drops.
  • each nozzle is equipped with a means for forming ink drops.
  • Each ink drop forming means is coupled to the print control means.
  • the means for sorting the drops and sections for each of the jets are common to all the jets.
  • the sections are deflected towards the ink recovery means and the drops reach the substrate. This provides a considerable simplification of all the sorting means of the drops since it eliminates all the individual electrodes charge drops of each jet of the prior art.
  • Each nozzle of the multi-nozzle device has its own means of forming drops in the jet. This means is controlled by signals formed from digital data relating to the line printed by the nozzle.
  • the zone where the drops are formed will be protected from the influence of the electric field caused by deflection means of the sections.
  • the means for protecting the drops against the influence of the deflection field of the sections will be formed by one or more electrodes or pairs of electrodes placed upstream of the deflection electrodes and arranged to protect the drop formation zone from the influence of the field created by the deflection electrodes of the sections.
  • the drops will thus be formed in an area of zero or negligible electrical potential.
  • each section will be at the moment of drop formation and therefore at the moment of detachment of the upstream part of the section from the remainder of the jet in a zone of non-zero potential.
  • the section will be electrically charged and will be influenced by the deflection field.
  • the drop forming means will be constituted by heating elements used as actuators. These actuators cause local heating of the ink on demand and for a predetermined time to modify at least one physical characteristic of the ink capable of causing a disturbance in the jet. This disturbance is translated at a predetermined distance by the formation of drops from the jet.
  • this means of producing drops mention may be made of heat-resistive elements as described, for example, in the DRAKE patent, in number equal to that of the nozzles of the print head and placed near the nozzles. It may also be electro-hydrodynamic means as one of those described in the CROWLEY patent. It may also be as in the prior art a piezoelectric crystal placed in a cavity feeding the nozzle. Note that in this case, the signal is not periodic, the pulse shape of the signal must be adapted so as not to generate residual vibrations hindering the operation of the print head.
  • the rising edge and the falling edge of a pulse to deform the piezoelectric crystal must be shaped such that no annoying residual vibrations of the crystal remain after the passage of the pulse. These residual vibrations could lead to unwanted drop formations.
  • the deflection of the parts of the non-directed ink towards the substrate is obtained by means of an electric field created downstream of the drop formation points, and preferably, the zone containing all the points of creation of the drops. drops of the jet is protected from the influence of the electric deflection field.
  • the electrical characteristics - field and potential - of the regions of space traversed by all the jets are spatially variable, constant in time and identical for each jet.
  • the jets are from nozzles whose axes are aligned.
  • the axes of the nozzles are therefore contained in a plane P.
  • the regions of the space traversed by the jets are therefore regions centered on this plane P and delimited by N planes perpendicular to this plane P or by intersecting surfaces at the plane P at a line common to the plane P and to a plane N.
  • the zone of creation of the drops is contained in a region of zero or negligible potential, so that the drops are electrically neutral or lightly charged. At least a portion of the section located downstream of each drop, is at the moment of detachment of said drop in a region of significant potential so that this section is electrically charged at the moment of its detachment of the jet.
  • a region of the space downstream of the drop formation zone is the seat of a field electrical device allowing the significant deflection of electrically charged ink sections.
  • the load regions of the sections and the deflection of the sections are merged or partially merged, but preferably, the deflection region or part of this region will be downstream of the load region of the sections.
  • Fig. 1 shows a schematic view of a first electrode arrangement of a printer 100 according to an embodiment of a multibuse continuous paced jet printer based on the method according to the invention.
  • the printer 100 comprises a pressurized tank 1 equipped with a plurality of calibrated nozzles 2 from which ink jets 3 escape. At each nozzle is associated a stimulation device 4 placed in the tank 1 and controlled by an external electronic circuit 5.
  • the stimulation device 4 associated with a nozzle allows the creation on demand of a drop.
  • Each drop is formed on the axis of the jet to which it belongs, at a predetermined distance from the nozzle. This distance is the same for all the jets so that the drops are formed in a zone of elongate shape centered on a line DB secant substantially perpendicular to each of the jets 3.
  • the stimulation device 4 is preferably constituted by means causing a local heating of the ink for a predetermined duration, for example thermoresistive elements, in number equal to that of the nozzles of the print head, placed near the nozzles 2 and individually controlled by an external circuit 5.
  • thermoresistive elements in number equal to that of the nozzles of the print head, placed near the nozzles 2 and individually controlled by an external circuit 5.
  • US Pat. No. 4,638,328 (DRAKE et al.) describes an example of such a device based on thermoresistive elements, its operation as well as an embodiment using chemical machining techniques. from the microelectronics industry.
  • the stimulation device 4 could also be constituted by a piezoelectric element.
  • a known variant shown in dashed lines in FIGS. 1 to 4 consists of replacing the thermal or piezoelectric stimulation inside the tank 1 by an electro-hydrodynamic stimulation performed by one or more electrodes 4 'placed near the jets immediately downstream of the nozzle.
  • An arrangement of electrodes common to all the jets and whose operation will be examined later is placed in the vicinity of the line DB connecting the nominal points of creation of the drops of each of the jets.
  • the charged ink portions referenced 10 in FIGS. 1 to 4 and which are in the form of sections are directed towards a recovery gutter 11 which recycles them to a general ink circuit 12.
  • the electric fields created by the arrangement of FIG. electrodes do not significantly affect the trajectory of the drops referenced 13 which can strike a printing medium 14.
  • the electrode arrangement consists of two groups of electrodes, a first group 6 of electrodes and a second group 26.
  • the electrodes of the first group 6 are consisting of a central pair of electrodes 15, 16.
  • the electrodes 15, 16 of the first group 6 are located on either side of the set of jets 3.
  • the pair of electrodes 25 is placed so that to include the drop forming position DB 13.
  • the drop formation position DB will be located in the immediate vicinity of the downstream edges of the this pair of electrodes.
  • the electrodes 15, 16 forming the central pair of electrodes 25 are connected to one and the same source of potential, preferably equal to the potential at which the ink of the tank 1 is generally connected to ground, so as to create an electric field zero in the inter-electrode space.
  • the pair of electrodes 15, 16 could be replaced by a single U-shaped electrode having two legs 15, 16.
  • the branches 15, 16 of the U are equivalent to the electrodes 15, 16 of the pair 25.
  • This alternative mode has been shown in phantom, FIG. 1. It will be seen later that the electrode group 6 may comprise additional pairs of electrodes. Whenever the electrodes of a pair are connected to the same potential source, the pair may alternatively be replaced by a U-shaped electrode, each of the two branches of the U replacing an electrode of the pair.
  • the electrode 26 of the second group 7 is located downstream of the first electrode group 6. The electrode 26 is brought to a high constant electrical voltage, and creates an electric field in the surrounding space.
  • the electric field prevailing in the immediate vicinity of the line DB is zero or very weak because this space is protected by the first group of electrodes 6.
  • the intensity of the electric field existing in the vicinity of the downstream part of the segments d The ink at the electrode 26 is high enough to exert an electrostatic influence on them. After breaking the jet, the trajectory of the sections that are electrically charged by the electrode 26 will be modified by the electric field, while the trajectory of the drops will undergo a very small influence.
  • the sections are directed towards the ink recuperator 11 while the drops 13 are directed towards the substrate 14.
  • a second embodiment schematized in FIG. 2 differs from the first embodiment shown in FIG. 1 in that the first group of electrodes 6 constituting the protective electrodes is split into two pairs of electrodes 21, 22, a pair upstream 21 and a downstream pair 22.
  • the pair 21 consists of two electrodes 17, 18.
  • the pair of electrodes 22 consists of two electrodes 19, 20.
  • the electrodes 17 and 18 of the pair 21 are located on both sides. 3.
  • the electrodes 19, 20 of the pair 22 are also located on either side of the zone of the jets 3.
  • the electrodes of the pair 21 are subjected to the same constant electrical voltage V1 and those of the pair 22 are subjected to the same constant voltage of opposite sign V2 preferably equal to -V1.
  • the main feature of a group of electrodes such as 21 and 22 is the existence of an approximately plane region ⁇ of the space lying axially between the upstream edges and the downstream edges, respectively of the pairs of electrodes 21, 22 in which the potential is zero or negligible.
  • the plane ⁇ is substantially perpendicular to the set of jets 3. If the line DB which is the place of formation of drops of the different jets 3 is included in this region of the space comprising the plane ⁇ , the created drops will carry a negligible electric charge.
  • the sections 10 coming off the jet will be subjected to the influence of the electric field formed by the deflection electrode 26 and will undergo a deflection during their passage in the vicinity of the electrode 26.
  • the protective electrode arrangement of the zone where the drops are formed comprises three pairs of electrodes 21, 22, 25.
  • the third pair of electrodes 25 comprising the electrodes 15 and 16 is located at an axial height between the heights of the pairs 21 and 22.
  • the electrodes 17, 18 of the pair of electrodes 21 are connected to a constant voltage V1.
  • the electrodes of the pair 22 are subjected to a constant voltage V2 of opposite sign to that of the voltage V1 of value preferably equal to -V1.
  • the electrodes of the pair 25 are connected to a source of constant voltage preferentially to ground.
  • this configuration makes it possible to increase the volume of the zero or negligible potential region with respect to the reference potential in which it is possible to form drops. Consequently, the position of the line DB has wider tolerances, which makes it possible to relax the precision constraints at the level of the drop formation means.
  • the electrode arrangements described in connection with FIGS. 1 to 3 comprise only two groups of electrodes.
  • a first group 6, comprising a pair, two pairs or three pairs of electrodes and a second group 7.
  • the electrodes of group 6 have the function of imposing a zone of no or negligible electric field in the zone where the line DB is located at a predetermined distance from the nozzles 2. In this way, the drops are not electrically charged and undergo virtually no influence from the electrodes of the second group 7.
  • this group 7 of deflection electrodes may, as represented in FIGS. 1 to 4, consist of a simple plate 26. It may also consist of a pair of plates parallel to each other, each plate of the pair being brought to a different potential. It may also consist of curved conductive elements.
  • the deflection can be operated with any known means of arranging electrodes to deflect drops of ink.
  • any known arrangement of electrodes creating an elongated zone of zero or low electrical potentials may be used. This zone will then house the line of formation of the drops.
  • the electrode groups 6 for protection and 7 for deflection are completed by a third electrode group 30.
  • the electrodes of this group 30 are like those of groups 6 and 7 common to all jets 3.
  • this group 30 is composed of a pair 27 of electrodes 28, 29.
  • the electrodes of the group 30 are situated downstream of the protection electrodes of the group 6 and upstream of the deflection electrodes of the group 7.
  • the electrodes of the group 6 have been represented in the form of a pair of electrodes 25 placed and connected in the configuration described in connection with Figure 1. It is clear that these group 6 electrodes could have other configurations, particularly those described in relation to Figures 2 or 3.
  • the electrodes of the group 6 comprise an upstream pair 21 and a downstream pair 22.
  • the downstream pair is preferably brought to a potential different from that of the reservoir from which the jets. Because of this potential difference, the downstream pair subjects the trunks to a load.
  • the electrodes of the group 30 constitute a complementary group of charge electrodes.
  • the electrodes of the upstream pair 21 and the electrodes of the downstream pair 22 are at potentials such that there is a potential zone of zero between the upstream edge of the upstream electrodes and the downstream edge of the downstream electrodes. This is the main function of these electrodes. This function will generally be achieved by bringing these pairs of electrodes to opposite potentials. Although these pairs of electrodes 21,22 bring a load to the sections 10, the electrodes of the group 30 will be distinguished from the electrodes of the downstream pair 22, in that their potential of use is such that these electrodes of the group 30 bring a charge added to that provided by the electrodes of the downstream pair 22 of the group 6.
  • the electrode arrangement comprises a group (30) of charge electrodes in addition to the group 7 of deflection electrodes, it is necessary to achieve the group 6 electrodes to protect the drop formation zone DB of the combined influence of the two electric fields, charging and deflection.
  • the electrodes 15, 16 are brought to a constant potential, preferably that to which the ink is carried, usually the electrical mass of the printer.
  • the electrodes 28, 29 of the third group are subjected to a constant voltage V.
  • the assembly shown in FIG. 4 allows an improved control of the trajectories of the sections 10 of unused ink for printing, by separating the load functions of the sections and the deflection of the sections and attributing them to the electrodes of the third 30 and second 7 groups of electrodes. , respectively.
  • each electrode, 15, 16; 17, 18; 19, 20; 26, 28, 29 of the first 6, second 7 and possibly third groups is said to be common to all the jets because it is in principle a single conductive piece acting on all the jets. It may also be for one or more electrodes of different conductive parts connected to the same source of potential.
  • all the electrodes 15-20; 26, 28, 29 have, in projection on a plane parallel to the plane P containing the axes of the nozzles, a substantially rectangular shape, a large side of the rectangle extending in a direction perpendicular to the axes of the nozzles.
  • the main function of the electrodes of the group 6 for protecting the drop formation zone DB is to create a zone of zero or negligible potential encompassing the line DB.
  • the electric field prevailing between the two electrodes of a pair of protective electrodes is relative to the reference potential, zero or negligible in the absence of the jet, since, as we have seen, the electrodes of a pair are at the same potential.
  • the presence of the jet does not disturb this state of affairs, in the case where this potential is that of the ink, which is the case for the central pair when it is present.
  • the electrodes of a pair such as, for example, the electrodes of the upstream or downstream pairs are at a potential different from that of the ink
  • the presence of the inkjet disturbs the field between the jet and each of the electrodes of the pair. the pair.
  • the resultant of the field vectors on the axial line of the jets is zero because of the local geometrical symmetry and thus there is no deviation of the jet without the action of the electric forces.
  • the electrodes of the group 7 for deflection of the sections are distinguished from the protection or charge electrodes in that these electrodes create, in the absence of a jet, an electric field in a direction substantially perpendicular to the axes of the jets and the plane P containing the jets.
  • the field is disturbed by the jet.
  • the field is constantly oriented in a direction perpendicular to the jet.
  • this circuit is connected to a digital data storage memory 31.
  • this memory (bit-map) 31 sequentially supplies a succession of n line memories 32 referenced 32-1 to 32-n.
  • Data transfers between memory (bit-map) 31 and line memories 32 are controlled in a manner known per se by a sequencer.
  • the sequencer receives signals from a print clock 34 and an encoder of the position of the substrate.
  • the digital data output of memories 32-1 to 32-n each supply a succession 36 of digital-to-analog converters (DACs) referenced 36-1 to 36-n.
  • DACs digital-to-analog converters
  • each of these converters 36-1 to 36-n supplies a circuit 37-1 to 37-n respectively.
  • Each circuit 37-1 to 37-n is an amplification and shaping circuit which delivers or does not deliver, as a function of the signal received at the input, a signal intended to actuate the means 4 or 4 'for forming drops.
  • the circuit 5 is formed of the elements 32 to 37. It comprises at least as many outputs, an output of the circuit 5 consisting of an amplification circuit output 37-1 to 37-n, as nozzles 2. advantage, especially if it is an integrated circuit adaptable on printers of different models, each model having its own number of nozzles 2.

