EP1045929B1 - Verfahren und vorrichtung zur herstellung von faserstoffen aus thermoplastischen kunststoffen - Google Patents

Verfahren und vorrichtung zur herstellung von faserstoffen aus thermoplastischen kunststoffen Download PDF

Info

Publication number
EP1045929B1
EP1045929B1 EP99904698A EP99904698A EP1045929B1 EP 1045929 B1 EP1045929 B1 EP 1045929B1 EP 99904698 A EP99904698 A EP 99904698A EP 99904698 A EP99904698 A EP 99904698A EP 1045929 B1 EP1045929 B1 EP 1045929B1
Authority
EP
European Patent Office
Prior art keywords
reactor
edge
melt film
rotating
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99904698A
Other languages
English (en)
French (fr)
Other versions
EP1045929A1 (de
Inventor
Gennady Georgievich Volokitin
Vladimir Vasiljevich Bordunov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microfaser-Repro-GmbH
Original Assignee
Microfaser-Repro-GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microfaser-Repro-GmbH filed Critical Microfaser-Repro-GmbH
Priority to SI9930019T priority Critical patent/SI1045929T1/xx
Publication of EP1045929A1 publication Critical patent/EP1045929A1/de
Application granted granted Critical
Publication of EP1045929B1 publication Critical patent/EP1045929B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/18Formation of filaments, threads, or the like by means of rotating spinnerets

