EP1036610B1 - Investment and mould casting in carbon and organic aerogels - Google Patents

Investment and mould casting in carbon and organic aerogels Download PDF

Info

Publication number
EP1036610B1
EP1036610B1 EP00104214A EP00104214A EP1036610B1 EP 1036610 B1 EP1036610 B1 EP 1036610B1 EP 00104214 A EP00104214 A EP 00104214A EP 00104214 A EP00104214 A EP 00104214A EP 1036610 B1 EP1036610 B1 EP 1036610B1
Authority
EP
European Patent Office
Prior art keywords
wax
gel
sol
temperature
plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00104214A
Other languages
German (de)
French (fr)
Other versions
EP1036610A1 (en
Inventor
Lorenz Prof. Ratke
Jochen Prof. Dr. Fricke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsches Zentrum fuer Luft und Raumfahrt eV
Original Assignee
Deutsches Zentrum fuer Luft und Raumfahrt eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsches Zentrum fuer Luft und Raumfahrt eV filed Critical Deutsches Zentrum fuer Luft und Raumfahrt eV
Publication of EP1036610A1 publication Critical patent/EP1036610A1/en
Application granted granted Critical
Publication of EP1036610B1 publication Critical patent/EP1036610B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/165Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents in the manufacture of multilayered shell moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds

Definitions

  • the invention relates to a molding material for the fine and casting of metals or metal alloys comprising plastic and / or carbon aerogels and a process for the preparation of corresponding molding materials.
  • Aerogels are highly porous, open-pored oxidic solids, which are usually via sol-gel processes of metal alkoxides by polymerization, polycondensation to gels and subsequent supercritical drying are obtained.
  • plastics via sol-gel processes gelled and by supercritical drying in a highly porous organic Transform solid state. Pyrolysis of such plastic aerogels under inert gas or in vacuum at temperatures above 1000 ° C, this converts into carbon aerogels around.
  • the oxidic aerogels have plastic and carbon aerogels extremely low effective thermal conductivities (order of magnitude some mW / K / m) and are considerably lighter.
  • the airgel mold may consist of silica aerogels or not working under reducing atmosphere of carbon aerogels.
  • a Forming material for the fine and casting of metals or metal alloys comprising highly porous, open-pored plastic and / or carbon aerogels, available by sol-gel polymerization of organic plastic materials optionally followed by partial or complete pyrolysis of the obtained Kunststoffaerogels.
  • the molding material according to the invention is particularly suitable for use in lost wax casting processes and does not have, as in the prior art in oxidic Gels, applied in several steps.
  • the airgel forms produced according to the invention are particularly suitable for the casting of aluminum alloys (with the mold practically unheated must be because there is no heat dissipation by themselves). This increases the economy, because energy costs can be reduced. Magnesium- and titanium alloys also do not react with carbon, so that these carbon aerogels also for these alloys under inert gas or Offer vacuum as molding material.
  • a particular advantage of the molding materials according to the invention is that the Sol-gel formation at room temperature, that is, especially at temperatures completed within a few hours below the pour point of the wax can be.
  • a supercritical drying, as with the purely inorganic Gels are not required. Nevertheless, it is possible to increase the pore size in the micrometer range adjust. For drying in the supercritical temperature range In addition, pore sizes in the nanometer range possible.
  • the molding materials according to the invention can also be inorganic or organic filler materials. These are essentially Under solidification conditions inert inert materials understood.
  • inorganic Filler materials are, for example, selected from alumina, titania and / or quartz, each in an amount of 5 to 30% by volume. used can be. Fillers in the context of the present invention further include Fiber materials containing a fiber reinforcement with organic, inorganic or allow carbon and / or SiC fibers at about equal volume fractions.
  • thermoplastic or thermosetting plastic particles for example polystyrene and / or organic (polyacrylonitrile) fibers.
  • thermoplastic or thermosetting plastic particles for example polystyrene and / or organic (polyacrylonitrile) fibers.
  • the molding material Plastic aerogels based on resorcinol / formaldehyde used in the suitable composition and suitable content of basic catalyst at temperatures between 20 and 50 ° C without supercritical drying in one microstructured plastic airgel can be transferred.
  • the composition of the sol-gel polymerization is adjustable so that, for example First, a highly viscous liquid is formed, which is on a wax mold can be applied. This is also possible in several operations, so that the layer thickness adapted to the needs of the applications in the foundry can be.
  • the temperature of the conversion of the solution into a plastic airgel must be Melting point of the wax can be adjusted. After conversion into one Plastic airgel, the wax can be melted out and at the same time Conversion into a carbon airgel takes place under exclusion of air.
  • the gelation temperature Dependent from the composition of the starting solution, the gelation temperature, The density of the resulting porous body can be used to produce molds both as a plastic and as a carbon airgel, on a micrometer scale are superficially smooth and form sharp contours.
  • the pyrolysis time is determined by the thickness the mold shell; for example, with a wall thickness of 1 cm, the time is less than 24 hours, usually 10 hours.
  • the Kunststoffstöffaerogel was in a cold muffle furnace brought in.
  • the oven was heated slowly (3 hours) to 1050 ° C, whereby continuous nitrogen (argon or another inert gas is possible analogously) was blown to avoid oxidation.
  • the temperature of 1050 ° C was maintained for 24 hours.