Description

Domaine de l'inventionField of the invention

L'invention se situe dans le domaine des imprimantes à jet d'encre continu. Elle concerne aussi un procédé de projection sélective de parties d'un jet de liquide conducteur et notamment un procédé d'impression par jet d'encre continu. Le procédé et l'imprimante conformes à la présente invention peuvent être utilisés notamment dans tous les domaines industriels liés à l'écriture, au marquage, au codage, à l'adressage et à la décoration industriels.The invention lies in the field of continuous ink jet printers. It also relates to a selective projection process parts of a conductive liquid jet and in particular a continuous inkjet printing process. The method and the printer according to the present invention can be used in particular in all industrial fields related to industrial writing, marking, coding, addressing and decoration.

Dans l'état actuel de la technique, il existe deux technologies majeures d'impression par jet d'encre continu. Il s'agit respectivement de la technique du jet d'encre continu dévié et de la technique du jet d'encre continu binaire.In the current state of the art, there are two major technologies for continuous inkjet printing. These are respectively the deviated continuous inkjet technique and the continuous binary inkjet technique.

Le fonctionnement typique d'une imprimante à jet continu peut être décrit comme suit. De l'encre électriquement conductrice maintenue sous pression s'échappe d'une buse calibrée. Sous l'action d'un dispositif de stimulation périodique, le jet d'encre ainsi formé est brisé à intervalles temporels réguliers en un point unique de l'espace. En aval du point de brisure du jet, le jet continu est transformé en un train de gouttes d'encre identiques et régulièrement espacées. Au voisinage du point de brisure est placé un premier groupe d'électrodes dont la fonction habituellement reconnue est de transférer de manière sélective et à chaque goutte du jet une quantité de charge électrique prédéterminée.The typical operation of a continuous jet printer can be described as follows. Electrically conductive ink maintained under pressure escapes from a calibrated nozzle. Under the action of a periodic stimulation device, the ink jet thus formed is broken at regular time intervals at a single point in space. Downstream of the break point of the jet, the continuous jet is transformed into a train of identical and regularly spaced ink drops. In the vicinity of the breaking point is placed a first group of electrodes whose function usually recognized is to selectively transfer, at each drop of the jet, a predetermined amount of electric charge.

L'ensemble des gouttes ainsi chargées de façon sélective traverse ensuite un second agencement d'électrodes au sein duquel règne un champ électrique constant qui va modifier la trajectoire des gouttes chargées.The set of drops thus selectively loaded then passes through a second arrangement of electrodes in which there is a constant electric field which will modify the trajectory of the charged drops.

Dans une première variante d'imprimante dite du jet continu dévié, la quantité de charge transférée aux gouttes du jet est variable. Chaque goutte enregistre, lors du passage dans le second agencement d'électrodes à champ constant, une déflexion croissante avec la charge électrique qui lui a été précédemment attribuée et se trouve orientée vers un point précis du support d'impression. Cette technologie, grâce à ces multiples niveaux de déflexion, permet à une buse unique d'imprimer, par segment ou trame, - ligne de point d'une hauteur donnée -, l'intégralité d'un motif. Le passage d'un segment à l'autre s'effectue par le déplacement continu, perpendiculairement audit segment, du substrat par rapport à la tête d'impression.In a first variant of the so-called deviated continuous jet printer, the amount of charge transferred to the drops of the jet is variable. Each drop records, during the passage in the second arrangement of constant-field electrodes, an increasing deflection with the electrical load previously assigned to it and is oriented towards a specific point of the print medium. This technology, thanks to these multiple levels of deflection, allows a single nozzle to print, by segment or frame, - point line of a given height -, the entirety of a pattern. The passage from one segment to another is effected by the continuous displacement, perpendicularly to said segment, of the substrate relative to the print head.

La seconde variante est celle du jet continu binaire. Cette technique se démarque principalement de la précédente par le fait que le niveau de charge des gouttes est binaire. Lors du passage au travers des électrodes de déflexion, des gouttes sont déviées de façon uniforme ou non déviées selon la charge qu'elles ont reçue. L'impression de caractères ou de motifs nécessite donc en général l'utilisation de têtes d'impression multibuse, l'entraxe des orifices coïncidant avec celui des impacts sur le support d'impression. Il faut noter qu'en général les gouttes destinées à l'impression sont les gouttes non défléchies, c'est-à-dire dont le niveau binaire de charge est nul.The second variant is that of the binary continuous stream. This technique differs mainly from the previous one in that the level of charge drops is binary. When passing through the deflection electrodes, drops are uniformly deflected or undirected depending on the load they have received. The printing of characters or patterns therefore generally requires the use of multi-nozzle print heads, the spacing of the orifices coinciding with that of the impacts on the print medium. It should be noted that in general the drops intended for printing are the non-deflected drops, that is to say the binary level of charge is zero.

Dans les deux technologies, celle du jet continu dévié et celle du jet continu binaire, l'encre qui n'est pas utilisée pour marquer le substrat est dirigée vers une gouttière ou un récupérateur d'encre non utilisée et est recyclée dans un circuit d'encre de telle sorte qu'elle revient vers les buses d'impression.In both technologies, that of the deviated continuous jet and that of the binary continuous jet, the ink which is not used to mark the substrate is directed to an unused gutter or ink recuperator and is recycled in a circuit which is ink so that it returns to the print nozzles.

Un procédé pour briser le jet en gouttes est très bien décrit par exemple dans un brevet portant le numéro US-A-4,220,958 dont l'inventeur est Mr. CROWLEY. Selon le procédé décrit par CROWLEY, le jet d'encre conductrice passe au travers d'électrodes portées périodiquement à un potentiel relativement élevé. Sous l'action de ces électrodes, le jet d'encre se charge. Les charges sont attirées par les électrodes en sorte qu'une force transversale au jet déforme la surface du jet. La vitesse du jet et le mouvement transversal de la surface du jet se combinent pour qu'à une certaine distance des électrodes, le jet se brise en une succession de gouttes.A process for breaking down the jet into drops is very well described, for example, in a patent number US-A-4,220,958 invented by Mr. CROWLEY. According to the method described by CROWLEY, the conductive ink jet passes through electrodes worn periodically at a relatively high potential. Under the action of these electrodes, the ink jet is charged. The charges are attracted to the electrodes so that a force transverse to the jet deforms the surface of the jet. The speed of the jet and the transverse movement of the surface of the jet combine so that at a certain distance from the electrodes, the jet breaks in a succession of drops.

Dans la description de l'art antérieur à son invention, CROWLEY cite un brevet de Richard G. SWEET portant le numéro US-A-3,596,275. Selon cette citation, un point important d'une imprimante par jet d'encre est la génération de gouttes. Il est préféré que les gouttes soient générées à une fréquence fixe avec une masse et une vitesse constantes. Pour atteindre ce but, SWEET révèle trois techniques qui sont représentées aux figures 1, 2 et 10 de son brevet.In the description of the prior art to his invention, CROWLEY cites a patent of Richard G. SWEET with the number US-A-3,596,275. According to this quote, an important point of an inkjet printer is the generation of drops. It is preferred that the drops are generated at a fixed frequency with a constant mass and speed. To achieve this goal, SWEET reveals three techniques that are shown in Figures 1, 2 and 10 of his patent.

Selon une première technique, les buses d'émission d'encre sont vibrées. Selon une seconde technique, le jet de liquide est excité électro-hydrodynamiquement avec un excitateur électro-hydrodynamique (EHD). Une troisième technique est d'imposer une variation de pression sur le liquide au niveau de la buse au moyen d'un cristal piézo-électrique introduit dans une cavité d'alimentation de la buse. Cette dernière technique est dominante dans la littérature et est utilisée par exemple dans la machine IBM 6640 (marque déposée) .According to a first technique, the ink emission nozzles are vibrated. According to a second technique, the liquid jet is excited electro-hydrodynamically with an electro-hydrodynamic exciter (EHD). A third technique is to impose a pressure variation on the liquid at the nozzle by means of a piezoelectric crystal introduced into a cavity for feeding the nozzle. This latter technique is dominant in the literature and is used for example in the IBM 6640 machine (registered trademark).