Definitions

  • the invention relates to a method for producing Fibers made of thermoplastics, in which the thermoplastic melted and melted into one rotating reactor passed to form a melt film and the fibers are formed on an open reactor edge and be stretched.
  • the invention further relates to a device for manufacturing of fiber materials from thermoplastic materials with a melting device for the thermoplastic and a heated rotating reactor for training a melt film from the molten plastic, the the rotating reactor over an edge of an open side leaving with formation of fibers.
  • Nonwovens formed from such fibrous materials are in particular for the absorption of petroleum, petroleum products and Heavy metal ions from water are used.
  • thermoplastic fibers The usual way of producing thermoplastic fibers takes place by melting the starting thermoplastic and extruding the molten plastic through thin ones Nozzles for the formation of thin radiation-like fibers. By Stretching can make the extruded fibers even thinner be, at the same time with a special air flow be cooled. These processes are very homogeneous Output thermoplastics ahead, so that in particular the use of recycled plastics that are inhomogeneous are and may contain foreign objects. These would namely clogging the nozzles or channels.
  • the extrusion process also provide that with relative low temperatures just a little above the melting temperature can lie, work is carried out to the cooling measures as simple as possible after extrusion to design. Processing of secondary raw materials and Thermoplastic waste, on the other hand, requires processing higher temperatures that are close to the temperatures of thermoplastic decomposition lie.
  • thermoplastic melt feed a rotary pot on the inner wall of the Melt film formed and the spinning from the melt film by forming fibers on the edge of the pot one passed at high speed over the melt film Gas is made.
  • the reactor is in shape of a pot placed vertically and exists from a cavity and a work surface. Heated up Gas becomes under pressure inside the reactor and cavity fed to the surface of the melt film.
  • slot nozzles through which the Melt film is divided into individual jets and put together flows with the heated gas. This will make the educated Rays made thinner and stretched.
  • the invention is based, avoiding the task the disadvantages of the known device thin synthetic To be able to produce fibers with higher yield High quality raw materials, but also from waste thermoplastics can be formed.
  • a method is used to achieve this object of the type mentioned above, characterized in that the rotating reactor is heated so that the melt film a temperature close to the degradation temperature of the thermoplastic Has plastics and that the reactor with a Web speed of at least 10 m / s on its edge is rotated.
  • the reactor itself is thus heated, so that the melted thermoplastic has very constant temperature conditions subject to near the degradation temperature for the Thermoplastics can be chosen without the risk that by locally exceeding this temperature Quality of the plastic affected by decomposition processes becomes.
  • the fiber formation occurs in the invention Process due to the high rotation speed or the high web speed at the edge of the Reactor, whereby the cohesive force of the melt film is exceeded is, so that the division into the fibers takes place. On the use of channels prone to blockage or Nozzles can therefore be completely dispensed with.
  • the fibers stretched on the edge of the rotary pot become expediently stabilized under the influence of an air stream, which is preferably conducted across the grain.
  • the thermal required for the method according to the invention Uniformity in the reactor is in one preferred embodiment supported by that Interior of the reactor through one with the edge one narrow circumferential gap forming lid largely is completed.
  • the lid is preferably positioned stationary. It can be useful if the lid to form a circumferential Gaps with varying width asymmetrical to the Axis of rotation of the reactor is positioned.
  • the annular gap can preferably have a width of 15 to 20 mm have, with an asymmetrical to the axis of rotation of the rotating reactor arranged lid with the annular gap a varying width can be formed.
  • the inner wall of the reactor with axially extending ribs Subdivision of the melt film is provided, these are preferred triangular with its greatest height at the bottom of the Reactor and with its lowest height at the outlet end of the Melted film trained.
  • the Ribs preferably over the cylindrical part of the reactor and end at the beginning of the conical part.
  • the reactor is placed on the outside by a heater Brought operating temperature, which is preferably a resistance heater, an induction heater or a magnetic induction heater can be.
  • a heater Brought operating temperature which is preferably a resistance heater, an induction heater or a magnetic induction heater can be.
  • the device shown in Figure 1 shows as assemblies an extruder 1, a device for fiber formation 2, a Unit for the precipitation of the finished fiber 3 and a removal device 4th
  • the device for fiber formation 2 consists of a hollow rotating reactor 5, the outside with a reactor heater 6 is heated.
  • the open side of the reactor 5 is carried out by a conically expanded cone 7.
  • immovable cover 9 installed by a rod 10 is attached to a feed head 11 of the extruder 1.
  • the Immovable lid 9 is eccentric to the contour of itself arranged conically expanding cone 7 and is in its axial position adjustable by means of a threaded connection, see above that the gap 8 is adjustable through the lid.
  • the reactor 5 is mounted on the end of a hollow shaft 16, which is provided with ball bearings 17.
  • the ball bearings 17 are located in a refrigerated case 18.
  • a drive pulley 19 of a belt drive 20 attached, via a driven pulley 21 on the shaft an asynchronous motor 22 is running.
  • Inside the hollow wave 16 runs a feed attachment 23 of a feed head 11 which a central opening 24 for the supply of the melting material from the extruder 1 into the reactor 5.
  • the whole device for fiber formation 2 is on a separate Frame 32 assembled and set up in a protective chamber 33.
  • a protective chamber 33 In the upper part of the protective chamber 33 is one with a Low pressure fan 35 connected air line 34 attached.
  • the low pressure fan 35 is on the outlet side via an air line 36 with a gas cleaning device 37 connected.
  • the extruder 1 has a reservoir 39 for a prepared one Thermoplastic on.
  • a drive motor 40 drives over a belt drive 41 and a reduction gear 42 a Screw 43 of the extruder 1.
  • the screw 43 is located itself in a housing with a jacket-shaped heater 38.
  • the device is started up by switching on the reactor heater 6 and the heater 38 and the Low pressure fan 35 and the gas cleaning device 37.
  • the extruder 1 is water for cooling the housing 18th fed.
  • the container 39 of the extruder 1 is prepared with the Thermoplastic filled.
  • the drive motor 22 for the rotation of the reactor 5 turned on and the arrangement in idle 15 to 20 minutes to stabilize operating temperatures let run.
  • the drive motor 40 is set of the extruder 1 in motion and switches the drives of the unit for fiber filling 3 and the take-off device 4.
  • the drive motor 40 brings the worm 43 over the belt drive 41 and the reduction gear 42 in rotary motion.
  • the Screw 43 detects the thermoplastic from the container 39 and conveys it to the feed head 11. By passing the fabric through the heated part of the extruder 11 is conveyed, it mixes itself and melts to the viscosity, that of the thermoplastic viscosity in the range of the degradation temperature. Then the molten material passes through the opening 24 of the attachment 23 and the feed head 11 in the reactor 5 where the same temperatures are maintained.