Abstract

Open-pored aerogel mold material is obtained by sol-gel polymerization e.g., resorcinol/formaldehyde with a polymerization catalyst such as ammonium or sodium carbonate, followed by complete or partial pyrolysis of the resultant aerogel. Fillers, e.g. aluminum oxide, titanium oxide, quartz, polystyrene particles, carbon or silicon carbide fibers can be added. Independent claims are also included for the following precision casting processes for metals or alloys: (a) a wax mold is coated with a sol of suitable composition and a catalyst and converted to a gel at a temperature below the melting point of the wax. The process is repeated to build up the mold, after which the gel is dried. The temperature is then raised to melt or burn out the wax; (b) a wax pattern is placed in a container which is then filled with the synthetic sol and heated to below the wax melting point. The resultant gel is dried and the temperature raised to melt or burn out the wax.

Description

Gegenstand der Erfindung ist ein Formstoff für den Fein- und Formguss von Metallen oder Metall-Legierungen umfassend Kunststoff- und/oder Kohlenstoffaerogele sowie ein Verfahren zur Herstellung von entsprechenden Formstoffen.The invention relates to a molding material for the fine and casting of metals or metal alloys comprising plastic and / or carbon aerogels and a process for the preparation of corresponding molding materials.

Feingießen in keramischen Formschalen ist eine Standardgusstechnik, um Präzisionsteile aus verschiedensten Legierungen herzustellen. Die Formen werden in der Regel über das Wachsausschmelzverfahren hergestellt; d. h. ein Wachskörper des zu gießenden Teils wird mit einem Silica-Sol benetzt, in mehreren Schritten besandet, getrocknet und anschließend wird die Formschale gebrannt, wobei das Wachs in einem Autoklaven ausgeschmolzen wird oder verbrennt. Mittels moderner Gussverfahren ist es möglich, konturgerecht und endformnah zu gießen (J.Sprunk, W. Blank, W. Grossmann, E. Hauschild, H. Rieksmeier, H.G. Rosselnbruch; Feinguss für alle Industriebereiche, 2. Auflage, Zentrale für Gussverwendung, Düsseldorf 1987; K.A. Krekeler, Feingießen, in: Handbuch der Fertigungstechnik Bd. 1., Herausgeber G. Speer, Hanser Verlag, München 1981).Investment casting in ceramic shell molds is a standard casting technique for precision parts made of various alloys. The forms are in usually made by the lost wax process; d. H. a wax body of the part to be cast is wetted with a silica sol, in several steps sanded, dried and then the shell mold is fired, wherein the wax is melted out in an autoclave or burned. through Modern casting process, it is possible to cast in the correct shape and close to the final form (J.Sprunk, W. Blank, W. Grossmann, E. Hauschild, H. Rieksmeier, H.G. Rosselnbruch; Investment casting for all industrial sectors, 2nd edition, headquarters for casting use, Dusseldorf 1987; K. A. Krekeler, investment casting, in: Handbuch der Fertigungstechnik Vol. 1, publisher G. Speer, Hanser Verlag, Munich 1981).