Par rapport à cet état de la technique, l'invention de CROWLEY concerne un excitateur électro-hydrodynamique dans lequel la longueur des électrodes traversées par le jet d'encre est égale à une demie fois la distance entre les gouttes.Compared to this state of the art, the invention of CROWLEY relates to an electro-hydrodynamic exciter in which the length of the electrodes traversed by the ink jet is equal to half the distance between the drops.

Un autre procédé de stimulation du jet d'encre pour sa transformation en gouttes est décrit, par exemple dans le brevet US-A-4,638,328 DRAKE et al. Il s'agit d'une activation par éléments thermorésistifs.Another method of stimulating the ink jet for its transformation into drops is described, for example in US-A-4,638,328 DRAKE et al. It is an activation by thermoresistive elements.

Le document EP 0 949 077 montre un example de ce type d'imprimantes.EP 0 949 077 shows an example of this type of printer.

Une seconde famille d'impression par projection d'encre dite goutte à la demande est essentiellement mise en oeuvre dans les imprimantes de bureau. Il s'agit d'imprimer du texte ou des motifs graphiques en couleurs sur des supports papier ou plastique. A contrario de l'impression par jet continu, les technologies goutte à la demande génèrent directement et uniquement les gouttes d'encre effectivement nécessaires à l'impression des motifs désirés. On ne trouve donc ni électrode ni gouttière de recirculation d'encre entre la face de sortie d'une buse et le support d'impression. Les imprimantes goutte à la demande sont obligatoirement des machines multibuses et nécessitent un actuateur d'éjection d'encre par orifice.A second so-called drop-on-demand ink printing family is essentially used in office printers. This is to print text or graphic patterns in color on paper or plastic. In contrast to continuous jet printing, drop-on-demand technologies generate directly and only the ink drops actually needed to print the desired patterns. We do not therefore, there is no recirculating electrode or gutter between the exit face of a nozzle and the print medium. Drop-on-demand printers are necessarily multibus machines and require an ink ejection actuator per orifice.

La densité de points offerte par ces imprimantes de l'ordre de 600 points par pouce résulte de l'utilisation des matériaux et des techniques de fabrication développés pour l'industrie micro-électronique.The dot density offered by these printers of the order of 600 dots per inch results from the use of materials and manufacturing techniques developed for the microelectronics industry.

Dans le domaine de l'impression industrielle, les performances des têtes d'impression par jet d'encre continu surclassent les capacités des modèles goutte à la demande. Les premières offrent :

  • une gamme d'encre utilisable plus étendue et par conséquent une plus large variété de supports imprimables,
  • une fréquence d'émission des gouttes plus élevée et donc une vitesse d'impression accrue (environ 100 kHz et quelques mètres par seconde contre environ 10 kHz et quelques centimètres par seconde),
  • une distance d'impression de la face inférieure de la tête d'impression jusqu'au support supérieur (environ 15 mm contre 1 mm).
In the field of industrial printing, the performance of continuous ink jet printheads outperforms the capabilities of drop-on-demand models. The first offer:
  • a wider usable ink range and therefore a wider variety of printable media,
  • a higher transmission frequency of the drops and therefore an increased printing speed (about 100 kHz and a few meters per second against about 10 kHz and a few centimeters per second),
  • a print distance from the underside of the print head to the top bracket (about 15mm vs. 1mm).

Toutefois la simplicité de la conception des têtes d'impression goutte à la demande ne se retrouve pas dans les imprimantes multibuses à jet continu binaire. Les électrodes dédiées à la charge des gouttes de chaque jet doivent être pilotées individuellement, à la fréquence de formation des gouttes et à des niveaux de tension pouvant atteindre 350 volts. La fabrication et la juxtaposition à un pas très fin de l'ensemble des buses et des électrodes d'une tête d'impression font alors apparaître des problèmes majeurs :

  • ■ de réalisation et de coût : la multiplication des circuits électroniques à haute tension reliés aux électrodes de charge et la multiplication de ces mêmes électrodes de charge induisent une commande électronique complexe et coûteuse,
  • ■ d'utilisation et de performance : la connectique haute tension très dense à proximité du jet provoque des diaphonies indésirables dont l'effet sur la qualité d'impression ne peut être limité que par une réduction du taux d'utilisation des gouttes, et par conséquent, une réduction de la vitesse d'impression, et/ou une diminution de la résolution.
However, the simplicity of designing drop-on-demand printheads is not found in multi-binary continuous jet printers. The electrodes dedicated to the charge of the drops of each jet must be controlled individually, at the drop formation frequency and at voltage up to 350 volts. The fabrication and the juxtaposition at a very fine pitch of all the nozzles and the electrodes of a print head then reveal major problems:
  • ■ realization and cost: the multiplication of high voltage electronic circuits connected to the charging electrodes and the multiplication of these same charging electrodes induce a complex and expensive electronic control,
  • ■ of use and performance: the high-density high-voltage connection near the jet causes unwanted crosstalk, whose effect on the print quality can only be limited by a reduction in the drop utilization rate, and by therefore, a reduction in print speed, and / or a decrease in the resolution.

Le brevet US 4 230 558 (Fulwyler, 1980) décrit un appareil de tri de cellules biologiques basé sur la création, à la demande, d'une goutte au sein d'un jet continu de fluide. En cours de fonctionnement, le jet prend l'aspect d'une succession de gouttes isolées, encadrées par des tronçons de fluide de longueurs variables.U.S. Patent 4,230,558 (Fulwyler, 1980) discloses a biological cell sorting apparatus based on the creation, on demand, of a droplet within a continuous stream of fluid. During operation, the jet takes the appearance of a series of isolated drops, framed by fluid sections of varying lengths.

Cette situation "intermittente" du jet est assurée par un actuateur Electro-HydroDynamique (électrode portée à haute tension) ou une source de chaleur externe (laser) dirigée vers le jet. De plus amples informations sur la stimulation EHD et la stimulation intermittent d'un jet peuvent être trouvées dans le brevet US 4 220 958 (J.M. Crowley) et dans un article de D. W. Hrdina et J. M. Crowley (IEEE transactions on Industry Applications, Vol. 25, n° 4, July/August 1989, intitulé "Drop-on-demand Opération of Continuous Jets Using EHD Techniques" (pages 705-710).This "intermittent" situation of the jet is provided by an Electro-HydroDynamic actuator (high voltage electrode) or an external heat source (laser) directed towards the jet. Further information on EHD stimulation and intermittent jet stimulation can be found in the U.S. Patent 4,220,958 (JM Crowley) and in an article by DW Hrdina and JM Crowley (IEEE Transactions on Industry Applications, Vol 25, No. 4, July / August 1989, entitled "Drop-on-demand Operation of Continuous Jets"). Using EHD Techniques "(pages 705-710).

Dans l'appareil proposé par Fulwyler, la génération des gouttes est déclenchée par un système de détection spécifique, de manière à ce que chacune de ces gouttes contienne la substance biologique devant être isolée. Le tri proprement dit s'effectue par un procédé similaire à celui mis en oeuvre dans une imprimante à jet continu :

  • une électrode, adéquatement synchronisée avec l'actuateur de stimulation, est activée lors du détachement de chacune des gouttes à trier et induit sur celles-ci une quantité de charge électrique. Il est important de noter que la stabilité et la répétabilité du processus de charge nécessite un séquencement précis lors de la formation d'une goutte : le détachement du tronçon situé en aval de la goutte doit précéder celui du tronçon situé en amont de la goutte ;
  • le passage du jet de fluide à travers un champ électrique constant permet ensuite de différencier la trajectoire des gouttes, qui subissent une déflexion, de celle des tronçons de fluide non utilisés.
In the apparatus proposed by Fulwyler, the generation of the drops is triggered by a specific detection system, so that each of these drops contains the biological substance to be isolated. The sorting itself is carried out by a method similar to that used in a continuous jet printer:
  • an electrode, suitably synchronized with the stimulation actuator, is activated during the detachment of each of the drops to be sorted and induces on them an amount of electric charge. It is important to note that the stability and repeatability of the charging process requires precise sequencing during the formation of a drop: the detachment of the section located downstream of the drop must precede that of the section located upstream of the drop;
  • the passage of the jet of fluid through a constant electric field then makes it possible to differentiate the trajectory of the drops, which undergo a deflection, from that of the unused fluid sections.

L'application de cette technique de tri au domaine de l'impression par jet d'encre est possible mais ne procurerait, sous la forme décrite dans le brevet cité, absolument aucun avantage sur le mode de fonctionnement usuel.The application of this sorting technique to the field of inkjet printing is possible but would not provide, in the form described in the patent cited, absolutely no advantage over the usual mode of operation.

En particulier, l'extension de cette technique à l'impression impose pour des buses multijets de disposer de moyens de charges individuels pour les gouttes formées à partir des jets de chacune des buses.In particular, the extension of this technique to the printing requires for multijet nozzles to have individual load means for the drops formed from the jets of each of the nozzles.

Exposé de l'inventionPresentation of the invention

L'objectif de la présente invention est de conserver les avantages de la technologie du jet continu tout en le combinant à certains des avantages de la technique de goutte à la demande.The object of the present invention is to retain the advantages of continuous jet technology while combining it with some of the advantages of the on-demand drop technique.

L'invention vise à une suppression pour chaque jet du jeu d'électrodes individuelles de charge des gouttes et du circuit de commande associé à ce jeu d'électrodes individuelles. Il vise aussi à une suppression de la diaphonie entre les différents jets d'une même tête d'impression. Il a été vu que selon la technique antérieure, le jet d'encre sous pression est divisé en une succession de gouttes. Le tri des gouttes devant aller imprimer le substrat est fait en aval du point où se forment les gouttes dit point de brisure, par un agencement d'électrodes. C'est cet agencement d'électrodes individuelles à chacune des buses qui crée d'une part une complexité de réalisation et d'autre part, des problèmes de diaphonie.The invention aims at a suppression for each jet of the set of individual electrodes for charging the drops and the control circuit associated with this set of individual electrodes. It also aims to eliminate the crosstalk between different jets of the same print head. It has been seen that according to the prior art, the ink jet under pressure is divided into a succession of drops. The sorting of the drops to be printed on the substrate is made downstream of the point where the droplets, said breaking point, are formed by an arrangement of electrodes. It is this arrangement of individual electrodes at each of the nozzles which creates, on the one hand, a complexity of realization and, on the other hand, problems of crosstalk.

Le tri des gouttes à défléchir vers le substrat ou vers une gouttière de récupération est effectué en fonction de données en provenance d'un ensemble de données en général numériques définissant le motif à imprimer.The sorting of the drops to be deflected towards the substrate or towards a recovery gutter is performed according to data coming from a set of generally digital data defining the pattern to be printed.

Selon une première caractéristique importante de l'invention, les données numériques définissant le motif à imprimer ne sont plus utilisées en aval de la formation des gouttes, mais en amont. Ce sont ces données qui vont déterminer ou non la formation des gouttes. Ainsi, selon l'invention, le jet d'encre d'une buse ne sera plus divisé en une succession de gouttes mais en une succession de tronçons et de gouttes.According to a first important characteristic of the invention, the digital data defining the print pattern is no longer used downstream of drop formation, but upstream. It is these data that will determine or not the formation of drops. Thus, according to the invention, the ink jet of a nozzle will no longer be divided into a succession of drops but into a succession of sections and drops.