  • the melt is distributed over the circumference of the Inner wall and is thanks to the centrifugal force between the Ribs 13 transported to the open end of the reactor 5.
  • the thermoplastic layer touching the inner surface and the ribs 13 is pushed forward, it also rises, which creates a thin melt film.
  • the ribs 13 are installed, the moves Do not melt in a spiral, what with a smooth surface would happen, but along the reactor generator.
  • the inner surface is coated with the Melt film much more uniform, what the quality of the Melt increased significantly.
  • the melt film from the cylindrical part of the reactor 5 in the region of the conical extended cone 7 also decreases its thickness.
  • the production of the fiber in the invention Way is only possible if the linear velocity at the Cone edge of the reactor 5 is higher than 10 m / s.
  • the one from the Openings 15 of the ring air line 14 flowing air flow 44 affects the fiber in the process of stretching.
  • the fibrous material arrives on the conveyor belt 45 Unit for fiber precipitation 3. Using the conveyor belt 45 the pulp is transported to the take-off device 4, where the fibers are formed into finished goods.
  • the gases generated during the production of the pulp are from the protective chamber 33 through the air channels 34 and 36 using the low pressure fan 35 in the gas cleaning device 37 headed.
  • the device described enables the production of Fiber from thermoplastics with excellent absorption properties, including industrial and household waste can be used as a raw material.
  • the reactor heater 6, which is constructed on the outside of the reactor 5, can be used as a resistance heater 25, induction heater 26 or be designed as a magnetic induction heater.
  • these heaters 25, 26 and the reactor 5 thermally insulated with the outer jacket 27.
  • the reactor heater 6 is a resistance heater 25 running, which is in a heat-resistant ceramic solid housing 28 is located. Between the electric heater and the protective jacket 27 is heat-insulating Fabric 29, e.g. Kaolin cotton, housed.
  • the variant according to FIG. 4 shows a reactor heater 6 as coolable induction heater 26, which in the protective jacket 27 is housed.
  • a reactor heater 6 as coolable induction heater 26, which in the protective jacket 27 is housed.
  • the induction heater 26 also contains Plates 30 made of a ferromagnetic alloy (e.g. Ni-Co), the along the reactor wall on the outer surface of the reactor 5 attached and connected to insulated conductors.
  • a ferromagnetic alloy e.g. Ni-Co
  • the starting raw material is in the extruder 1 premelted and stirred so that a homogeneous melt arises whose temperature is close to the degradation temperature of the polymer is.
  • the melt is rotating Reactor 5 fed, the wall temperature to a Temperature near the degradation temperature are preheated.
  • the melt becomes uniform spread on the inner surface. It imagines Paraboloid of the rotation and it moves under the action of centrifugal forces towards the open side. Because the open side of the reactor 5 is in the form of a diverging Has cone 7, the thickness decreases of the film proportional to the enlargement of the page surface. In this way it is possible to use thinner fibers to get.
  • the use of the method according to the invention enables it, high-quality fibers not only with raw materials of one kind, but also with a combination of raw materials. This is because the raw material is first in the extruder 1 is melted down and stirred and then a certain Time remains within the reactor 5. This will make the the entire amount is evenly heated and the viscosity averaged, so that the production of the fiber from a homogenized Melt occurs.
  • thermal stabilizers in dendritic Form that has free ions allows for quick Suppression of the processes during the degradation of polymers bringing together free radicals of the torn Polymer chains. This results in an increase in the amount of fibers compared to the heavy metals, and the output of pollutants in the environment is reduced.
  • Fibers produced have a thickness of 5 up to 20 ⁇ m and are wound in braids, their cross-sectional size is in the range from 25 to 100 ⁇ m.
  • the braid contains spherical and drop-like particles, some of which grown together with the fibers, partly isolated from the fibers are.
  • fiber thickenings There are also numerous fiber thickenings, their length between three and ten times the cross-sectional size of these thickenings. The cross sections these thickenings and the spherical and drop-like particles are in the range of 30 to 200 ⁇ m.
  • Fibers have a cross section from 1 to 10 ⁇ m.
  • Coarse fibers with a thickness of 20 are present up to 50 ⁇ m with the thickenings up to 100 ⁇ m.
  • Most of the fibers have a cross section from 1 to 10 ⁇ m. A small number of fibers are up to 20 in size ⁇ m. The thicker fibers have thickenings with the maximum Cross section from 50 to 150 ⁇ m. The existing spherical and drop-like particles have a size of 100 to 400 microns.
  • the thickness and the porosity of the fiber samples in bulk without compression was determined picnometrically according to the standards GOST 18955. I-73 with the use of tetrachloride carbon as picnometric liquid and the balance WLR-200, which gave the measuring accuracy of ⁇ 0.05 mg to have. The information obtained is shown in Table 1. The density and porosity data for loose storage at 20 ° C.
  • Pattern number 1 2 3rd 4th The density, kg / m 3 911 903 907 909 Bulk density, kg / m 3 102-117 167-174 112-127 123-136 Porosity,% 87.1-88.8 80.7-81.5 86.0-87.6 85.0-86.0 Behavior of the pore space to the polymer space 6.75-7.93 4.75-7.93 6.14-7.06 5.67-6.0
  • the absorbency of the fiber pattern for the process of Collecting petroleum and petroleum products from water level with repeated use of the substance in the absorption-regeneration cycle was determined using the following methodology.
  • the fiber pattern in the initial state was left with the water level contact the 3 to 6 mm thick layer of petroleum contained.
  • West Siberian petroleum was used for the tests and as a petroleum product the industrial oil I-L-A-10 (GOST 20799-88) and 3-02 brand diesel (GOST-305-82).
  • the degree of saturation of the material with the liquids was checked according to the weighing method. Then the sample saturated with petroleum (petroleum product) was thrown at the separation factor 100 ⁇ 3. The content of the petroleum (petroleum products) remaining on the fibers was determined according to GOST 6370-83. Fugate was dewatered with copper sulfate according to GOST 26378.0-84 and then the oil content (content of the petroleum product) was determined according to GOST 6370-83. On the basis of the information obtained, the behavior of the mass of the petroleum soaked up in the given process was calculated before and after spinning to the mass of the sample to be checked. The results are shown in Tables 2 and 3.
  • Table 4 shows the absorbent capacity of the pulp specified.
  • the fibrous material is on the test device from the polypropylene waste of the brand (21030 - 21060) -60 with the thermal stabilizer titanium dioxide with the Particle size 3 - 5 microns with the content 1% mass produced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Artificial Filaments (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von Faserstoffen aus thermoplastischen Kunststoffen, bei denen der thermoplastische Kunststoff geschmolzen und in einen rotierenden Reaktor zur Bildung eines Schmelzefilms geleitet wird und an einer offenen Reaktorkante die Fasern gebildet und gestreckt werden.