Aerogele sind hochporöse, offenporige oxidische Festkörper, die in der Regel über Sol-Gel-Verfahren aus Metallalkoxiden durch Polymerisation, Polykondensation zu Gelen und anschließender überkritischer Trocknung gewonnen werden. Seit einigen Jahren ist es gelungen, auch Kunststoffe über Sol-Gel-Verfahren zu gelieren und durch überkritische Trocknung in einen hochporösen organischen Festkörper umzuwandeln. Pyrolyse solcher Kunststoffaerogele unter Schutzgas oder im Vakuum bei Temperaturen oberhalb 1000 °C wandelt diese in Kohlenstoffaerogele um. Wie die oxidischen Aerogele haben Kunststoff- und Kohlenstoffaerogele extrem geringe effektive Wärmeleitfähigkeiten (Größenordnung einige mW/K/m) und sind erheblich leichter. Die physikalischen und mechanischen Eigenschaften von Kunststoff- und Kohlenstoffaerogelen sind in der Literatur dokumentiert (R.W. Pekala, C.T. Alviso, F.M. Kong, S.S. Hulsey; J. Non-Cryst. Solids 145 (1992) 90; R.W. Pekala, C.T. Alviso, Mat. Res. Soc. Symp. Proc. 270 (1992) 3; R. Petricevic, G. Reichenauer, V. Bock, A. Emmerling, J. Fricke; J.Non-Cryst.Solids (1998)). Sie lassen sich durch die Ausgangsstoffe, ihr Gemisch und das Herstellungsverfahren in weiten Grenzen variieren.Aerogels are highly porous, open-pored oxidic solids, which are usually via sol-gel processes of metal alkoxides by polymerization, polycondensation to gels and subsequent supercritical drying are obtained. For some years, it has also been possible to use plastics via sol-gel processes gelled and by supercritical drying in a highly porous organic Transform solid state. Pyrolysis of such plastic aerogels under inert gas or in vacuum at temperatures above 1000 ° C, this converts into carbon aerogels around. As the oxidic aerogels have plastic and carbon aerogels extremely low effective thermal conductivities (order of magnitude some mW / K / m) and are considerably lighter. The physical and mechanical Properties of plastic and carbon aerogels are in the literature Documented (R.W. Pekala, C.T. Alviso, F.M. Kong, S.S. Hulsey, J. Non-Cryst. Solids 145 (1992) 90; R.W. Pekala, C.T. Alviso, Mat. Res. Soc. Symp. Proc. 270 (1992) 3; R. Petricevic, G. Reichenauer, V. Bock, A. Emmerling, J. Fricke; J. Non-Cryst. Solids (1998)). They let themselves by the starting materials, their mixture and vary the manufacturing process within wide limits.

DE 197384 66 C1 beschreibt eine Stranggussvorrichtung mit der Bänder eines beliebigen Querschnitts mittels Strang- oder Bandgussverfahren in einem Aerogetformwerkzeug hergestellt werden können. Das Aerogelformwerkzeug kann aus Silica Aerogelen bestehen oder bei arbeiten unter nicht reduzierender Atmosphäre aus Kohlenstoffaerogelen.DE 197384 66 C1 describes a continuous casting apparatus with the bands of a any cross-section by means of strand or strip casting in one Aerogetformwerkzeug can be produced. The airgel mold may consist of silica aerogels or not working under reducing atmosphere of carbon aerogels.

K.E. Höner "Gießereiwesen", Ullmanns Encyklopädie der technischen Chemie, S. 271-287, Bd 12, 4. Auflage, Verlag Chemie Weinheim, 1976 stellt in einem Übersichtsartikel die verschienen Gießereiverfahren zwischen denen mit verlorener Form wozu das Form- und Feingießen gehört und denen mit Dauerform, wozu das Stranggießen gehört dar.K. E. Höner "Foundry Industry", Ullmanns Encyklopädie der technischen Chemie, P. 271-287, Bd 12, 4th edition, Verlag Chemie Weinheim, 1976 in a review of the various foundry processes between those with lost form what the molding and casting belongs and those with Permanent form, to which the continuous casting belongs.

Es ist daher Aufgabe der vorliegenden Erfindung die im Stand der Technik bekannten Verfahren zur Herstellung von Formstoffen für den Fein- und Formguss von Metallen und Metall-Legierungen zu vereinfachen, insbesondere die Verfahrensdauer der Trocknung zu reduzieren.It is therefore an object of the present invention to simplify the known in the prior art process for the production of moldings for the fine and cast molding of metals and metal alloys, in particular to reduce the duration of the drying process.

Die vorgenannte Aufgabe wird in einer ersten Ausführungsform gelöst durch einen Formstoff für den Fein- und Formguss von Metallen oder Metall-Legierungen umfassend hochporöse, offenporige Kunststoff- und/oder Kohlenstoffaerogele, erhältlich durch Sol-Gel-Polymerisation von organischen Kunststoffmaterialien gegebenenfalls gefolgt von teilweise oder vollständiger Pyrolyse des erhaltenen Kunststoffaerogels. The above object is achieved in a first embodiment by a Forming material for the fine and casting of metals or metal alloys comprising highly porous, open-pored plastic and / or carbon aerogels, available by sol-gel polymerization of organic plastic materials optionally followed by partial or complete pyrolysis of the obtained Kunststoffaerogels.

Der erfindungsgemäße Formstoff eignet sich besonders zum Einsatz in Wachsausschmelzverfahren und muß nicht, wie im Stand der Technik bei oxidischen Gelen, in mehreren Schritten aufgebracht werden.The molding material according to the invention is particularly suitable for use in lost wax casting processes and does not have, as in the prior art in oxidic Gels, applied in several steps.