Des électrodes placées en aval du point de brisure du jet vont défléchir les tronçons et non pas les gouttes comme dans le brevet . Fulwyler vers des gouttières de récupération. Par contre, ces mêmes électrodes de déflexion seront sans influence sur la trajectoire des gouttes qui elles vont aller frapper le substrat. Ainsi, l'impression est-elle relative à une imprimante à jet d'encre comprenant :

  • une buse d'impression émettant un jet d'encre sous pression selon un axe de la buse,
  • un moyen de formation de gouttes d'encre agissant sur le jet émis par la buse par brisure du jet à une distance axiale prédéterminée de la buse,
  • des moyens de récupération de l'encre qui n'est pas reçue par un substrat d'impression,
  • une mémoire de stockage de données numériques, représentant ensemble un motif à imprimer,
  • des moyens de contrôle de l'impression ayant une entrée et une sortie, ladite entrée étant couplée à la mémoire de stockage pour recevoir de façon séquentielle une partie au moins des données numériques représentant ensemble un motif à imprimer,

caractérisée en ce que la sortie des moyens de contrôle de l'impression est couplée au moyen de formation de gouttes, ce moyen brisant le jet au reçu de chacun des signaux de commande, transformant ainsi le jet en une succession de gouttes et de tronçons et en ce qu'elle comporte des moyens défléchissant les tronçons vers les moyens de récupérations de l'encre.Electrodes placed downstream of the breaking point of the jet will deflect the sections and not the drops as in the patent. Fulwyler to recovery gutters. On the other hand, these same deflection electrodes will have no influence on the trajectory of the drops that will strike the substrate. Thus, is the printing related to an inkjet printer comprising:
  • a printing nozzle emitting a jet of ink under pressure along an axis of the nozzle,
  • means for forming ink drops acting on the jet emitted by the nozzle by breaking the jet at a predetermined axial distance from the nozzle,
  • means for recovering the ink which is not received by a printing substrate,
  • a digital data storage memory, together representing a pattern to be printed,
  • print control means having an input and an output, said input being coupled to the storage memory for sequentially receiving at least a portion of the digital data together representing a pattern to be printed,

characterized in that the output of the print control means is coupled to the droplet forming means, which means breaking the jet at the receipt of each of the control signals, thus transforming the jet into a succession of drops and sections and in that it comprises means deflecting the sections towards the means for recovering the ink.

Lorsque la tête d'impression est multibuse, ce qui est le cas général pour les imprimantes à jet continu binaire, elle ne comporte non pas une buse mais une buse et des buses additionnelles. Dans ce cas, chaque buse est équipée d'un moyen de formation de gouttes d'encre. Chaque moyen de formation de gouttes d'encre est couplé aux moyens de contrôle de l'impression.When the print head is multi-shot, which is the general case for binary continuous jet printers, it does not include a nozzle but a nozzle and additional nozzles. In this case, each nozzle is equipped with a means for forming ink drops. Each ink drop forming means is coupled to the print control means.

Selon une caractéristique de l'invention particulièrement avantageuse dans ce cas, les moyens de tri des gouttes et tronçons pour chacun des jets sont communs à l'ensemble des jets. Les tronçons sont défléchis vers les moyens de récupération de l'encre et les gouttes atteignent le substrat. On obtient ainsi une simplification considérable de l'ensemble des moyens de tri des gouttes puisqu'on supprime l'ensemble des électrodes individuelles de charge des gouttes de chaque jet de l'art antérieur.According to a characteristic of the invention that is particularly advantageous in this case, the means for sorting the drops and sections for each of the jets are common to all the jets. The sections are deflected towards the ink recovery means and the drops reach the substrate. This provides a considerable simplification of all the sorting means of the drops since it eliminates all the individual electrodes charge drops of each jet of the prior art.

Chaque buse du dispositif multibuse dispose de son propre moyen de formation de gouttes dans le jet. Ce moyen est contrôlé par des signaux formés à partir de données numériques relatives à la ligne imprimée par la buse.Each nozzle of the multi-nozzle device has its own means of forming drops in the jet. This means is controlled by signals formed from digital data relating to the line printed by the nozzle.

De préférence, on protégera la zone où se forment les gouttes de l'influence du champ électrique provoqué par des moyens de déflexion des tronçons. De préférence, les moyens de protection des gouttes contre l'influence du champ de déflexion des tronçons seront formés par une ou plusieurs électrodes ou paires d'électrodes placées en amont des électrodes de déflexion et agencés pour protéger la zone de formation des gouttes de l'influence du champ créé par les électrodes de déflexion des tronçons.Preferably, the zone where the drops are formed will be protected from the influence of the electric field caused by deflection means of the sections. Preferably, the means for protecting the drops against the influence of the deflection field of the sections will be formed by one or more electrodes or pairs of electrodes placed upstream of the deflection electrodes and arranged to protect the drop formation zone from the influence of the field created by the deflection electrodes of the sections.

On formera ainsi les gouttes dans une zone de potentiel électrique nul ou négligeable.The drops will thus be formed in an area of zero or negligible electrical potential.

Il en résulte que les gouttes ne seront pas chargées électriquement et ne subiront pas de déflexion lorsqu'elles passeront dans le champ électrique de déflexion situé en aval. Par contre une partie au moins de chaque tronçon sera au moment de la formation de gouttes et donc au moment du détachement de la partie amont du tronçon du reste du jet dans une zone de potentiel non nul. Il en résulte que le tronçon sera électriquement chargé et subira l'influence du champ de déflexion.As a result, the drops will not be electrically charged and will not be deflected when they pass into the downstream deflection electric field. On the other hand, at least part of each section will be at the moment of drop formation and therefore at the moment of detachment of the upstream part of the section from the remainder of the jet in a zone of non-zero potential. As a result, the section will be electrically charged and will be influenced by the deflection field.

De préférence, les moyens de formation des gouttes seront constitués par des éléments chauffants utilisés comme actuateurs. Ces actuateurs provoquent le chauffage local de l'encre à la demande et pendant une durée prédéterminée pour modifier au moins une caractéristique physique de l'encre propre à provoquer une perturbation dans le jet. Cette perturbation se traduit à une distance prédéterminée par la formation de gouttes issues du jet. A titre d'exemple de ce moyen de provoquer des gouttes on peut citer des éléments thermo-résistifs comme décrit par exemple dans le brevet DRAKE, en nombre égal à celui des buses de la tête d'impression et placés à proximité des buses. Il pourra s'agir aussi de moyens électro-hydrodynamiques comme l'un de ceux décrits dans le brevet CROWLEY. Il pourra s'agir également comme dans l'art antérieur d'un cristal piézo-électrique placé dans une cavité alimentant la buse. On notera que dans ce cas, le signal n'étant pas périodique, la forme impulsionnelle du signal devra être adaptée de façon à ne pas engendrer de vibrations résiduelles gênant le fonctionnement de la tête d'impression.Preferably, the drop forming means will be constituted by heating elements used as actuators. These actuators cause local heating of the ink on demand and for a predetermined time to modify at least one physical characteristic of the ink capable of causing a disturbance in the jet. This disturbance is translated at a predetermined distance by the formation of drops from the jet. As an example of this means of producing drops, mention may be made of heat-resistive elements as described, for example, in the DRAKE patent, in number equal to that of the nozzles of the print head and placed near the nozzles. It may also be electro-hydrodynamic means as one of those described in the CROWLEY patent. It may also be as in the prior art a piezoelectric crystal placed in a cavity feeding the nozzle. Note that in this case, the signal is not periodic, the pulse shape of the signal must be adapted so as not to generate residual vibrations hindering the operation of the print head.

De façon alternative, le front de montée et le front de descente d'une impulsion visant à déformer le cristal piézo-électrique devront avoir une forme telle qu'il ne subsiste pas de vibrations résiduelles gênantes du cristal après le passage de l'impulsion. Ces vibrations résiduelles pourraient conduire à des formations de gouttes non désirées.Alternatively, the rising edge and the falling edge of a pulse to deform the piezoelectric crystal must be shaped such that no annoying residual vibrations of the crystal remain after the passage of the pulse. These residual vibrations could lead to unwanted drop formations.

On notera que le procédé de jet d'encre qui va être décrit ci-dessous en liaison avec une imprimante peut s'appliquer à toute projection de liquide conducteur.It should be noted that the inkjet process which will be described below in connection with a printer can be applied to any projection of conductive liquid.

Ainsi, l'invention est elle relative à un procédé de projection d'un liquide conducteur maintenu à un potentiel électrique de référence dans lequel :

  • on met en pression le liquide conducteur pour former au moins un jet dans une direction axiale ;
  • on brise chacun des jets en des points de brisure de jet, les points de brisure définissant ensemble une zone de formation des gouttes, cette zone étant fixe dans l'espace et dans le temps et axée sur une droite DB perpendiculaire aux jets ;
  • on défléchit une partie du liquide conducteur de chaque jet dans une direction différente de la direction axiale ;

procédé caractérisé en ce que le séquencement des créations de gouttes dans chaque jet est commandé par des signaux de formation de gouttes formées en fonction d'informations extérieures brisant ainsi le jet en une succession de gouttes continuant leur trajectoire dans la direction axiale et de tronçons déviés dans une direction différente de la direction axiale.Thus, the invention relates to a method for projecting a conductive liquid maintained at an electrical reference potential in which:
  • the conductive liquid is pressurized to form at least one jet in an axial direction;
  • each of the jets is broken at jet breaking points, the break points defining together a drop formation zone, this zone being fixed in space and in time and centered on a straight line DB perpendicular to the jets;
  • deflecting a portion of the conductive liquid of each jet in a direction different from the axial direction;

method characterized in that the sequencing of the creations of drops in each jet is controlled by drop formation signals formed as a function of external information thus breaking the jet into a succession of drops continuing their trajectory in the axial direction and deviated sections in a direction different from the axial direction.

Pour une pluralité de jets dont les axes sont parallèles et contenus dans un même plan P, on défléchit la trajectoire des tronçons de liquide conducteur sans défléchir la trajectoire des gouttes, en créant des régions contenant le plan P des directions axiales, dont les caractéristiques électriques, en l'absence de jet, sont permanentes dans le temps, ces régions comprenant .

  • une région protégée dont la différence de potentiel électrique par rapport au potentiel de référence est nul ou négligeable, cette région englobant la zone de création des gouttes ;
  • au moins une région dont la différence de potentiel par rapport au potentiel de référence n'est pas négligeable, au moins l'une desdites régions étant immédiatement en aval de ladite région protégée ;
  • au moins une région qui, en présence du jet, est le siège d'un champ électrique propre à défléchir les tronçons.
For a plurality of jets whose axes are parallel and contained in the same plane P, deflects the trajectory of the conductive liquid sections without deflecting the trajectory of the drops, creating regions containing the plane P of the axial directions, whose electrical characteristics , in the absence of jet, are permanent in time, these regions including.
  • a protected region whose electrical potential difference with respect to the reference potential is zero or negligible, this region encompassing the zone of creation of the drops;
  • at least one region whose potential difference with respect to the reference potential is not negligible, at least one of said regions being immediately downstream of said protected region;
  • at least one region which, in the presence of the jet, is the seat of a clean electric field to deflect the sections.

Appliqué à l'impression il s'agit d'un procédé d'impression sur un substrat d'un motif défini par un ensemble de données numériques, au moyen d'une encre électriquement conductrice, maintenu à un potentiel électrique de référence, dans lequel :

  • on émet au moins un jet continu d'encre conductrice,
  • on brise chacun des jets pour former des gouttes d'encre en des lieux de création de gouttes prédéterminés, les lieux définissant ensemble une zone axée sur une droite (DB) sécante sensiblement perpendiculairement à chacun des jets,
  • on défléchit une partie de l'encre de chaque jet de façon à ce que cette partie d'encre défléchie n'atteigne pas le substrat,

procédé caractérisé en ce que le séquencement des créations de gouttes dans chaque jet est commandé par des signaux de formation de gouttes formés de façon séquentielle en fonction de données numériques définissant le motif à imprimer brisant ainsi le jet en une succession de gouttes d'encre non défléchies ou peu défléchies dirigées vers le substrat et de tronçons d'encre.Applied to printing it is a method of printing on a substrate of a pattern defined by a digital data set, by means of an electrically conductive ink, maintained at an electrical reference potential, wherein:
  • at least one continuous stream of conductive ink is emitted,
  • each of the jets is broken to form drops of ink at predetermined drop creation sites, the locations together defining a zone centered on a line (DB) secant substantially perpendicular to each of the jets,
  • a part of the ink of each jet is deflected so that this portion of deflected ink does not reach the substrate,

method characterized in that the sequencing of the creations of drops in each jet is controlled by drop formation signals formed sequentially according to digital data defining the pattern to be printed thereby breaking the jet into a succession of non-ink drops. deflected or slightly deflected towards the substrate and ink sections.