Die Erfindung betrifft ferner eine Vorrichtung zur Herstellung von Faserstoffen aus thermoplastischen Kunststoffen mit einer Schmelzeinrichtung für den thermoplastischen Kunststoff und einem beheizten rotierenden Reaktor zur Ausbildung eines Schmelzefilms aus dem geschmolzenen Kunststoff, der den rotierenden Reaktor über eine Kante einer offenen Seite unter Ausbildung von Fasern verläßt.
Aus derartigen Faserstoffen gebildete Vliese werden insbesondere für die Absorption von Erdöl, Erdölprodukten und Schwermetallionen aus Wasser verwendet. Für besonders effektive Vliese ist es erwünscht, daß die Fasern eine möglichst geringe Stärke aufweisen.
Die übliche Art der Herstellung von thermoplastischen Fasern erfolgt durch das Einschmelzen des Ausgangs-Thermoplasten und Extrudieren des geschmolzenen Kunststoffes durch dünne Düsen zur Ausbildung dünner strahlenartiger Fasern. Durch Strecken können die extrudierten Fasern noch dünner gemacht werden, wobei sie gleichzeitig mit einem Spezialluftstrom abgekühlt werden. Diese Verfahren setzen einen sehr homogenen Ausgangs-Thermoplasten voraus, so daß sich insbesondere die Verwendung von Recycling-Kunststoffen, die inhomogen sind und Fremdkörper enthalten können, verbietet. Diese würden nämlich die Düsen bzw. Kanäle verstopfen. Die Extrusionsverfahren sehen darüber hinaus vor, daß mit relativ niedrigen Temperaturen, die nur wenig oberhalb der Schmelztemperatur liegen können, gearbeitet wird, um die Abkühlungsmaßnahmen nach dem Extrudieren so einfach wie möglich zu gestalten. Die Verarbeitung von Sekundärrohstoffen und Thermoplastabfällen erfordert hingegen eine Verarbeitung bei höheren Temperaturen, die nahe den Temperaturen der Thermoplastzersetzung liegen.
Insbesondere aus SU 699 041 ist es bekannt, die Thermoplastschmelze einem Drehtopf zuzuführen, auf dessen Innenwand der Schmelzefilm gebildet und das Spinnstrecken aus dem Schmelzefilm durch die Bildung von Fasern auf der Topfkante mit einem mit hoher Geschwindigkeit über den Schmelzefilm geleiteten Gas vorgenommen wird. Der Reaktor ist dabei in Form eines senkrecht aufgestellten Topfes ausgeführt und besteht aus einem Hohlraum und einer Arbeitsoberfläche. Aufgeheiztes Gas wird unter Druck dem inneren Hohlraum des Reaktors und der Oberfläche des Schmelzefilms zugeführt. Auf der Kante des Topfes sind Schlitzdüsen vorhanden, durch die der Schmelzefilm in einzelne Strahlen aufgeteilt wird und zusammen mit dem aufgeheizten Gas strömt. Dadurch werden die gebildeten Strahlen dünner gemacht und verstreckt.
Der Erfindung liegt die Aufgabe zugrunde, unter Vermeidung der Nachteile der bekannten Vorrichtung dünne synthetische Fasern erzeugen zu können, die mit höherer Ausbeute aus Hochqualitätsrohstoffen, aber auch aus Abfall-Thermoplasten gebildet werden können.
Zur Lösung dieser Aufgabe ist erfindungsgemäß ein Verfahren der eingangs erwähnten Art dadurch gekennzeichnet, daß der rotierende Reaktor so aufgeheizt wird, daß der Schmelzefilm eine Temperatur nahe der Abbautemperatur der thermoplastischen Kunststoffe hat und daß der Reaktor mit einer Bahngeschwindigkeit von wenigstens 10 m/s an seiner Kante gedreht wird.
Erfindungsgemäß wird somit der Reaktor selbst geheizt, so daß der geschmolzene Thermoplast sehr konstante Temperaturbedingungen unterliegt, die nahe der Abbautemperatur für den Thermoplasten gewählt werden kann, ohne daß das Risiko besteht, daß durch lokale Überschreitung dieser Temperatur die Qualität des Kunststoffes durch Zersetzungsvorgänge beeinträchtigt wird. Die Faserbildung entsteht bei dem erfindungsgemäßen Verfahren aufgrund der hohen Rotationsgeschwindigkeit bzw. der hohen Bahngeschwindigkeit an der Kante des Reaktors, wodurch die Kohäsionskraft des Schmelzefilms überschritten wird, so daß die Aufteilung in die Fasern erfolgt. Auf die Verwendung von verstopfungsanfälligen Kanälen oder Düsen kann daher vollständig verzichtet werden.
Die an der Kante des Drehtopfes verstreckten Fasern werden zweckmäßigerweise unter Einwirkung eines Luftstroms stabilisiert, der vorzugsweise quer zum Faserlauf geleitet wird.
Die für das erfindungsgemäße Verfahren erforderliche thermische Gleichmäßigkeit in dem Reaktor wird in einer bevorzugten Ausführungsform dadurch unterstützt, daß der Innenraum des Reaktors durch einen mit der Kante einen schmalen umlaufenden Spalt ausbildenden Deckel weitgehend abgeschlossen wird. Die bei der Aufheizung des Schmelzefilms austretenden Gase treten durch den Spalt aus und beeinflussen die erfindungsgemäße Faserbildung positiv. Der Deckel ist dabei vorzugsweise ortsfest positioniert. Dabei kann es zweckmäßig sein, wenn der Deckel zur Ausbildung eines umlaufenden Spaltes mit variierender Breite asymmetrisch zur Drehachse des Reaktors positioniert wird.
Bei einer glatten Innenfläche des Reaktors könnte der Schmelzefilm spiralförmige Schlieren, also ungleichmäßige Dicken, ausbilden. Dies kann weitgehend dadurch verhindert werden, daß der Schmelzefilm auf der Innenwand des Reaktors durch axial verlaufende Rippen unterteilt wird.
Zur Lösung der oben genannten Aufgabe ist ferner eine Vorrichtung der eingangs erwähnten Art erfindungsgemäß dadurch gekennzeichnet, daß der rotierende Reaktor von außen beheizt und an seiner offenen Seite durch einen feststehenden Deckel bis auf einen mit der Kante gebildeten umlaufenden Ringspalt verschlossen ist.
Zur Verstärkung der Beschleunigung des Schmelzefilms ist es vorteilhaft, wenn sich die Innenwand des rotierenden Reaktors zur Kante hin konisch erweitert, wobei allerdings der Reaktor über den größten Teil seiner axialen Länge zylindrisch ausgebildet sein kann.
Der Ringspalt kann vorzugsweise eine Breite von 15 bis 20 mm aufweisen, wobei durch einen asymmetrisch zur Drehachse des rotierenden Reaktors angeordneten Deckel der Ringspalt mit einer variierenden Breite gebildet sein kann.
Sofern gemäß einer bevorzugten Ausführungsform der Erfindung die Innenwand des Reaktors mit axial verlaufenden Rippen zur Unterteilung des Schmelzefilms versehen ist, sind diese vorzugsweise dreieckförmig mit ihrer größten Höhe am Boden des Reaktors und mit ihrer geringsten Höhe am Austrittsende des Schmelzefilms ausgebildet. In Verbindung mit der bevorzugten Ausführungsform eines zylindrischen Reaktors, der sich zur offenen Seite hin konisch erweitert, erstrecken sich die Rippen vorzugsweise über den zylindrischen Teil des Reaktors und enden am Beginn des konischen Teils.
Der Reaktor wird von außen durch einen Erhitzer auf seine Betriebstemperatur gebracht, der vorzugsweise ein Widerstandserhitzer, ein Induktionserhitzer oder ein Magnetinduktionserhitzer sein kann.
Die Erfindung soll im folgenden anhand eines in der Zeichnung dargestellten Ausführungsbeispiels näher erläutert werden. Es zeigen:
Figur 1 -
schematisch eine erfindungsgemäße Vorrichtung
Figur 2 -
eine Draufsicht auf die Lage des Deckels relativ zur Kante des Reaktors
Figur 3 -
zwei Schnittdarstellungen eines Widerstandserhitzers
Figur 4 -
zwei Schnittdarstellungen eines Induktionserhitzers
Figur 5 -
zwei Schnittdarstellungen eines Magnetinduktionserhitzers.
Die in Figur 1 dargestellte Vorrichtung zeigt als Baugruppen einen Extruder 1, eine Vorrichtung zur Faserbildung 2, eine Einheit zur Ausfällung der fertigen Faser 3 und eine Abnahmevorrichtung 4.
Die Vorrichtung zur Faserbildung 2 besteht aus einem hohlen rotierenden Reaktor 5, der von außen mit einem Reaktorerhitzer 6 aufgeheizt wird. Die offene Seite des Reaktors 5 ist durch einen konisch erweiterten Kegel 7 ausgeführt. In dem Kegel 7 ist unter Ausbildung eines Ringspaltes 8 ein unbeweglicher Deckel 9 installiert, der durch eine Stange 10 auf einem Zuführkopf 11 des Extruders 1 befestigt ist. Der unbewegliche Deckel 9 ist exzentrisch zur Kontur des sich konisch erweiternden Kegels 7 angeordnet und ist in seiner axialen Lage mittels einer Gewindeverbindung einstellbar, so daß der Spalt 8 durch den Deckel justierbar ist.