Die so gewonnenen Formen werden nach üblichen Techniken mit Schmelze gefüllt und die Schmelze erstarrt. Bei den üblichen Gusstechniken, erfolgt die Wärmeableitung über die Formschale oder den Formsand. Gießen und Erstarren in Aerogelen bedeutet hingegen, da Kohlenstoffaerogele quasi adiabatisch sind, dass die Wärmeabfuhr einzig über Speiser und Steiger beziehungsweise speziell angebrachte Kühlkörper erfolgt, wozu geschickterweise die Steiger und Speiser selbst verwendet werden können, aber nicht müssen. Auf diese Weise ist eine vollständig gelenkte Erstarrung möglich und das Gefüge kann entsprechend dem erforderlichen Eigenschaftsspektrum angepasst werden. The forms thus obtained are filled with melt by conventional techniques and the melt solidifies. In the usual casting techniques, the heat dissipation takes place over the mold shell or the molding sand. Pour and solidify in On the other hand, aerogels, since carbon aerogels are quasi adiabatic, that the heat dissipation is unique to feeders and risers respectively attached heat sink is done, what cleverly the riser and feeder can be used by yourself, but do not have to. That way is one Fully controlled solidification possible and the structure can be adjusted according to the required property spectrum are adjusted.

Die erfindungsgemäß hergestellten Aerogelformen eignen sich insbesondere für das Gießen von Aluminiumlegierungen (wobei die Gussform praktisch nicht aufgeheizt werden muß, da keine Wärmeableitung durch sie selbst erfolgt). Dies erhöht die Wirtschaftlichkeit, da Energiekosten gesenkt werden können. Magnesium- und Titanlegierungen reagieren mit Kohlenstoff ebenfalls nicht, so dass sich diese Kohlenstoffaerogelformen auch für diese Legierungen unter Schutzgas oder Vakuum als Formstoff anbieten.The airgel forms produced according to the invention are particularly suitable for the casting of aluminum alloys (with the mold practically unheated must be because there is no heat dissipation by themselves). This increases the economy, because energy costs can be reduced. Magnesium- and titanium alloys also do not react with carbon, so that these carbon aerogels also for these alloys under inert gas or Offer vacuum as molding material.

Ein besonderer Vorteil der erfindungsgemäßen Formstoffe besteht darin, dass die Sol-Gel-Bildung bei Raumtemperatur, das heißt insbesondere bei Temperaturen unterhalb des Fließpunktes des Wachses innerhalb weniger Stunden abgeschlossen werden kann. Eine überkritische Trocknung, wie bei den rein anorganischen Gelen ist nicht erforderlich. Dennoch ist es möglich, die Porengröße im Mikrometerbereich einzustellen. Bei Trocknung im überkritischen Temperaturbereich sind darüber hinaus auch Porengrößen im Nanometerbereich möglich.A particular advantage of the molding materials according to the invention is that the Sol-gel formation at room temperature, that is, especially at temperatures completed within a few hours below the pour point of the wax can be. A supercritical drying, as with the purely inorganic Gels are not required. Nevertheless, it is possible to increase the pore size in the micrometer range adjust. For drying in the supercritical temperature range In addition, pore sizes in the nanometer range possible.

Die erfindungsgemäßen Formstoffe können darüber hinaus auch anorganische oder organische Füllstoffmaterialien enthalten. Hierunter werden im wesentlichen bei Erstarrungsbedingungen inerte stabile Materialien verstanden. Anorganische Füllstoffmaterialien sind beispielsweise ausgewählt aus Aluminiumoxid, Titandioxid und/oder Quarz, die jeweils in einer Menge von 5 bis 30 Vol.-%. eingesetzt werden können. Füllstoffe im Sinne der vorliegenden Erfindung umfassen weiterhin Fasermaterialien, die eine Faserverstärkung mit organischen, anorganischen oder Kohlenstoff- und/oder SiC-Fasern bei etwa gleichen Volumenanteilen erlauben.In addition, the molding materials according to the invention can also be inorganic or organic filler materials. These are essentially Under solidification conditions inert inert materials understood. inorganic Filler materials are, for example, selected from alumina, titania and / or quartz, each in an amount of 5 to 30% by volume. used can be. Fillers in the context of the present invention further include Fiber materials containing a fiber reinforcement with organic, inorganic or allow carbon and / or SiC fibers at about equal volume fractions.

In gleicher Weise ist es aber auch möglich, organische Füllstoffe, beispielsweise thermoplastische oder duroplastische Kunststoffpartikel, beispielsweise Polystyrol und/oder organische (Polyacrylnitril) Fasern einzusetzen. Hierbei ist jedoch zu beachten, dass bei der Pyrolyse der Kunststoffgele diese Materialien mit ausgeschmolzen oder verbrannt werden. Mit Hilfe solcher Materialien ist jedoch eine Kontrolle der Schrumpfung während der Pyrolyse möglich. In the same way, it is also possible to use organic fillers, for example thermoplastic or thermosetting plastic particles, for example polystyrene and / or organic (polyacrylonitrile) fibers. However, this is too Note that during pyrolysis of the plastic gels these materials are also melted out or burned. However, with the help of such materials is one Control of shrinkage during pyrolysis possible.