De préférence, la déflexion des parties de l'encre non dirigée vers le substrat est obtenue au moyen d'un champ électrique créé en aval des points de formation des gouttes, et de préférence, la zone contenant l'ensemble des points de création des gouttes du jet est protégé de l'influence du champ électrique de déflexion.Preferably, the deflection of the parts of the non-directed ink towards the substrate is obtained by means of an electric field created downstream of the drop formation points, and preferably, the zone containing all the points of creation of the drops. drops of the jet is protected from the influence of the electric deflection field.

Les caractéristiques électriques - champ et potentiel - des régions de l'espace traversées par l'ensemble des jets sont variable spatialement, constante dans le temps et identique pour chacun des jets.The electrical characteristics - field and potential - of the regions of space traversed by all the jets are spatially variable, constant in time and identical for each jet.

En générale, les jets sont issus de buses dont les axes sont alignés. Les axes des buses sont donc contenus dans un plan P. Les régions de l'espace traversées par les jets sont donc des régions centrées sur ce plan P et délimitées par des plans N perpendiculaires à ce plan P ou par des surfaces sécantes au plan P au niveau d'une droite commune au plan P et à un plan N.In general, the jets are from nozzles whose axes are aligned. The axes of the nozzles are therefore contained in a plane P. The regions of the space traversed by the jets are therefore regions centered on this plane P and delimited by N planes perpendicular to this plane P or by intersecting surfaces at the plane P at a line common to the plane P and to a plane N.

En l'absence des jets, qui étant au potentiel de référence apportent une perturbation, les caractéristiques électriques de régions de l'espace comprenant chacune l'ensemble des jets peuvent être définies comme suit :

  • au moins une région de cet espace par rapport au potentiel de référence est à un potentiel négligeable ou nul et au moins une région de potentiel non négligeable est située en aval de cette région de potentiel négligeable ou nul.
In the absence of the jets, which are at the reference potential bring a disturbance, the electrical characteristics of regions of the space each comprising all the jets may be defined as follows:
  • at least one region of this space relative to the reference potential is at a negligible or zero potential and at least one region of significant potential is located downstream of this region of negligible potential or zero.

La zone de création des gouttes est contenue dans une région de potentiel nul ou négligeable, en sorte que les gouttes sont électriquement neutres ou peu chargées. Une partie au moins du tronçon situé en aval de chaque goutte, se trouve à l'instant de détachement de ladite goutte dans une région de potentiel non négligeable en sorte que ce tronçon est chargé électriquement au moment de son détachement du jet.The zone of creation of the drops is contained in a region of zero or negligible potential, so that the drops are electrically neutral or lightly charged. At least a portion of the section located downstream of each drop, is at the moment of detachment of said drop in a region of significant potential so that this section is electrically charged at the moment of its detachment of the jet.

Enfin, une région de l'espace située en aval de la zone de formation des gouttes est le siège d'un champ électrique permettant la déflexion significative des tronçons d'encre chargés électriquement.Finally, a region of the space downstream of the drop formation zone is the seat of a field electrical device allowing the significant deflection of electrically charged ink sections.

Il n'est pas exclu que les régions de charge des tronçons et de déviation des tronçons soient confondues ou partiellement confondues, mais de préférence, la région de déflexion ou une partie de cette région sera en aval de la région de charge des tronçons.It is not excluded that the load regions of the sections and the deflection of the sections are merged or partially merged, but preferably, the deflection region or part of this region will be downstream of the load region of the sections.

Brève description des dessinsBrief description of the drawings

L'invention sera maintenant décrite en regard des dessins annexés dans lesquels les figures 1 à 4 représentent des schémas faisant apparaître des exemples d'agencement d'électrodes.

  • La figure 1 représente un exemple comportant une électrode ou une paire centrale d'électrodes de protection et des électrodes de déflexion.
  • La figure 2 représente un exemple comportant une paire amont et une paire aval d'électrodes de protection et des électrodes de déflexion.
  • La figure 3 représente un exemple comportant trois paires d'électrodes de protection et des électrodes de déflexion.
  • La figure 4 représente un exemple comportant outre les électrodes de protection et de déflexion, des électrodes de charges situées axialement entre les électrodes de protection et de déflexion.
  • La figure 5 représente un exemple de circuit de commande des moyens de formation des gouttes.
The invention will now be described with reference to the accompanying drawings, in which Figures 1 to 4 show diagrams showing examples of electrode arrangements.
  • FIG. 1 shows an example comprising an electrode or a central pair of protective electrodes and deflection electrodes.
  • FIG. 2 represents an example comprising an upstream pair and a downstream pair of protection electrodes and deflection electrodes.
  • Figure 3 shows an example with three pairs of shielding electrodes and deflection electrodes.
  • FIG. 4 represents an example comprising, in addition to the protection and deflection electrodes, charge electrodes located axially between the protection and deflection electrodes.
  • FIG. 5 represents an exemplary control circuit for the means for forming the drops.

Description de modes de réalisation de l'inventionDescription of Embodiments of the Invention

La figure 1 montre une vue schématique d'un premier arrangement d'électrodes d'une imprimante 100 selon un mode de réalisation d'une imprimante à jet stimulé continu multibuse basé sur la méthode selon l'invention. L'imprimante 100 comprend un réservoir pressurisé 1 équipé d'une pluralité de buses calibrées 2 d'où s'échappent des jets d'encre 3. A chaque buse, est associé un dispositif de stimulation 4 placé dans le réservoir 1 et commandé par un circuit électronique externe 5. Le dispositif de stimulation 4 associé à une buse permet la création à la demande d'une goutte.Fig. 1 shows a schematic view of a first electrode arrangement of a printer 100 according to an embodiment of a multibuse continuous paced jet printer based on the method according to the invention. The printer 100 comprises a pressurized tank 1 equipped with a plurality of calibrated nozzles 2 from which ink jets 3 escape. At each nozzle is associated a stimulation device 4 placed in the tank 1 and controlled by an external electronic circuit 5. The stimulation device 4 associated with a nozzle allows the creation on demand of a drop.

Chaque goutte est formée sur l'axe du jet auquel elle appartient, à une distance prédéterminée de la buse. Cette distance est la même pour tous les jets en sorte que les gouttes se forment dans une zone de forme longiligne centrée sur une droite DB sécante sensiblement perpendiculairement à chacun des jets 3.Each drop is formed on the axis of the jet to which it belongs, at a predetermined distance from the nozzle. This distance is the same for all the jets so that the drops are formed in a zone of elongate shape centered on a line DB secant substantially perpendicular to each of the jets 3.

Le dispositif de stimulation 4 est préférentiellement constitué par des moyens provoquant un chauffage local de l'encre pendant une durée prédéterminé par exemple des éléments thermorésistifs, en nombre égal à celui des buses de la tête d'impression, placés à proximité des buses 2 et pilotés individuellement par un circuit externe 5. Le brevet US-A-4,638,328 (DRAKE et al.) décrit un exemple de tel dispositif à base d'éléments thermorésistifs, son fonctionnement ainsi qu'un mode de réalisation utilisant les techniques d'usinage chimique issues de l'industrie micro-électronique.The stimulation device 4 is preferably constituted by means causing a local heating of the ink for a predetermined duration, for example thermoresistive elements, in number equal to that of the nozzles of the print head, placed near the nozzles 2 and individually controlled by an external circuit 5. US Pat. No. 4,638,328 (DRAKE et al.) describes an example of such a device based on thermoresistive elements, its operation as well as an embodiment using chemical machining techniques. from the microelectronics industry.

Le dispositif de stimulation 4 pourrait également être constitué par un élément piézo-électrique.The stimulation device 4 could also be constituted by a piezoelectric element.

Une variante connue représentée en pointillés sur les figures 1 à 4 consiste à remplacer la stimulation thermique ou piézo-électrique à l'intérieur du réservoir 1 par une stimulation électro-hydrodynamique réalisée par une ou plusieurs électrodes 4' placées à proximité des jets immédiatement en aval de la buse.A known variant shown in dashed lines in FIGS. 1 to 4 consists of replacing the thermal or piezoelectric stimulation inside the tank 1 by an electro-hydrodynamic stimulation performed by one or more electrodes 4 'placed near the jets immediately downstream of the nozzle.

Un agencement d'électrodes commun à l'ensemble des jets et dont le fonctionnement sera examiné plus loin est placé au voisinage de la droite DB reliant les points nominaux de création des gouttes de chacun des jets.An arrangement of electrodes common to all the jets and whose operation will be examined later is placed in the vicinity of the line DB connecting the nominal points of creation of the drops of each of the jets.

Les portions d'encre chargée référencées 10 sur les figures 1 à 4 et qui ont la forme de tronçons sont dirigées vers une gouttière de récupération 11 qui les recycle vers un circuit d'encre général 12. Les champs électriques créés par l'agencement d'électrodes n'affectent pas notablement la trajectoire des gouttes référencées 13 qui peuvent frapper un support d'impression 14.The charged ink portions referenced 10 in FIGS. 1 to 4 and which are in the form of sections are directed towards a recovery gutter 11 which recycles them to a general ink circuit 12. The electric fields created by the arrangement of FIG. electrodes do not significantly affect the trajectory of the drops referenced 13 which can strike a printing medium 14.

Dans ce premier mode de réalisation, l'agencement d'électrodes est constitué de deux groupes d'électrodes un premier groupe 6 d'électrodes et un second groupe 26. Dans le mode de réalisation représenté figure 1, les électrodes du premier groupe 6 sont constituées par une paire 25 centrale d'électrodes 15, 16. Les électrodes 15, 16 du premier groupe 6 sont situées de part et d'autre de l'ensemble des jets 3. Axialement, la paire d'électrodes 25 est placée de façon à englober la position DB de formation des gouttes 13. De préférence, la position DB de formation des gouttes sera située au voisinage immédiat des bords avals de cette paire d'électrodes. Les électrodes 15, 16 formant la paire centrale d'électrodes 25 sont reliées à une même source de potentiel, de préférence égale au potentiel auquel est portée l'encre du réservoir 1 en général relié à la masse, de façon à créer un champ électrique nul dans l'espace inter-électrode. De façon alternative, la paire 25 d'électrodes 15, 16 pourrait être remplacée par une électrode unique en forme de U ayant deux branches 15, 16. Les branches 15, 16 du U sont équivalentes aux électrodes 15, 16 de la paire 25. Ce mode alternatif a été représenté en traits mixtes, figures 1. Il sera vu plus loin que le groupe 6 d'électrode peut comprendre des paires additionnelles d'électrodes. Chaque fois que les électrodes d'une paire sont reliées à une même source de potentiel, la paire pourra de façon alternative être remplacée par une électrode en forme de U, chacune des deux branches du U remplaçant une électrode de la paire. L'électrode 26 du second groupe 7 est située en aval du premier groupe d'électrodes 6. L'électrode 26 est portée à une tension électrique constante élevée, et crée un champ électrique dans l'espace environnant.In this first embodiment, the electrode arrangement consists of two groups of electrodes, a first group 6 of electrodes and a second group 26. In the embodiment shown in FIG. 1, the electrodes of the first group 6 are consisting of a central pair of electrodes 15, 16. The electrodes 15, 16 of the first group 6 are located on either side of the set of jets 3. Axially, the pair of electrodes 25 is placed so that to include the drop forming position DB 13. Preferably, the drop formation position DB will be located in the immediate vicinity of the downstream edges of the this pair of electrodes. The electrodes 15, 16 forming the central pair of electrodes 25 are connected to one and the same source of potential, preferably equal to the potential at which the ink of the tank 1 is generally connected to ground, so as to create an electric field zero in the inter-electrode space. Alternatively, the pair of electrodes 15, 16 could be replaced by a single U-shaped electrode having two legs 15, 16. The branches 15, 16 of the U are equivalent to the electrodes 15, 16 of the pair 25. This alternative mode has been shown in phantom, FIG. 1. It will be seen later that the electrode group 6 may comprise additional pairs of electrodes. Whenever the electrodes of a pair are connected to the same potential source, the pair may alternatively be replaced by a U-shaped electrode, each of the two branches of the U replacing an electrode of the pair. The electrode 26 of the second group 7 is located downstream of the first electrode group 6. The electrode 26 is brought to a high constant electrical voltage, and creates an electric field in the surrounding space.