Auf der Innenwand des Reaktors 5 sind dreieckförmige flache Rippen 13 in axialer Richtung erstreckt. Die Rippen 13 befinden sich auf der gesamten Mantelfläche des Reaktors 5 in dessen zylindrischen Teil. Sie weisen ihre größte Höhe am Boden des Reaktors 5 auf und sind mit ihrer geringsten Höhe (mit ihren Spitzen) in Richtung des Schmelzeaustritts orientiert. Das Austrittsende des Reaktors 5 ist durch eine Ringluftleitung 14 umgeben, aus der Luft mit hohem Druck aus einer Öffnung 15 (Figur 1a) austreten kann.
Der Reaktor 5 ist am Ende einer hohlen Welle 16 montiert, die mit Kugellagern 17 versehen ist. Die Kugellager 17 befinden sich in einem gekühlten Gehäuse 18. Am anderen Ende der Welle 16 ist eine Antriebsscheibe 19 eines Riementriebs 20 angebracht, der über eine Abtriebscheibe 21 an der Welle eines Asynchronmotors 22 läuft. Innerhalb der hohlen Welle 16 verläuft ein Zuführaufsatz 23 eines Zuführkopfes 11, der eine Zentralöffnung 24 für die Zuführung des Schmelzgutes aus dem Extruder 1 in den Reaktor 5 aufweist.
Die ganze Vorrichtung zur Faserbildung 2 ist auf einem separaten Rahmen 32 montiert und in einer Schutzkammer 33 aufgestellt. Im Oberteil der Schutzkammer 33 ist eine mit einem Niederdruckventilator 35 verbundene Luftleitung 34 befestigt. Der Niederdruckventilator 35 ist ausgangsseitig über eine Luftleitung 36 mit einer Gasreinigungsvorrichtung 37 verbunden.
Der Extruder 1 weist einen Vorratsbehälter 39 für einen vorbereiteten Thermoplast auf. Ein Antriebsmotor 40 treibt über einen Riementrieb 41 und ein Reduziergetriebe 42 eine Schnecke 43 des Extruders 1 an. Die Schnecke 43 befindet sich in einem Gehäuse mit einem mantelförmigen Erhitzer 38.
Die Inbetriebnahme der Vorrichtung erfolgt durch Einschaltung des Reaktorerhitzers 6 und des Erhitzers 38 sowie des Niederdruckventilators 35 und der Gasreinigungsvorrichtung 37. Dem Extruder 1 wird Wasser zur Kühlung des Gehäuses 18 zugeführt. Der Behälter 39 des Extruders 1 wird mit dem vorbereiteten Thermoplast gefüllt. Nachdem die Solltemperaturen erreicht sind, wird der Antriebsmotor 22 für die Rotations des Reaktors 5 eingeschaltet und die Anordnung im Leerlauf 15 bis 20 Minuten zur Stabilisierung der Betriebstemperaturen laufen gelassen. Nachdem die Betriebstemperaturen der Vorrichtung erreicht sind, setzt man den Antriebsmotor 40 des Extruders 1 in Gang und schaltet die Antriebe der Einheit zur Faserabfüllung 3 und der Abnahmevorrichtung 4 ein.
Der Antriebsmotor 40 bringt die Schnecke 43 über den Riementrieb 41 und das Reduziergetriebe 42 in Drehbewegung. Die Schnecke 43 erfaßt den Thermoplast aus dem Behälter 39 und befördert ihn zum Zuführkopf 11. Indem der Stoff durch den erhitzten Teil des Extruders 11 befördert wird, vermischt er sich und schmilzt bis zur Viskosität, die der Thermoplastviskosität im Bereich der Abbautemperatur entspricht. Dann tritt der geschmolzene Stoff durch die Öffnung 24 des Aufsatzes 23 und des Zuführkopfes 11 in den Reaktor 5 ein, wo die gleichen Temperaturen eingehalten werden.
Im Reaktor 5 verteilt sich die Schmelze über den Umfang der Innenwand und wird dank der Zentrifugalkraft zwischen den Rippen 13 zum geöffneten Ende des Reaktors 5 transportiert. Indem die die Innenfläche und die Rippen 13 berührende Thermoplastschicht vorgeschoben wird, erhebt sie sich zusätzlich, wodurch ein dünner Schmelzefilm entsteht. Da innerhalb des Reaktors 5 die Rippen 13 eingebaut sind, bewegt sich die Schmelze nicht spiralförmig, was bei einer glatten Oberfläche geschehen würde, sondern längs der Reaktorerzeugende. Dadurch erfolgt die Beschichtung der Innenfläche mit dem Schmelzefilm viel gleichmäßiger, was die Qualität der Schmelze wesentlich erhöht. Indem der Schmelzefilm aus dem zylindrischen Teil des Reaktors 5 in den Bereich des konisch erweiterten Kegels 7 gelangt, verringert sich zusätzlich seine Dicke. Dabei verursachen die im Reaktor 5 entstehenden Gase bei ihrem Austritt eine vergleichmäßigte Verteilung des Schmelzefilms im Bereich des Kegels 7. Der Schmelzefilm erhält dank der Drehung des Reaktors 5 die Bewegungsenergie, die größer als die Kraft der Oberflächenspannung ist. Deshalb teilt sich der Schmelzefilm in Strahlen, reißt von der Kante des Kegels 7 ab und streckt sich in Fasern.
Die Herstellung des Faserstoffes in der erfindungsgemäßen Weise ist nur möglich, wenn die Lineargeschwindigkeit an der Kegelkante des Reaktors 5 höher als 10 m/s ist. Der aus den Öffnungen 15 der Ringluftleitung 14 ausströmende Luftstrom 44 beeinflußt den im Prozeß des Streckens befindlichen Faserstoff. Der Faserstoff gelangt auf das Fließband 45 der Einheit zur Faserausfällung 3. Mit Hilfe des Fließbandes 45 wird der Faserstoff zur Abnahmevorrichtung 4 befördert, wo die Fasern zu Fertigwaren umgeformt werden.
Die bei der Erzeugung des Faserstoffes entstehenden Gase werden aus der Schutzkammer 33 durch die Luftkanäle 34 und 36 mit Hilfe des Niederdruckventilators 35 in die Gasreinigungsvorrichtung 37 geleitet.
Die beschriebene Vorrichtung ermöglicht die Herstellung des Faserstoffs aus Thermoplasten mit hervorragenden Absorptionseigenschaften, wobei auch Industrie- und Haushaltsabfälle als Rohstoff ausgenutzt werden können.
Der Reaktorerhitzer 6, der außen am Reaktor 5 aufgebaut ist, kann als Widerstandserhitzer 25, Induktionserhitzer 26 oder als Magnetinduktionserhitzer ausgeführt sein.
In allen Fällen werden diese Erhitzer 25, 26 und der Reaktor 5 mit dem Außenmantel 27 thermisch isoliert.
Gemäß Figur 3 ist der Reaktorerhitzer 6 als Widerstandserhitzer 25 ausgeführt, der sich in einem hitzebeständigen keramischen Massivgehäuse 28 befindet. Zwischen dem Elektroerhitzer und dem Schutzmantel 27 ist ein wärmeisolierender Stoff 29, z.B. Kaolinwatte, untergebracht.
Die Variante gemäß Figur 4 zeigt einen Reaktorerhitzer 6 als abkühlbaren Induktionserhitzer 26, der in dem Schutzmantel 27 untergebracht ist. Auch hier ist der Raum zwischen dem Erhitzer 26 und dem Schutzmantel 27 mit wärmeisolierendem Stoff gefüllt.
Gemäß Figur 5 enthält der Induktionserhitzer 26 zusätzlich Platten 30 aus einer Ferromagnetlegierung (z.B. aus Ni-Co), die längs der Reaktormantelwand auf der Außenfläche des Reaktors 5 befestigt und mit isolierten Leitern verbunden ist.
Verfahrensmäßig wird der Ausgangsrohstoff in dem Extruder 1 vorgeschmolzen und umgerüht, so daß eine homogene Schmelze entsteht, deren Temperatur nahe der Abbautemperatur des Polymers ist. Aus dem Extruder 1 wird die Schmelze dem rotierenden Reaktor 5 zugeführt, dessen Wändetemperatur auf eine Temperatur nahe der Abbautemperatur vorgeheizt sind. Durch die Rotation des Reaktors 5 wird die Schmelze gleichmäßig auf der inneren Oberfläche verteilt. Dabei bildet sich ein Paraboloid der Rotation, und sie bewegt sich unter der Einwirkung von Zentrifugalkräften in Richtung der offenen Seite. Da die offene Seite des Reaktors 5 die Form eines auseinanderlaufenden Kegels 7 hat, verringert sich die Dicke des Films proportional zur Vergrößerung der Seitenoberfläche. Auf diese Weise ist es möglich, dünnere Fasern zu bekommen. Nach dem Verlassen der Kante des auseinanderlaufenden Kegels 7 teilt sich die Folie in einzelne Strahlen, die unter Einwirkung der Zentrifugalkraft und aufgrund einer hohen Rotationsgeschwindigkeit des Reaktors 5 zur Faser werden. Die entstehende Faser kommt in den Luftstrom 44, der senkrecht zu den auseinanderfliegenden Fasern gerichtet ist und somit die Fasern in die Einheit 4 zur Ausfällung der Fasern zwingt. Dabei verlängert und kühlt sich die Faser.
Da der Vorgang der Filmbildung in einem praktisch geschlossenen Raum erfolgt, entsteht innerhalb des Reaktors 5 ein Gasmedium mit einem Überdruck. Dadurch können Abbauvorgänge aufgrund des Luftmangels reduziert werden.