Besonders bevorzugt im Sinne der vorliegenden Erfindung werden für den Formstoff Kunststoffaerogele auf der Basis Resorcin/Formaldehyd eingesetzt, die bei geeigneter Zusammensetzung und geeignetem Gehalt an basischem Katalysator bei Temperaturen zwischen 20 und 50 °C ohne überkritisches Trocknen in ein mikrostrukturiertes Kunststoffaerogel überführt werden können. Durch Auswahl der Zusammensetzung ist die Sol-Gel-Polymerisation so einstellbar, dass beispielsweise zunächst eine hochviskose Flüssigkeit entsteht, die auf eine Wachsform aufgebracht werden kann. Dies ist auch in mehreren Arbeitsgängen möglich, so dass die Schichtdicke den Bedürfnissen der Anwendungen in der Gießerei angepasst werden kann.For the purposes of the present invention, particular preference is given to the molding material Plastic aerogels based on resorcinol / formaldehyde used in the suitable composition and suitable content of basic catalyst at temperatures between 20 and 50 ° C without supercritical drying in one microstructured plastic airgel can be transferred. By selection the composition of the sol-gel polymerization is adjustable so that, for example First, a highly viscous liquid is formed, which is on a wax mold can be applied. This is also possible in several operations, so that the layer thickness adapted to the needs of the applications in the foundry can be.

Somit besteht eine weitere Ausführungsform der vorliegenden Erfindung in einem Verfahren zur Herstellung von Gussformen für den Fein- und Formguss von Metallen oder Metall-Legierungen und der Verwendung von hochporösen, offenporigen Kunststoff- und/oder Kohlenstoffaerogelen, wobei man

  • a) eine Wachsform mit einem Kunststoffsol geeigneter Zusammensetzung und einem geeigneten Katalysator benetzt,
  • b) bei einer Temperatur unterhalb der Fließtemperatur des Wachses das Sol in ein Gel überführt,
  • b') gegebenenfalls eine oder weitere Schichten des Sols aufbringt und jeweils teilweise oder vollständig in die Gelform überführt,
  • c) das Gel bei einer Temperatur unterhalb des Fließpunktes des Wachses trocknet und
  • d) bei einer Temperatur oberhalb der Fließtemperatur des Wachses dieses aus dem erstarrten Gel ausschmilzt oder ausbrennt.
  • Thus, another embodiment of the present invention is a process for making molds for the casting and casting of metals or metal alloys and the use of highly porous, open-pored plastic and / or carbon aerogels, wherein:
  • a) wetting a wax mold with a plastic sol of suitable composition and a suitable catalyst,
  • b) at a temperature below the flow temperature of the wax, the sol is gelated,
  • b ') optionally applying one or more layers of the sol and in each case partially or completely converted into the gel form,
  • c) the gel dries at a temperature below the pour point of the wax and
  • d) at a temperature above the flow temperature of the wax this melts or burns out of the solidified gel.
  • Eine alternative Verfahrensweise zur Herstellung der Gussform besteht darin, dass man

  • a) einen Wachsformkörper in einen Behälter einbringt,
  • b) den Behälter teilweise oder vollständig mit einem Kunststoffsol auffüllt,
  • c) bei einer Temperatur unterhalb der Fließtemperatur des Wachses das Sol in die Gelform überführt,
  • d) das Gel bei einer Temperatur unterhalb der Fließtemperatur des Wachses trocknet und
  • e) bei einer Temperatur oberhalb der Fließtemperatur des Wachses dieses aus dem erstarrten Gel ausschmilzt oder ausbrennt.
  • An alternative procedure for the production of the mold is that
  • a) introducing a wax molding into a container,
  • b) partially or completely filling the container with a plastic sol,
  • c) at a temperature below the flow temperature of the wax, the sol is converted into the gel form,
  • d) the gel dries at a temperature below the flow temperature of the wax and
  • e) at a temperature above the flow temperature of the wax this melts or burns out of the solidified gel.
  • Somit ist es möglich, den Wachsformkörper einfach in einen geeigneten Behälter einzubringen, mit der Ausgangslösung für die Kunststoffaerogele aufzufüllen und dann das Verfahren der Aerogelherstellung durchzuführen.Thus, it is possible to simply place the wax molding in a suitable container to fill up with the starting solution for the plastic aerogels and then carry out the airgel production process.