Dans cette configuration, le champ électrique régnant au voisinage immédiat de la droite DB est nul ou très faible car cet espace est protégé par le premier groupe d'électrodes 6. L'intensité du champ électrique existant au voisinage de la partie aval des tronçons d'encre au niveau de l'électrode 26 est suffisamment élevée pour exercer une influence électrostatique sur ces derniers. Après rupture du jet, la trajectoire des tronçons qui sont électriquement chargés par l'électrode 26 sera modifiée par le champ électrique, alors que la trajectoire des gouttes ne subira qu'une très faible influence.In this configuration, the electric field prevailing in the immediate vicinity of the line DB is zero or very weak because this space is protected by the first group of electrodes 6. The intensity of the electric field existing in the vicinity of the downstream part of the segments d The ink at the electrode 26 is high enough to exert an electrostatic influence on them. After breaking the jet, the trajectory of the sections that are electrically charged by the electrode 26 will be modified by the electric field, while the trajectory of the drops will undergo a very small influence.

Ainsi, les tronçons sont dirigés vers le récupérateur d'encre 11 alors que les gouttes 13 sont dirigées vers le substrat 14.Thus, the sections are directed towards the ink recuperator 11 while the drops 13 are directed towards the substrate 14.

Un deuxième mode de réalisation schématisé sur la figure 2 diffère du premier mode de réalisation représenté sur la figure 1 en ce que le premier groupe d'électrodes 6 constituant les électrodes de protection est scindé en deux paires d'électrodes 21, 22, une paire amont 21 et une paire aval 22. La paire 21 est constituée de deux électrodes 17, 18. La paire d'électrodes 22 est constituée de deux électrodes 19, 20. Les électrodes 17 et 18 de la paire 21 sont situées de part et d'autre de la zone des jets d'encre 3. Les électrodes 19, 20 de la paire 22 sont situées également de part et d'autre de la zone des jets 3.A second embodiment schematized in FIG. 2 differs from the first embodiment shown in FIG. 1 in that the first group of electrodes 6 constituting the protective electrodes is split into two pairs of electrodes 21, 22, a pair upstream 21 and a downstream pair 22. The pair 21 consists of two electrodes 17, 18. The pair of electrodes 22 consists of two electrodes 19, 20. The electrodes 17 and 18 of the pair 21 are located on both sides. 3. The electrodes 19, 20 of the pair 22 are also located on either side of the zone of the jets 3.

Les électrodes de la paire 21 sont soumises à une même tension électrique constante V1 et celles de la paire 22 sont soumises à une même tension constante de signe opposé V2 préférentiellement égale à -V1.The electrodes of the pair 21 are subjected to the same constant electrical voltage V1 and those of the pair 22 are subjected to the same constant voltage of opposite sign V2 preferably equal to -V1.

La principale particularité d'un groupe d'électrodes tel que 21 et 22 est l'existence d'une région approximativement plane π de l'espace se trouvant axialement entre les bords amont et les bords aval, respectivement des paires d'électrodes 21, 22 dans laquelle le potentiel est nul ou négligeable. Le plan π est sensiblement perpendiculaire à l'ensemble des jets 3. Si la droite DB qui est le lieu de formation de gouttes des différents jets 3 est incluse dans cette région de l'espace comportant le plan π alors les gouttes créées emporteront une charge électrique négligeable. Les tronçons 10 se détachant du jet seront soumis à l'influence du champ électrique formé par l'électrode de déflexion 26 et subiront une déflexion lors de leur passage au voisinage de l'électrode 26.The main feature of a group of electrodes such as 21 and 22 is the existence of an approximately plane region π of the space lying axially between the upstream edges and the downstream edges, respectively of the pairs of electrodes 21, 22 in which the potential is zero or negligible. The plane π is substantially perpendicular to the set of jets 3. If the line DB which is the place of formation of drops of the different jets 3 is included in this region of the space comprising the plane π, the created drops will carry a negligible electric charge. The sections 10 coming off the jet will be subjected to the influence of the electric field formed by the deflection electrode 26 and will undergo a deflection during their passage in the vicinity of the electrode 26.

Dans un troisième mode de réalisation représenté sur la figure 3, l'agencement d'électrodes de protection de la zone où se forment les gouttes comprend trois paires d'électrodes 21, 22, 25. La troisième paire d'électrodes 25 comprenant les électrodes 15 et 16 est située à une hauteur axiale comprise entre les hauteurs des paires 21 et 22.In a third embodiment shown in FIG. 3, the protective electrode arrangement of the zone where the drops are formed comprises three pairs of electrodes 21, 22, 25. The third pair of electrodes 25 comprising the electrodes 15 and 16 is located at an axial height between the heights of the pairs 21 and 22.

Comme décrit en relation avec la figure 2, les électrodes 17, 18 de la paire d'électrodes 21 sont reliées à une tension constante V1. Les électrodes de la paire 22 sont soumises à une tension constante V2 de signe opposé à celui de la tension V1 de valeur préférentiellement égale à -V1. Les électrodes de la paire 25 sont reliées à une source de tension constante préférentiellement à la masse.As described with reference to FIG. 2, the electrodes 17, 18 of the pair of electrodes 21 are connected to a constant voltage V1. The electrodes of the pair 22 are subjected to a constant voltage V2 of opposite sign to that of the voltage V1 of value preferably equal to -V1. The electrodes of the pair 25 are connected to a source of constant voltage preferentially to ground.

Par rapport au mode de réalisation représenté sur la figure 2, cette configuration permet d'augmenter le volume de la région de potentiel nul ou négligeable par rapport au potentiel de référence dans laquelle il est possible de former des gouttes. Par conséquent, la position de la droite DB, bénéficie de tolérances plus larges, ce qui permet de relâcher les contraintes de précision au niveau des moyens de formation des gouttes.With respect to the embodiment shown in FIG. 2, this configuration makes it possible to increase the volume of the zero or negligible potential region with respect to the reference potential in which it is possible to form drops. Consequently, the position of the line DB has wider tolerances, which makes it possible to relax the precision constraints at the level of the drop formation means.

Les agencements d'électrodes décrits en relation avec les figures 1 à 3, ne comportent que deux groupes d'électrodes. Un premier groupe 6, comprenant une paire, deux paires ou trois paires d'électrodes et un second groupe 7.The electrode arrangements described in connection with FIGS. 1 to 3 comprise only two groups of electrodes. A first group 6, comprising a pair, two pairs or three pairs of electrodes and a second group 7.

Les électrodes du groupe 6 ont pour fonction d'imposer une zone de champ électrique nul ou négligeable dans la zone où se trouve la droite DB située à une distance prédéterminée des buses 2. De la sorte, les gouttes ne sont pas chargées électriquement et ne subissent pratiquement aucune influence de la part des électrodes du second groupe 7.The electrodes of group 6 have the function of imposing a zone of no or negligible electric field in the zone where the line DB is located at a predetermined distance from the nozzles 2. In this way, the drops are not electrically charged and undergo virtually no influence from the electrodes of the second group 7.

Dans la représentation des électrodes de déflexion constituant le groupe 7, des figures 1 à 3 et aussi de la figure 4 qui sera décrite ci-après, ces électrodes ont été représentées sous forme d'une seule électrode 26. C'est parce que ces électrodes et leur mode d'action sont en eux-mêmes connus. Ce groupe 7 d'électrodes de déflexion peut comme représenté sur les figures 1 à 4 être constitué d'une simple plaque 26. Il peut aussi être constitué d'une paire de plaques parallèles entre elles, chaque plaque de la paire étant portée à un potentiel différent. Il peut aussi être constitué d'éléments conducteurs courbes. D'une façon générale, la déflexion peut être opérée avec tous moyens connu d'agencement d'électrodes pour dévier des gouttes d'encre.In the representation of the deflection electrodes constituting the group 7, FIGS. 1 to 3 and also of FIG. 4 which will be described below, these electrodes have been represented in the form of a single electrode 26. This is because these electrodes and their mode of action are in themselves known. This group 7 of deflection electrodes may, as represented in FIGS. 1 to 4, consist of a simple plate 26. It may also consist of a pair of plates parallel to each other, each plate of the pair being brought to a different potential. It may also consist of curved conductive elements. In general, the deflection can be operated with any known means of arranging electrodes to deflect drops of ink.

De même pour le groupe 6, tout agencement connu d'électrodes créant une zone longiligne de potentiels électriques nuls ou faibles, pourra être utilisé. Cette zone logera alors la droite de formation des gouttes.Likewise for group 6, any known arrangement of electrodes creating an elongated zone of zero or low electrical potentials may be used. This zone will then house the line of formation of the drops.

Dans un autre exemple de réalisation qui sera maintenant décrit en relation avec la figure 4, les groupes d'électrodes 6 de protection et 7 de déflexion sont complétés par un troisième groupe 30 d'électrodes. Les électrodes de ce groupe 30 sont comme celles des groupes 6 et 7 communes à l'ensemble des jets 3. Dans l'exemple de réalisation représenté figure 4, ce groupe 30 est composé d'une paire 27 d'électrodes 28, 29. Les électrodes du groupe 30 sont situées en aval des électrodes de protection du groupe 6 et en amont des électrodes de déflexion du groupe 7. Dans l'exemple représenté figure 4, les électrodes du groupe 6 ont été représentées sous forme d'une paire d'électrodes 25 placées et connectées dans la configuration décrite en relation avec la figure 1. Il est clair que ces électrodes du groupe 6 pourraient avoir d'autres configurations, en particulier celles décrites en relation avec les figures 2 ou 3. Il a été vu dans les exemples de réalisation décrit en relation avec les figures 2 et 3 que les électrodes du groupe 6 comportent une paire amont 21 et une paire aval 22. La paire aval est de préférence portée à un potentiel différent de celui du réservoir dont sont issus les jets. Du fait de cette différence de potentiel la paire aval soumet les troncs à une charge. Dans ce cas, les électrodes du groupe 30 constituent un groupe d'électrodes de charge complémentaire.In another embodiment which will now be described in relation to FIG. 4, the electrode groups 6 for protection and 7 for deflection are completed by a third electrode group 30. The electrodes of this group 30 are like those of groups 6 and 7 common to all jets 3. In the embodiment shown in FIG. 4, this group 30 is composed of a pair 27 of electrodes 28, 29. The electrodes of the group 30 are situated downstream of the protection electrodes of the group 6 and upstream of the deflection electrodes of the group 7. In the example shown in FIG. 4, the electrodes of the group 6 have been represented in the form of a pair of electrodes 25 placed and connected in the configuration described in connection with Figure 1. It is clear that these group 6 electrodes could have other configurations, particularly those described in relation to Figures 2 or 3. It was seen in the exemplary embodiments described with reference to FIGS. 2 and 3, the electrodes of the group 6 comprise an upstream pair 21 and a downstream pair 22. The downstream pair is preferably brought to a potential different from that of the reservoir from which the jets. Because of this potential difference, the downstream pair subjects the trunks to a load. In this case, the electrodes of the group 30 constitute a complementary group of charge electrodes.