Darüber hinaus entsteht im Reaktor 5 eine stabile Temperatur. Deshalb können mögliche Schwankungen bei der Wärmeversorgung für den Vorgang der Filmbildung kompensiert werden. Dies führt zur Senkung von Energiekosten, um die vorgegebene Temperatur aufrechtzuerhalten. Der Überdruck im Innern des Reaktors 5 führt zu einem Gasstrom, der eine gewisse Zeit der Faser eine ausreichende Wärme zuführt, damit sie noch länger werden kann.
Die Anwendung des erfindungsgemäßen Verfahrens ermöglicht es, hochwertige Fasern nicht nur mit Rohstoffen einer Sorte, sondern auch mit einer Kombination von Rohstoffen durchzuführen. Dies liegt daran, daß der Rohstoff zuerst im Extruder 1 eingeschmolzen und umgerührt wird und danach eine gewisse Zeit innerhalb des Reaktors 5 bleibt. Dadurch wird die gesamte Menge gleichmäßig erwärmt und die Viskosität gemittelt, so daß die Produktion der Faser aus einer homogenisierten Schmelze erfolgt.
Im Falle einer Störung, durch die die Schmelze die erforderliche Viskosität nicht erreicht, erfolgt unter Einwirkung der Zentrifugalkraft eine Selbstreinigung des Reaktors 5.
Die Verwendung von Thermostabilisatoren in dendritischer Form, die über freie Ionen verfügt, ermöglicht eine schnelle Unterdrückung der Vorgänge beim Abbau von Polymeren durch die Zusammenführung von freien Radikalen der zerrissenen Polymerketten. Hieraus resultiert eine Steigerung der Fasermenge im Vergleich zu den schweren Metallen, und der Ausstoß von Schadstoffen in die Umwelt wird reduziert.
Beispiel 1:
Die hergestellten Fasern haben überwiegend eine Dicke von 5 bis 20 µm und sind in Geflechte gewunden, deren Querschnittsgröße im Bereich von 25 bis 100 µm liegt. Das Geflecht enthält kugel- und tropfenartige Teilchen, die teils mit den Fasern zusammengewachsen, teils von den Fasern isoliert sind. Außerdem gibt es zahlreiche Faserverdickungen, deren Länge zwischen dem drei- und zehnfachen der Querschnittsgröße dieser Verdickungen liegt. Die Querschnitte dieser Verdickungen und der kugel- und tropfenartigen Teilchen liegen im Bereich von 30 bis 200 µm.
Beispiel 2:
Es handelt sich um ein Grobfasermuster, in dem der größte Teil der Fasern eine Dicke von 50 bis 400 µm hat. Es gibt eine geringere Anzahl dünnerer Fasern mit einer Größe von 5 bis 20 µm. Es sind zahlreiche kugel- und tropfenartige Teilchen mit einer Größe von 50 bis 300 µm vorhanden.
Beispiel 3:
Der größte Teil der Fasern hat einen Querschnitt von 1 bis 10 µm. Vorhanden sind grobere Fasern mit einer Dicke von 20 bis 50 µm mit den Verdickungen bis 100 µm. Es gibt auch kugel- und tropfenartige Teilchen.
Beispiel 4:
Der größte Teil der Fasern hat einen Querschnitt von 1 bis 10 µm. Eine geringe Anzahl der Fasern hat eine Größe bis 20 µm. Die dickeren Fasern haben Verdickungen mit dem maximalen Querschnitt von 50 bis 150 µm. Die vorhandenen kugel- und tropfenartigen Teilchen haben eine Größe von 100 bis 400 µm.
Die Dicke und die Porosität der Fasermuster in loser Lagerung ohne Verdichtung wurde piknometrisch nach den Standards GOST 18955. I-73 bestimmt mit der Ausnutzung von Tetrachlorid-Kohlenstoff als piknometrische Flüssigkeit und der Waage WLR-200, die die Meßgenauigkeit von ± 0,05 mg haben. Die erhaltenen Angaben sind in der Tabelle 1 angeführt.
Die Dichte- und Porositätsdaten bei der losen Lagerung bei 20 °C.
Nummer des Musters 1 2 3 4
Die Dichte, kg/m3 911 903 907 909
Schüttendichte, kg/m3 102-117 167-174 112-127 123-136
Porosität, % 87,1-88,8 80,7-81,5 86,0-87,6 85,0-86,0
Verhalten des Porenraums zum Polymerraum 6,75-7,93 4,75-7,93 6,14-7,06 5,67-6,0
Das Absorptionsvermögen der Fasermuster für den Prozeß des Sammelns des Erdöls und der Erdölprodukte vom Wasserspiegel bei der wiederholten Ausnutzung des Stoffes im Zyklus Absorption-Regeneration wurde nach folgender Methodik bestimmt.
Das Fasermuster im Ausgangszustand ließ man mit dem Wasserspiegel kontaktieren, der eine 3 bis 6 mm dicke Erdölschicht enthielt. Für die Tests benutzte man das westsibirische Erdöl und als Erdölprodukt das Industrieöl I-L-A-10 (GOST 20799-88) und das Dieselöl der Marke 3-02 (GOST-305-82).
Den Grad der Sättigung des Stoffes mit den Flüssigkeiten kontrollierte man nach der Wiegemethode. Dann schleuderte man das mit dem Erdöl (Erdölprodukt) gesättigte Muster bei dem Trennungsfaktor 100 ±3. Den Gehalt des an den Fasern gebliebenen Erdöls (Erdölprodukte) bestimmte man nach GOST 6370-83. Fugat entwässerte man mit Kupfersulfat nach GOST 26378.0-84 und danach bestimmte man darin den Erdölgehalt (Gehalt des Erdölproduktes) nach GOST 6370-83. Aufgrund der erhaltenen Angaben berechnete man das Verhalten der Masse des im gegebenen Prozeß aufgesaugten Erdöls vor und nach dem Schleudern zur Masse des zu überprüfenden Musters. Die Resultate sind in den Tabellen 2 und 3 angegeben.
Absorptionskapazität des Beispiels 4 in Bezug auf das Industrieöl I-L-A-10 und das Dieselöl 3-02 bei den wiederholten Sättigungszyklen des Faserstoffs mit den Erdölprodukten (Absorption - Regeneration)
Nummer des Zyklus Absorbtion-Regeneration Verhalten der Masse des Erdölprodukts zur Masse der Fasern für:
Industrieöl Dieselöl
vor dem Schleudern nach dem Schleudern vor dem Schleudern nach dem Schleudern
1 12,99 0,376 9,95 0,132
2 8,54 0,409 7,28 0,195
5 7,97 0,446 7,22 0,201
10 7,75 0,443 6,27 0,204
15 7,913 0,454 6,31 0,210
20 7,82 0,451 6,22 0,215
Zum Vergleich werden die Absorbtionskapazitäten der bekannten Stoffe angegeben, die für das Sammeln der Kohlenwasserflüssigkeiten verwendet werden (g/g): Lignin - 2,2; Torf - 2,6-7,7; Filterperlit - 7,0-9,2; Asbest (bei Auffaserung) - 5,8-6,4; Dornit - 1,9-2,5, technische Watte - 7,0-7,2. Dabei muß man berücksichtigen, daß alle diese bekannten Stoffe nur Einwegstoffe sind. Die durchgeführten Untersuchungen mit den genannten Stoffen haben gezeigt, daß sie solche Eigenschaften besitzen, die es erlauben, sie für das Sammeln des Erdöls und der Erdölprodukte vom Wasserspiegel zu benutzen.
Zu diesen Eigenschaften gehören:
  • Hydrophobie, gutes Anfeuchten mit Erdöl und Erdölprodukten;
  • ihre Dichte ist niedriger als Wasserdichte, was die Schwimmfähigkeit dieser Stoffe beeinflußt;
  • hohe Porosität der Stoffe;
  • hohe Absorptionskapazität der Stoffe, in Bezug auf Erdöl und Erdölprodukte sogar nach dem zwanzigsten Verwendungszyklus;
  • "flache" Senkungscharakteristik der Absorptionskapazität nach den mehrmaligen Zyklen Absorption-Regeneration;
  • hoher Grad der Entfernung der aufgesaugten Flüssigkeit aus dem Stoff im Zentrifugalkraftfeld (90-98 %).
    Absorptionskapazität der Fasermuster in Bezug auf das westsibirische Erdöl bei den mehrmaligen Erdölsättigungszyklen Absorption-Regeneration
    Nummer des Zyklus Absorption-Regeneration Verhalten der Masse des aufgesaugten Erdöls zur Masse der Fasern, g/g für die Muster
    Beispiel 1 Beispiel 2 Beispiel 3 Beispiel 4
    vor dem Schleudern nach dem Schleudern vor dem Schleudern nach dem Schleudern vor dem Schleudern nach dem Schleudern vor dem Schleudern nach dem Schleudern
    1 8,76 0,235 6,09 0,160 7,84 0,428 9,31 0,407
    2 8,72 0,307 6,58 0,175 5,61 0,558 7,03 0,267
    5 7,97 0,462 6,71 0,183 5,34 0,513 6,08 0,357
    10 7,18 0,386 7,35 0,165 3,80 0,501 5,89 0,352
    15 6,73 0,285 7,68 0,165 3,52 0,558 6,03 0,459
    20 6,75 0,343 7,63 0,148 3,46 0,733 5,79 0,500
In der Tabelle 4 ist die Absorptionskapazität des Faserstoffs angegeben. Der Faserstoff ist auf der Versuchsvorrichtung aus den Abfällen des Polypropylens der Marke (21030 - 21060)-60 mit dem Thermostabilisator Titandioxyd mit der Teilchengröße 3 - 5 µm mit dem Gehalt 1 % Masse erzeugt.
Für die Wasserreinigung von Eisen (III) bei dem Anfangsgehalt des Eisens (III) von 10 mg/l in der Lösung wurden Fasermuster mit einer Lagerungsdichte der Fasern im Filter - 260 kg/m3 benutzt.
Absorbtionskapazität des Faserstoffs im Prozeß der Wasserreinigung von den Ionen des Eisens III.
N Endkonzentration des Eisens, Ci, mg/l Grad der Reinigung 1 - C1 / C0 . 100%
1 2 3
1 0,40 99,60
2 0,36 99,64
3 0,35 99,65
4 0,41 99,59
5 0,33 99,67
6 0,29 99,71
7 0,28 99,72
8 0,25 99,75
9 0,24 99,76
10 0,20 99,80