    Auf diese Weise lassen sich analog zum bekannten Block-Mold-Verfahren (das im wesentlichen Gips verwendet) massive, aber leichte quasi-adiabatische Formen herstellen.In this way can be analogous to the known block-mold process (in the essential gypsum used) massive but light quasi-adiabatic forms produce.

    Die Temperatur der Umwandlung der Lösung in ein Kunststoffaerogel muß dem Schmelzpunkt des Wachses angepasst werden. Nach Umwandlung in ein Kunststoffaerogel kann das Wachs ausgeschmolzen werden und gleichzeitig dabei unter Luftabschluss die Konversion zu einem Kohlenstoffaerogel erfolgen. Abhängig von der Zusammensetzung der Ausgangslösung, der Gelierungstemperatur, der Dichte des entstehenden porösen Körpers lassen sich Gussformen herstellen, sowohl als Kunststoff- wie auch als Kohlenstoffaerogel, die auf einer Mikrometerskala oberflächlich glatt sind und konturscharf abbilden. Erfindungsgemäß benötigt die Herstellung von Formen bis zum Kunststoffaerogel meist 1 bis 3 Tage, häufig nur bis zu 24 Stunden. Die Pyrolysedauer ist bestimmt durch die Dicke der Gussformschale; bei einer Wanddicke von 1 cm beträgt die Zeit beispielsweise weniger als 24 Stunden, meist 10 Stunden. Im Vergleich zur Herstellung von typischen Feingussschalen unter Einsatz oxidischer Sol-Gel-Prozesse sind die Herstellungszeiten kurz und damit wirtschaftlich. Die Schrumpfung erfolgt in den beiden Prozessschritten immer isotrop und variiert von wenigen Prozent bis 20 % und ist daher beherrschbar. Sie lässt sich durch die Zusammensetzung des Sols, die Trocknungsbedingungen, das Formmaterial und Füllstoffe reduzieren und beeinflussen und ist somit beherrschbar. The temperature of the conversion of the solution into a plastic airgel must be Melting point of the wax can be adjusted. After conversion into one Plastic airgel, the wax can be melted out and at the same time Conversion into a carbon airgel takes place under exclusion of air. Dependent from the composition of the starting solution, the gelation temperature, The density of the resulting porous body can be used to produce molds both as a plastic and as a carbon airgel, on a micrometer scale are superficially smooth and form sharp contours. According to the invention requires the production of molds up to the plastic airgel usually 1 to 3 days, often only up to 24 hours. The pyrolysis time is determined by the thickness the mold shell; for example, with a wall thickness of 1 cm, the time is less than 24 hours, usually 10 hours. Compared to the production of typical investment casting shells using oxidic sol-gel processes are the Manufacturing times short and therefore economical. The shrinkage takes place in the both process steps is always isotropic and varies from a few percent to 20% and is therefore manageable. It can be explained by the composition of the sol, reduce and influence the drying conditions, the molding material and fillers and is therefore manageable.

    Beispielhaft sind die jeweiligen Verfahrensschritte zur Herstellung von Kunststoffaerogelformen wie folgt charakterisiert:

  • a) Block-Mold-Verfahren:
  • 1. Herstellung der Ausgangslösung (Resorcin, Formaldehyd, Wasser und basischer Katalysator);
  • 2. Lagerung des Wachsmodells in einer PTFE oder Glasform;
  • 3. Auffüllung des Behälters in 2. mit der Ausgangslösung (da das spezifische Gewicht der Wachsmodelle im allgemeinen geringer ist, als das der Lösung, muß die Form entsprechend beschwert werden (am besten an den Steigern und Speisem);
  • 4. Gelierung im Wasserbadthermostaten (hierbei sollte die Form dicht verschlossen sein, damit die Lösung ihre Zusammensetzung nicht verändert) oder in einem Luftumwälzer im Temperaturbereich von 20 bis 50 °C;
  • 5. Nach erfolgter Gelierung wird das noch nasse Gel in der geschlossenen Form bei der gleichen Temperatur getrocknet. Hierbei entsteht das mikrostrukturierte Kunststoffaerogel;
  • 6. Einbringen des Kunststoffaerogelblockes mit eingeschlossenem Wachsmodell in einem Pyrolyseofen, der ausreichend mit Schutzgas gespült wird. Aufheizen über ca. 3 Stunden auf 1050 °C und ca. 4 bis 24 Stunden halten bei dieser Temperatur. Die Form wird dabei so gestellt, dass das Wachs auslaufen kann.
  • b) Feingussformschalen:
  • 1. Identisch zu a) 1;
  • 2. Identisch zu Schritt a) 4. Hier kann die Gelierung gestoppt werden, um eine hochviskose Flüssigkeit zu behalten;
  • 3. Eintauchen des Wachsformkörpers in die teilgelierte Ausgangslösung und
  • 4. Endgelierung und Trocknung in einem Luftumwälzer bei ca. 40 °C;
  • 5. werden die Schritte 3. und 4. wiederholt (ohne vollständige Trocknung) lassen sich verschieden dicke Schichten aufbringen, denen die endgültige Trocknung und Überführung in ein Kunststoffaerogel im Luftumwälzer folgt;
  • 6. Identisch zu a) 6.
  • By way of example, the respective process steps for the production of plastic airgel forms are characterized as follows:
  • a) Block-mold process:
  • 1. Preparation of the starting solution (resorcinol, formaldehyde, water and basic catalyst);
  • 2. Storage of the wax model in a PTFE or glass mold;
  • 3. filling of the container in 2. with the starting solution (since the specific weight of the wax models is generally lower than that of the solution, the shape must be weighted accordingly (best on the risers and edible);
  • 4. Gelation in the water bath thermostat (in this case the mold should be tightly closed, so that the solution does not change its composition) or in an air circulator in the temperature range of 20 to 50 ° C;
  • 5. After gelation, the still wet gel is dried in the closed mold at the same temperature. This results in the microstructured plastic airgel;
  • 6. introducing the Kunststoffaerogelblockes with enclosed wax model in a pyrolysis furnace, which is sufficiently purged with inert gas. Heat up to 1050 ° C for about 3 hours and keep at this temperature for about 4 to 24 hours. The shape is set so that the wax can leak.
  • b) investment casting shells:
  • 1. Identical to a) 1;
  • 2. Identical to step a) 4. Here the gelation can be stopped to keep a highly viscous liquid;
  • 3. Immerse the wax molding in the partially gelled starting solution and
  • 4. Final gelling and drying in an air circulator at approx. 40 ° C;
  • 5. If steps 3. and 4. are repeated (without complete drying) layers of different thicknesses can be applied, followed by final drying and transfer to a plastic airgel in the air circulator;
  • 6. Identical to a) 6.
  • Ausführungsbeispiel:Embodiment:

    Eine Lösung aus 110 g Resorcin (Merck), 162 g Formaldehyd-Lösung (37 %ig, Merck), 0,075 g Na2CO3 und 750 ml Wasser wurde bei Zimmertemperatur mechanisch gerührt.A solution of 110 g of resorcinol (Merck), 162 g of 37% formaldehyde solution (Merck), 0.075 g of Na 2 CO 3 and 750 ml of water was mechanically stirred at room temperature.

    Ein Glasbehälter, in dem sich ein Wachsmodell (mit Stahlplatten beschwert) des Formkörpers befand, wurde mit der Lösung aufgefüllt, bis das Modell vollständig bedeckt war. Der Behälter wurde verschlossen. Innerhalb von zwei Stunden gelierte die Lösung in einem Luftumwälzer (Heraeus) bei 40 °C. Es wurde ein Farbumschlag der klaren Lösung nach ockergelb/hellbraun beobachtet. Die Trocknung des Gels wurde im Luftumwälzer im Verlauf von 24 Stunden erhalten. Anschließend wurde bei einer Temperatur von 60 °C das Wachs ausgeschmolzen.A glass container in which a wax model (weighted with steel plates) of the Shaped body was filled with the solution until the model completely was covered. The container was sealed. Gelled within two hours the solution in an air circulator (Heraeus) at 40 ° C. It was a color change the clear solution after ocher yellow / light brown observed. The drying of the gel was obtained in the air circulator over 24 hours. Subsequently At a temperature of 60 ° C, the wax was melted out.

    In einem weiteren Schritt wurde das Kunststöffaerogel in einem kalten Muffelofen eingebracht. Der Ofen wurde langsam (3 Stunden) auf 1050 °C aufgeheizt, wobei kontinuierlich Stickstoff (Argon oder ein anderes Schutzgas ist analog möglich) zur Vermeidung der Oxidation durchgeblasen wurde. Die Temperatur von 1050 °C wurde für 24 Stunden beibehalten.In a further step, the Kunststöffaerogel was in a cold muffle furnace brought in. The oven was heated slowly (3 hours) to 1050 ° C, whereby continuous nitrogen (argon or another inert gas is possible analogously) was blown to avoid oxidation. The temperature of 1050 ° C was maintained for 24 hours.

    Anschließend wurde unter stetigem Gasfluss abgekühlt und die Kohlestoffaerogelform entnommen.It was then cooled under steady gas flow and the Kohlestoffaerogelform taken.