Dans les cas représentés figures 2 et 3, les électrodes de la paire 21 amont et les électrodes de la paire 22 aval sont à des potentiels tels qu'il existe une zone de potentiel nul entre le bord amont des électrodes amont et le bord aval des électrodes aval. C'est là, la fonction principale de ces électrodes. Cette fonction sera en général obtenue en portant ces paires d'électrodes à des potentiels opposés. Bien que ces paires d'électrodes 21,22 apportent une charge aux tronçons 10, les électrodes du groupe 30 se distingueront des électrodes de la paire aval 22, par le fait que leur potentiel d'utilisation est tel que ces électrodes du groupe 30 apportent une charge supplémentaire à celle apportée par les électrodes de la paire aval 22 du groupe 6. Lorsque l'agencement d'électrode comporte un groupe (30) d'électrodes de charge en plus du groupe 7 d'électrodes de déflexion, il convient de réaliser les électrodes du groupe 6 pour protéger la zone DB de formation des gouttes 13 de l'influence conjuguée des deux champs électriques, de charge et de déflexion.In the cases shown in FIGS. 2 and 3, the electrodes of the upstream pair 21 and the electrodes of the downstream pair 22 are at potentials such that there is a potential zone of zero between the upstream edge of the upstream electrodes and the downstream edge of the downstream electrodes. This is the main function of these electrodes. This function will generally be achieved by bringing these pairs of electrodes to opposite potentials. Although these pairs of electrodes 21,22 bring a load to the sections 10, the electrodes of the group 30 will be distinguished from the electrodes of the downstream pair 22, in that their potential of use is such that these electrodes of the group 30 bring a charge added to that provided by the electrodes of the downstream pair 22 of the group 6. When the electrode arrangement comprises a group (30) of charge electrodes in addition to the group 7 of deflection electrodes, it is necessary to achieve the group 6 electrodes to protect the drop formation zone DB of the combined influence of the two electric fields, charging and deflection.

Dans la configuration représenté figure 4, les électrodes 15, 16 sont portées à un potentiel constant, préférentiellement celui auquel est portée l'encre, usuellement la masse électrique de l'imprimante. Les électrodes 28, 29 du troisième groupe sont soumises à une tension constante V.In the configuration shown in FIG. 4, the electrodes 15, 16 are brought to a constant potential, preferably that to which the ink is carried, usually the electrical mass of the printer. The electrodes 28, 29 of the third group are subjected to a constant voltage V.

Le montage représenté figure 4 permet un contrôle amélioré des trajectoires des tronçons 10 d'encre inutilisée pour l'impression, en séparant les fonctions charge des tronçons et déflexion des tronçons et en les attribuant aux électrodes des troisième 30 et second 7 groupes d'électrodes, respectivement.The assembly shown in FIG. 4 allows an improved control of the trajectories of the sections 10 of unused ink for printing, by separating the load functions of the sections and the deflection of the sections and attributing them to the electrodes of the third 30 and second 7 groups of electrodes. , respectively.

Il est précisé que chaque électrode, 15, 16 ; 17, 18 ; 19, 20 ; 26, 28, 29 des premier 6, deuxième 7 et éventuellement troisième 30 groupes est dite commune à l'ensemble des jets parce qu'il s'agit en principe d'une pièce conductrice unique agissant sur l'ensemble des jets. Il pourra également s'agir pour une ou plusieurs électrodes de différentes pièces conductrices reliée à une même source de potentiel.It is specified that each electrode, 15, 16; 17, 18; 19, 20; 26, 28, 29 of the first 6, second 7 and possibly third groups is said to be common to all the jets because it is in principle a single conductive piece acting on all the jets. It may also be for one or more electrodes of different conductive parts connected to the same source of potential.

Dans le cas le plus général où la tête d'impression comporte plusieurs buses, toutes les électrodes 15-20 ; 26, 28, 29 ont, en projection sur un plan parallèle au plan P contenant les axes des buses, une forme sensiblement rectangulaire, un grand côté du rectangle s'étendant dans une direction perpendiculaire aux axes des buses.In the most general case where the print head comprises several nozzles, all the electrodes 15-20; 26, 28, 29 have, in projection on a plane parallel to the plane P containing the axes of the nozzles, a substantially rectangular shape, a large side of the rectangle extending in a direction perpendicular to the axes of the nozzles.

On peut constater que dans toutes les configurations décrites ci-dessus, la fonction principale des électrodes du groupe 6 de protection de la zone DB de formation des gouttes est de créer une zone de potentiel nul ou négligeable englobant la droite DB.It can be seen that in all the configurations described above, the main function of the electrodes of the group 6 for protecting the drop formation zone DB is to create a zone of zero or negligible potential encompassing the line DB.

Trois exemples de réalisation ont été décrits, l'un avec une paire d'électrodes portées au potentiel de l'encre (figure 1), l'autre (figure 2) avec deux paires, l'une 22 en aval de l'autre 21, ces paires d'électrodes étant à des potentiels de signes opposés. En sorte qu'il existe entre ces deux paires une zone de potentiel négligeable et enfin un troisième exemple (figure 3), dans lequel on trouve à la fois une paire centrale au potentiel de l'encre, associée à une paire amont et une paire aval comme dans le cas de la figure 2.Three embodiments have been described, one with a pair of electrodes carried at the potential of the ink (Figure 1), the other (Figure 2) with two pairs, one 22 downstream of the other 21, these pairs of electrodes being at potentials of opposite signs. So that there exists between these two pairs a zone of negligible potential and finally a third example (Figure 3), in which there is both a central pair at the potential of the ink, associated with an upstream pair and a pair downstream as in the case of Figure 2.

Le champ électrique régnant entre les deux électrodes d'une paire d'électrodes de protection est par rapport au potentiel de référence, nul ou négligeable en l'absence du jet, puisque comme on l'a vu, les électrodes d'une paire sont au même potentiel.The electric field prevailing between the two electrodes of a pair of protective electrodes is relative to the reference potential, zero or negligible in the absence of the jet, since, as we have seen, the electrodes of a pair are at the same potential.

La présence du jet ne perturbe pas cet état de fait, dans le cas où ce potentiel est celui de l'encre, ce qui est le cas pour la paire centrale 25 lorsqu'elle est présente. Par contre, lorsque les électrodes d'une paire comme par exemple les électrodes des paires amont ou aval sont à un potentiel différent de celui de l'encre, la présence du jet d'encre perturbe le champ entre le jet et chacune des électrodes de la paire. La résultante des vecteurs champs sur la ligne axiale des jets est nulle en raison de la symétrie géométrique locale et donc il n'y a pas déviation du jet sans l'action des forces électriques. Par contre, il peut y avoir création de charge sur le jet comme expliqué plus haut.The presence of the jet does not disturb this state of affairs, in the case where this potential is that of the ink, which is the case for the central pair when it is present. On the other hand, when the electrodes of a pair such as, for example, the electrodes of the upstream or downstream pairs are at a potential different from that of the ink, the presence of the inkjet disturbs the field between the jet and each of the electrodes of the pair. the pair. The resultant of the field vectors on the axial line of the jets is zero because of the local geometrical symmetry and thus there is no deviation of the jet without the action of the electric forces. On the other hand, there may be charge creation on the jet as explained above.

Les électrodes du groupe 7 de déviation des tronçons se distinguent des électrodes de protection ou de charge par le fait que ces électrodes créent, en l'absence de jet, un champ électrique dans une direction sensiblement perpendiculaire aux axes des jets et au plan P contenant les jets.The electrodes of the group 7 for deflection of the sections are distinguished from the protection or charge electrodes in that these electrodes create, in the absence of a jet, an electric field in a direction substantially perpendicular to the axes of the jets and the plane P containing the jets.

En présence de jet, le champ est perturbé par le jet. Le champ s'oriente en permanence dans une direction perpendiculaire au jet.In the presence of jet, the field is disturbed by the jet. The field is constantly oriented in a direction perpendicular to the jet.

Un exemple de réalisation d'un circuit électronique 5 utilisable sur une imprimante 100 selon l'invention sera maintenant décrit en relation avec la figure 5.An exemplary embodiment of an electronic circuit 5 that can be used on a printer 100 according to the invention will now be described in connection with FIG.

De façon connue, ce circuit est connectée à une mémoire 31 de stockage de données numériques. De façon connue également, cette mémoire (bit-map) 31 alimente de façon séquentielle une succession de n mémoires de ligne 32 référencées 32-1 à 32-n.In known manner, this circuit is connected to a digital data storage memory 31. In a manner also known, this memory (bit-map) 31 sequentially supplies a succession of n line memories 32 referenced 32-1 to 32-n.

Les transferts de données entre mémoire (bit-map) 31 et mémoires de ligne 32 sont commandés de façon en elle-même connue par un séquenceur. Le séquenceur reçoit des signaux en provenance d'une horloge d'impression 34 et d'un codeur de la position du substrat.Data transfers between memory (bit-map) 31 and line memories 32 are controlled in a manner known per se by a sequencer. The sequencer receives signals from a print clock 34 and an encoder of the position of the substrate.

De façon connue également, les données numériques en sortie des mémoires 32-1 à 32-n alimentent chacune une succession 36 de convertisseurs numérique/analogique (CNA) référencés de 36-1 à 36-n.In a manner also known, the digital data output of memories 32-1 to 32-n each supply a succession 36 of digital-to-analog converters (DACs) referenced 36-1 to 36-n.

Conformément à l'invention, chacun de ces convertisseurs 36-1 à 36-n alimente un circuit 37-1 à 37-n respectivement.According to the invention, each of these converters 36-1 to 36-n supplies a circuit 37-1 to 37-n respectively.

Chaque circuit 37-1 à 37-n est un circuit d'amplification et de mise en forme qui délivre ou ne délivre pas, en fonction du signal reçu en entrée un signal visant à actionner le moyen 4 ou 4' de formation de gouttes.Each circuit 37-1 to 37-n is an amplification and shaping circuit which delivers or does not deliver, as a function of the signal received at the input, a signal intended to actuate the means 4 or 4 'for forming drops.

Le circuit 5 est formé des éléments 32 à 37. Il comporte au moins autant de sorties, une sortie du circuit 5 étant constituée par une sortie de circuit d'amplification 37-1 à 37-n, que de buses 2. Il pourra en comporter d'avantage, en particulier s'il s'agit d'un circuit intégré adaptable sur des imprimantes de différents modèles, chaque modèle ayant son propre nombre de buses 2.The circuit 5 is formed of the elements 32 to 37. It comprises at least as many outputs, an output of the circuit 5 consisting of an amplification circuit output 37-1 to 37-n, as nozzles 2. advantage, especially if it is an integrated circuit adaptable on printers of different models, each model having its own number of nozzles 2.