Claims (16)

  1. Verfahren zur Herstellung von Faserstoffen aus thermoplastischen Kunststoffen, bei denen der thermoplastische Kunststoff geschmolzen und in einem rotierenden Reaktor (5) zur Bildung eines Schmelzefilms geleitet wird und an einer offenen Reaktorkante die Fasern gebildet und gestreckt werden, dadurch gekennzeichnet, daß der rotierende Reaktor (5) so aufgeheizt wird, daß der Schmelzefilm eine Temperatur nahe der Abbautemperatur der thermischen Kunststoffe hat und daß der Reaktor (5) mit einer Bahngeschwindigkeit von wenigstens 10 m/s an seiner Kante gedreht wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Innenraum des Reaktors (5) durch einen mit der Kante einen schmalen Spalt (8) ausbildenden Deckel (9) weitgehend abgeschlossen wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß der Deckel (9) zur Ausbildung eines umlaufenden Spaltes (8) mit variierender Breite asymmetrisch zur Drehachse des Reaktors positioniert wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Schmelzefilm auf der Innenwand des Reaktors (5) durch axial verlaufende Rippen (13) unterteilt wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die sich bildende Faser der Einwirkung eines Luftstroms (44) unterworfen wird.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß der Luftstrom quer zu der aus dem Reaktor (5) austretenden Faser gerichtet ist.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß dem thermoplastischen Kunststoff wenigstens ein Dispersermineralstoff mit dendritischer Partikelform zugesetzt wird.
  8. Vorrichtung zur Herstellung von Faserstoffen aus thermoplastischen Kunststoffen, mit einer Schmelzeinrichtung für den thermoplastischen Kunststoff und einem beheizten rotierenden Reaktor (5) zur Ausbildung eines Schmelzefilms aus dem geschmolzenen Kunststoff, der den rotierenden Reaktor (5) über eine Kante einer offenen Seite unter Ausbildung von Fasern verläßt, dadurch gekennzeichnet, daß der rotierende Reaktor (5) von außen beheizt und an seiner offenen Seite durch einen feststehenden Deckel (9) bis auf einen mit der Kante gebildeten umlaufenden Ringspalt (8) verschlossen ist.
  9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß sich die Innenwand des rotierenden Reaktors (5) zur Kante hin konisch erweitert.
  10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß der Reaktor (5) über den größten Teil seiner axialen Länge zylindrisch ausgebildet ist.
  11. Vorrichtung nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, daß der Ringspalt (8) eine Breite von etwa 15 bis 20 mm aufweist.
  12. Vorrichtung nach einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, daß der Deckel (9) asymmetrisch zur Drehachse des rotierenden Reaktors (5) angeordnet ist, so daß ein Ringspalt (8) mit variierender Breite gebildet ist.
  13. Vorrichtung nach einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, daß der Reaktor (5) auf seiner Innenwand eine Vielzahl von axial ausgerichteten Rippen zur Unterteilung des Schmelzefilms aufweist.
  14. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, daß die Rippen (13) in Längsrichtung dreieckförmig mit ihrer größten Höhe am Boden des Reaktors (5) und mit ihrer geringsten Höhe am Austrittsende des Schmelzefilms ausgebildet sind.
  15. Vorrichtung nach Anspruch 10 und 14, dadurch gekennzeichnet, daß die Rippen (13) am Ende des zylindrischen Teils des Reaktors (5) enden.
  16. Vorrichtung nach einem der Ansprüche 8 bis 15, dadurch gekennzeichnet, daß der Reaktor (5) an seinem Austrittsende von einer ringförmigen Luftleitung (14) umgeben ist, die einen in axialer Richtung des Reaktors (5) gerichteten ringförmigen Austrittsspalt (15) aufweist.
EP99904698A 1998-01-07 1999-01-07 Verfahren und vorrichtung zur herstellung von faserstoffen aus thermoplastischen kunststoffen Expired - Lifetime EP1045929B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI9930019T SI1045929T1 (en) 1998-01-07 1999-01-07 Method and device for producing fibrous materials from thermoplastic materials

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19800297 1998-01-07
DE19800297A DE19800297C1 (de) 1998-01-07 1998-01-07 Verfahren und Vorrichtung zur Herstellung von Faserstoffen aus thermoplastischen Kunststoffen
PCT/DE1999/000016 WO1999035313A1 (de) 1998-01-07 1999-01-07 Verfahren und vorrichtung zur herstellung von faserstoffen aus thermoplastischen kunststoffen

Publications (2)

Publication Number Publication Date
EP1045929A1 EP1045929A1 (de) 2000-10-25
EP1045929B1 true EP1045929B1 (de) 2001-11-14

Family

ID=7854085

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99904698A Expired - Lifetime EP1045929B1 (de) 1998-01-07 1999-01-07 Verfahren und vorrichtung zur herstellung von faserstoffen aus thermoplastischen kunststoffen

Country Status (13)

Country Link
US (1) US6524514B1 (de)
EP (1) EP1045929B1 (de)
AT (1) ATE208840T1 (de)
AU (1) AU2511299A (de)
CZ (1) CZ20002462A3 (de)
DE (3) DE19800297C1 (de)
DK (1) DK1045929T3 (de)
ES (1) ES2166216T3 (de)
HU (1) HUP0100814A2 (de)
PL (1) PL190708B1 (de)
PT (1) PT1045929E (de)
SK (1) SK10252000A3 (de)
WO (1) WO1999035313A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19800297C1 (de) * 1998-01-07 1999-07-01 Microfaser Repro Gmbh Verfahren und Vorrichtung zur Herstellung von Faserstoffen aus thermoplastischen Kunststoffen
DE10112089B4 (de) * 2001-03-12 2004-03-04 Microfaser Produktionsgesellschaft Mbh Vorrichtung zur Herstellung von synthetischen Faserstoffen
US8303874B2 (en) * 2006-03-28 2012-11-06 E I Du Pont De Nemours And Company Solution spun fiber process
US8277711B2 (en) * 2007-03-29 2012-10-02 E I Du Pont De Nemours And Company Production of nanofibers by melt spinning
US20090326128A1 (en) * 2007-05-08 2009-12-31 Javier Macossay-Torres Fibers and methods relating thereto
US20090280325A1 (en) 2008-03-17 2009-11-12 Karen Lozano Methods and apparatuses for making superfine fibers
US8647541B2 (en) 2011-02-07 2014-02-11 Fiberio Technology Corporation Apparatuses and methods for the simultaneous production of microfibers and nanofibers
US8496088B2 (en) 2011-11-09 2013-07-30 Milliken & Company Acoustic composite
US9186608B2 (en) 2012-09-26 2015-11-17 Milliken & Company Process for forming a high efficiency nanofiber filter
US10233568B2 (en) * 2013-10-22 2019-03-19 E I Du Pont De Nemours And Company Apparatus for production of polymeric nanofibers
US11408096B2 (en) 2017-09-08 2022-08-09 The Board Of Regents Of The University Of Texas System Method of producing mechanoluminescent fibers
CN108754637B (zh) * 2018-08-15 2023-07-25 北京化工大学 一种薄膜连续直接塑化供料的熔体微分电纺装置及方法
WO2020172207A1 (en) 2019-02-20 2020-08-27 Board Of Regents, University Of Texas System Handheld/portable apparatus for the production of microfibers, submicron fibers and nanofibers
CN112962155B (zh) * 2021-03-09 2022-01-04 龙港市新国工艺有限公司 一种rpet面料的加工方法
CN114197065B (zh) * 2021-12-31 2023-04-18 武汉纺织大学 一种撑浮式离心纺丝装置及其使用方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU699041A1 (ru) * 1977-02-16 1979-11-25 Харьковский институт инженеров железнодорожного транспорта Способ получени волокон из термопластичного материала
JPS5940054B2 (ja) * 1978-08-29 1984-09-27 株式会社佐藤技術研究所 融体から特定サイズの球形粒子を製造する方法
RU2093618C1 (ru) * 1995-03-16 1997-10-20 Товарищество с ограниченной ответственностью "Везувий-11" Способ получения волокна из термопластичного материала
DE19800297C1 (de) 1998-01-07 1999-07-01 Microfaser Repro Gmbh Verfahren und Vorrichtung zur Herstellung von Faserstoffen aus thermoplastischen Kunststoffen

Also Published As

Publication number Publication date
PT1045929E (pt) 2002-05-31
EP1045929A1 (de) 2000-10-25
AU2511299A (en) 1999-07-26
HUP0100814A2 (hu) 2001-06-28
ES2166216T3 (es) 2002-04-01
DK1045929T3 (da) 2002-03-11
PL341812A1 (en) 2001-05-07
PL190708B1 (pl) 2005-12-30
DE29802123U1 (de) 1998-05-07
CZ20002462A3 (cs) 2002-02-13
US6524514B1 (en) 2003-02-25
DE59900428D1 (de) 2001-12-20
SK10252000A3 (sk) 2001-02-12
DE19800297C1 (de) 1999-07-01
WO1999035313A1 (de) 1999-07-15
ATE208840T1 (de) 2001-11-15

Similar Documents

Publication Publication Date Title
EP1045929B1 (de) Verfahren und vorrichtung zur herstellung von faserstoffen aus thermoplastischen kunststoffen
DE3586699T2 (de) Verfahren und apparat zum mit extrusion kombinierten zentrifugalspinnen.
DE3781313T2 (de) Verfahren und vorrichtung.
DE69214426T2 (de) Vorrichtung und verfahren zur herstellung von organischen fasern
DE19929709C2 (de) Verfahren zur Herstellung von im Wesentlichen endlosen feinen Fäden und Verwendung der Vorrichtung zur Durchführung des Verfahrens
AT403584B (de) Verfahren und vorrichtung zur herstellung cellulosischer flach- oder schlauchfolien
DE69200600T2 (de) Vorrichtung zur Herstellung eines aus Verstärkungsfasern und einem organischen, thermoplastischen Material bestehenden Verbundgarnes.
EP2751312B1 (de) Extrusionsverfahren und -vorrichtung
DE2116254C2 (de) Vorrichtung zum kontinuierlichen Extrudieren hochviskoser Schmelzen
DE3708168C2 (de)
DE4040242A1 (de) Verfahren und vorrichtung zur herstellung von feinstfasern aus thermoplastischen polymeren
DE3341590A1 (de) Verfahren und vorrichtung zum bilden eines vliesmaterials
DE69608706T2 (de) Hohlpolymerfasern mittels zentrifugalspinnen
DE2208921C3 (de)
DE60012152T2 (de) Schmelzspinnen mit hoher geschwindigkeit von fasern aus fluorpolymeren
DE69722522T2 (de) Schmelzblasvorrichtung und Verfahren zum Formen einer schichtformigen Faserstoffbahn aus Filtermedien und eine Anordnung zur Verteilung einer Flüssigkeit
DE2201519A1 (de) Verfahren und Vorrichtung zum Schmelzspinnen
DE69617979T2 (de) Verfahren und vorrichtung zur herstellung eines gekräuselten filamentgarns
DE69021781T2 (de) Verfahren und Apparat zum Formen von Fasern.
DE4123122A1 (de) Vorrichtung zur herstellung einer kunststoff-vliesbahn
EP0527134B1 (de) Vorrichtung zum abkühlen von schmelzgesponnenen filamenten
DE3105784C2 (de)
DE3409450C2 (de)
DE1542405C3 (de) Verfahren und Vorrichtung zum Abziehen von Schmelzen mit Hilfe von flüssigen oder gasförmigen Stoffen
DE10112089B4 (de) Vorrichtung zur Herstellung von synthetischen Faserstoffen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000623

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: LT PAYMENT 20000626;LV PAYMENT 20000626;RO PAYMENT 20000626;SI PAYMENT 20000626

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010621

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: LT PAYMENT 20000626;LV PAYMENT 20000626;RO PAYMENT 20000626;SI PAYMENT 20000626

REF Corresponds to:

Ref document number: 208840

Country of ref document: AT

Date of ref document: 20011115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BRAUN & PARTNER PATENT-, MARKEN-, RECHTSANWAELTE

REF Corresponds to:

Ref document number: 59900428

Country of ref document: DE

Date of ref document: 20011220

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020117

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2166216

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20020400578

Country of ref document: GR

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20020214

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: SI

Ref legal event code: IF

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060131

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20060707

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CY

Payment date: 20060710

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060712

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20060731

Year of fee payment: 8

Ref country code: MC

Payment date: 20060731

Year of fee payment: 8

Ref country code: IE

Payment date: 20060731

Year of fee payment: 8

Ref country code: GR

Payment date: 20060731

Year of fee payment: 8

Ref country code: FR

Payment date: 20060731

Year of fee payment: 8

Ref country code: FI

Payment date: 20060731

Year of fee payment: 8

Ref country code: ES

Payment date: 20060731

Year of fee payment: 8

Ref country code: CH

Payment date: 20060731

Year of fee payment: 8

Ref country code: AT

Payment date: 20060731

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20060803

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20060816

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070108

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070702

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070709

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20070709

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
LTLA Lt: lapse of european patent or patent extension

Effective date: 20070107

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070107

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20070801

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20070821

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070107

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070107

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070107

BERE Be: lapsed

Owner name: *MICROFASER-REPRO-G.M.B.H.

Effective date: 20070131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070801

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20060731

Year of fee payment: 8

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20070108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20060731

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070802

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070107