Claims (12)

  1. A printer (100) with ink jet (3) comprising a printing nozzle (2) emitting a jet of ink (3) under pressure along an axis of the nozzle,
    - means (4, 4') for formation of drops of ink acting on the jet (3) emitted by the nozzle (2) by breaking the jet at a predetermined axial distance from the nozzle,
    - means (11, 12) for recuperating the ink which is not received by a printing substrate (14),
    - a memory (31) for storing digital data representing together the pattern to be printed,
    - means (5, 32-37) for control of the printing having an input and an output, said input being coupled to the storage memory (31) to receive in sequential fashion at least part of the digital data representing together a pattern to be printed,

    characterised in that the output of the means (5, 32-37) of control of the printing is coupled with the means (4, 4') for formation of drops, these means (4, 4') breaking the jet upon reception of each of the control signals, thus transforming the jet into a succession of drops (13) and sections (10) and in that it (100) comprises a group (7) of deflection electrodes (26) deviating the sections (10) towards the means (11) of recuperation of the ink.
  2. A printer (100) according to Claim 1, characterised in that it comprises:
    - additional printing nozzles (2),
    - additional means (4, 4') for formation of ink drops, each additional means (4, 4') acting on the jet (3) of an additional nozzle (2) by breaking the jet (3) at a point situated at a predetermined axial distance from said additional nozzle, all the points breaking the jet forming a breaking zone (DB), and in that
    - the means (5, 32-37) for control of the printing comprise additional outputs, each additional output being coupled to one of the additional means (4, 4') for drop formation and,

    finally in that
    - the group (7) of electrodes (26) deviating the sections towards the means recuperation (11, 12) of the ink is common to all the jets (3).
  3. A printer (100) according to either of the claims 1 and 2, characterized in that it also comprises a group (6) of electrodes (21, 22, 25) for electrical protection of the point or the zone of drop formation, this group (6) being located below the nozzle or nozzles (2) and above the group (7) for deflection of the sections (10), the electrodes (15-20) of this group (6) being common to all the jets (3).
  4. A printer (100) according to claim 3, characterized in that the group (6) of electrodes for electrical protection comprises a U-shaped central electrode (25) with two branches (15, 16) or a central pair (25) of electrodes (15, 16) comprising first (15) and second (16) electrodes, these branches (15, 16) or electrodes (15, 16) being coupled to a same primary source of potential and in that the first (15) and second (16) branches or electrodes of the electrode or of the central protection pair (25) are arranged on either side of the axis or all the axes of the nozzles.
  5. A printer (100) according to claim 3, characterized in that the group (6) of electrodes for electrical protection of the point or zone of drop formation comprises an electrode (21) with two branches or a pair above (21) and an electrode below with two branches or a pair below (22), the electrode or the pair above (21) comprising first (17) and second (18) branches or electrodes, the electrode or the pair below (22) comprising first (19) and second (20) branches or electrodes, the branches or electrodes (17, 19; 18, 20) above (21) and below (22) being arranged on either side of the axis or all the axes of the nozzle (2), an upper edge of the electrode or of the pair above (21) being situated at an axial distance from one of the nozzles (2) less than said predetermined distance, one lower edge of the electrode or of the pair below (22) being situated at an axial distance from this nozzle (2) greater than said predetermined distance.
  6. A printer (100) according to claim 5, characterized in that the group (6) of electrodes for electrical protection also comprises an electrode (25) with two branches (15, 16) or a central pair (25) of electrodes (15, 16), the branches or electrodes (15, 16) of this central pair (25) being located on either side of the axis or the ensemble of axes of the nozzles (2), the electrode or the pair above (21), being above the central electrode or pair and the electrode or pair below (22) being below the central pair (25).
  7. A printer (100) according to any one of the claims 3 to 6, characterized in that it also comprises a group (30) of electrodes with charges common to all the jets (3) placed below the group (6) of protection electrodes and above the group (7) of deflection electrodes.
  8. A printer (100) according to any one of the claims 1 to 7, characterized in that the means (4, 4') of ink drop formation are constituted by thermoresistive or piezoelectric elements (4) placed above the nozzles (2).
  9. A printer (100) according to any one of the claims 1 to 7, characterized in that the means of ink drop formation are constituted by electrodes forming an electro-hydrodynamic device placed near the ink jets (3) below the nozzles (2).
  10. A process for projecting a conducting liquid maintained at a reference electric potential in which:
    - the conducting liquid is put under pressure to form at least one jet (3) in an axial direction;
    - each of the jets (3) is broken at jet break points, the break points defining together a zone for drop formation, this zone being fixed in space and time and centred on the straight line DB perpendicular to the jets;
    - part of the conducting liquid of each jet is deflected in a direction different from the axial direction;

    the process characterized in that the sequencing of the drop creation in each jet (3) is controlled by signals for drop formation formed in function of external information, thus breaking the jet into a succession of drops continuing their trajectory in the axial direction and sections deviated in a direction different from the axial direction.
  11. A process according to claim 10, characterized in that for a plurality of jets whose axes are parallel and contained in the same plane P,
    - the trajectory of the sections (10) of conducting liquid is deflected without deflecting the trajectory of the drops (13) in creating regions containing the plane P of axial directions whose electrical characteristics, in the absence of a jet, are permanent in time, these these regions comprising:
    - a protected region whose difference of electric potential compared to the reference potential is zero or negligible, this region including the creation zone of the drops;
    - at least one region whose difference in potential compared to the reference potential is not negligible, at least one of said regions being immediately below said protection region;
    - at least one region which, in the presence of the jet, is the seat of an electric field able to deflect the sections.
  12. A process for projection according to either of claims 10 and 11, characterized in that the conducting liquid is an ink, the external information controlling the sequencing of the creation of drops is constituted of digital data representing together a pattern to be printed on a substrate (14), and in that the ink sections do not reach the substrate.
EP20000402817 1999-10-15 2000-10-12 Ink jet printer and printing process Expired - Lifetime EP1092542B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9912881 1999-10-15
FR9912881A FR2799688B1 (en) 1999-10-15 1999-10-15 PRINTER AND INK JET PRINTING METHOD

Publications (2)

Publication Number Publication Date
EP1092542A1 EP1092542A1 (en) 2001-04-18
EP1092542B1 true EP1092542B1 (en) 2006-01-04

Family

ID=9550977

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20000402817 Expired - Lifetime EP1092542B1 (en) 1999-10-15 2000-10-12 Ink jet printer and printing process

Country Status (5)

Country Link
EP (1) EP1092542B1 (en)
CN (1) CN1170677C (en)
DE (1) DE60025320T2 (en)
ES (1) ES2254117T3 (en)
FR (1) FR2799688B1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2851495B1 (en) * 2003-02-25 2006-06-30 Imaje Sa INKJET PRINTER
FR2890596B1 (en) 2005-09-13 2007-10-26 Imaje Sa Sa CHARGING DEVICE AND DROP DEFLECTION FOR INKJET PRINTING
FR2892052B1 (en) * 2005-10-13 2011-08-19 Imaje Sa DIFFERENTIAL DEFINITION PRINTING OF INK JET
FR2906755B1 (en) 2006-10-05 2009-01-02 Imaje Sa Sa DEFINITION PRINTING OF AN INK JET BY A VARIABLE FIELD.
GB2447919B (en) * 2007-03-27 2012-04-04 Linx Printing Tech Ink jet printing
CN105112965B (en) * 2015-09-16 2017-08-08 上海圣匡机电科技有限公司 Metalwork rapid shaping printhead, printing equipment and Method of printing
CN105398218A (en) * 2015-12-14 2016-03-16 上海美创力罗特维尔电子机械科技有限公司 Jet printing system of ink-jet printer
CN105584218A (en) * 2016-02-01 2016-05-18 厦门英杰华机电科技有限公司 CIJ code spraying system with double parallel nozzles
CN106739506B (en) * 2016-12-12 2018-07-24 华中科技大学 A kind of piezoelectric type for electrofluid spray printing integrates nozzle
GB201706562D0 (en) * 2017-04-25 2017-06-07 Videojet Technologies Inc Charge electrode

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3596275A (en) 1964-03-25 1971-07-27 Richard G Sweet Fluid droplet recorder
US4230558A (en) 1978-10-02 1980-10-28 Coulter Electronics, Inc. Single drop separator
US4220958A (en) 1978-12-21 1980-09-02 Xerox Corporation Ink jet electrohydrodynamic exciter
JPS57201668A (en) * 1981-06-08 1982-12-10 Fuji Xerox Co Ltd Charge control type ink jet printer
JPH0829590B2 (en) * 1985-03-04 1996-03-27 株式会社日立製作所 Inkjet recording device
US4638328A (en) 1986-05-01 1987-01-20 Xerox Corporation Printhead for an ink jet printer
FR2777211B1 (en) * 1998-04-10 2000-06-16 Toxot Science Et Applic PROCESS FOR PROJECTING AN ELECTRICALLY CONDUCTIVE LIQUID AND CONTINUOUS INKJET PRINTING DEVICE USING THIS PROCESS

Also Published As

Publication number Publication date
DE60025320T2 (en) 2006-08-31
FR2799688A1 (en) 2001-04-20
CN1170677C (en) 2004-10-13
FR2799688B1 (en) 2001-11-30
ES2254117T3 (en) 2006-06-16
EP1092542A1 (en) 2001-04-18
DE60025320D1 (en) 2006-03-30
CN1293111A (en) 2001-05-02

Similar Documents

Publication Publication Date Title
EP1628832B1 (en) Inkjet printer
EP0521764B1 (en) Liquid projecting process and high resolution printing device in a continuous ink jet printer to perform this process
EP0949077B1 (en) Method for ejecting an electrically conductive liquid and continuous ink jet printing device using this method
EP1469997B1 (en) Converging axis dual-nozzled print head and printer fitted therewith
KR960015882B1 (en) Sidewall actuator for a high density ink jet print head
EP1234670B1 (en) Printhead and printer with improved deflection electrodes
US8641175B2 (en) Variable drop volume continuous liquid jet printing
FR2892052A1 (en) Inkjet printing method in which an inket's hydraulic trajectory is controlled by the application of an electric field upstream of a point at which a continuous jet is broken up into jet sections
US20040095441A1 (en) Method and apparatus for printing ink droplets that strike print media substantially perpendicularly
EP1092542B1 (en) Ink jet printer and printing process
JPH11216867A (en) Continuous ink jet printer with binary electrostatic deflection
US8740359B2 (en) Continuous inkjet printing system and method for producing selective deflection of droplets formed from two different break off lengths
EP1238804A3 (en) Liquid jetting apparatus and method for driving the same
IL132331A0 (en) Operation of droplet deposition apparatus
EP0365454B1 (en) High-resolution printing method using satellite ink drops in a continuous ink jet printer
EP0782095A3 (en) Ink jet printer and drive method thereof
EP2714405B1 (en) System and method for liquid ejection
EP0913259A3 (en) Apparatus for generating small volume, high velocity ink droplets in an inkjet printer
EP1092544A3 (en) Ink jet printing apparatus, ink jet printing method and ink jet print head
JP3600246B2 (en) Ink jet printing method and ink jet print head for performing such a method
FR2975632A1 (en) BINARY CONTINUOUS INKJET PRINTER
JP2001506938A (en) Control of continuous inkjet printhead
JPH10138513A (en) Ink jet recording apparatus
US8684483B2 (en) Drop formation with reduced stimulation crosstalk
JP2001146015A (en) Ink-jet printer and production method of ink-jet head

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010917

AKX Designation fees paid

Free format text: DE ES GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060104

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60025320

Country of ref document: DE

Date of ref document: 20060330

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060321

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2254117

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061005

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101022

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101025

Year of fee payment: 11

Ref country code: GB

Payment date: 20101021

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20111021

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121012

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130501

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60025320

Country of ref document: DE

Effective date: 20130501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121012

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121013