    Claims (10)

    1. A molding material for the precision casting and dead-mold casting of metals or metal alloys comprising highly porous, open-pore plastic and/or carbon aerogels obtainable by sol-gel polymerization of organic plastic materials, optionally followed by the partial or complete pyrolysis of the obtained plastic aerogel.
    2. The molding material according to claim 1, containing inorganic or organic filler materials.
    3. The molding material according to claim 2, characterized in that said inorganic filler materials are selected from alumina, titanium dioxide and/or quartz, especially in an amount of from 5 to 30% by volume.
    4. The molding material according to claim 2, characterized in that said filler materials are selected from thermoplastic or thermosetting plastic particles, especially polystyrene.
    5. The molding material according to claim 2, characterized in that said filler materials comprise organic, inorganic carbon and/or SiC fibers.
    6. The molding material according to any of claims 1 to 5, comprising a resorcinol/formaldehyde sol-gel and a basic polymerization catalyst, especially ammonium hydroxide and/or sodium carbonate.
    7. A process for the preparation of casting molds for the precision casting and dead-mold casting of metals or metal alloys using highly porous, open-pore plastic and/or carbon aerogels, wherein:
      a) a wax mold is wetted with a plastic sol of appropriate composition and a suitable catalyst;
      b) the sol is transferred to a gel at a temperature below the flow temperature of the wax;
      b') optionally one or more layers of the sol are applied, which are each transferred to the gel form partially or completely;
      c) the gel is dried at a temperature below the flow point of the wax; and
      d) the wax is melted or burned from the solidified gel at a temperature above the flow temperature of the wax.
    8. A process for the preparation of casting molds for the precision casting and dead-mold casting of metals or metal alloys using highly porous, open-pore plastic and/or carbon aerogels, wherein:
      a) a wax molded part is inserted into a container;
      b) the container is filled partially or completely with a plastic sol;
      c) the sol is transferred to the gel form at a temperature below the flow temperature of the wax;
      d) the gel is dried at a temperature below the flow temperature of the wax; and
      e) the wax is melted or burned from the solidified gel at a temperature above the flow temperature of the wax.
    9. The process according to claim 7 or 8, characterized in that said drying of the gel is performed at a temperature within a range of from 20 to 50°C in the course of less than 24 hours.
    10. The process according to any of claims 7 to 8, characterized in that the pyrolysis of the solidified gel is performed at a temperature of at least 600 °C, especially at least 1000 °C, within 4 to 24 hours.
    EP00104214A 1999-03-17 2000-03-01 Investment and mould casting in carbon and organic aerogels Expired - Lifetime EP1036610B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19911847 1999-03-17
    DE19911847A DE19911847A1 (en) 1999-03-17 1999-03-17 Fine and molded casting in plastic / carbon aerogels

    Publications (2)

    Publication Number Publication Date
    EP1036610A1 EP1036610A1 (en) 2000-09-20
    EP1036610B1 true EP1036610B1 (en) 2005-08-31

    Family

    ID=7901270

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP00104214A Expired - Lifetime EP1036610B1 (en) 1999-03-17 2000-03-01 Investment and mould casting in carbon and organic aerogels

    Country Status (4)

    Country Link
    US (2) US6599953B1 (en)
    EP (1) EP1036610B1 (en)
    AT (1) ATE303214T1 (en)
    DE (2) DE19911847A1 (en)

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN104399446A (en) * 2014-11-06 2015-03-11 北京化工大学 TiO2/RFC composite microballoon supported photodegradant and preparation method thereof
    CN107498003A (en) * 2017-08-10 2017-12-22 合肥市田源精铸有限公司 A kind of processing method of light wear-resistant steel casting

    Families Citing this family (20)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19911847A1 (en) * 1999-03-17 2000-09-28 Deutsch Zentr Luft & Raumfahrt Fine and molded casting in plastic / carbon aerogels
    DE19939062A1 (en) * 1999-08-18 2001-02-22 Deutsch Zentr Luft & Raumfahrt Use of plastic / carbon aerogels as the core material
    US6806299B2 (en) * 2001-05-18 2004-10-19 The Regents Of The University Of California Preparation of hydrophobic organic aeorgels
    DE10216403B4 (en) * 2002-04-12 2004-03-18 Deutsches Zentrum für Luft- und Raumfahrt e.V. Airgel-bound molded materials with high thermal conductivity
    DE10352574A1 (en) * 2003-11-11 2005-06-16 Deutsches Zentrum für Luft- und Raumfahrt e.V. Filler containing aerogels
    DE102004027382B4 (en) * 2004-06-04 2006-03-09 Deutsches Zentrum für Luft- und Raumfahrt e.V. Carbon aerogel sand used as a core material for dead-mold casting to produce cylinder heads and hydraulic lines contains foundry sand and has a specified temperature of thermal decomposition of in the presence of an oxidant
    WO2006010449A2 (en) * 2004-07-23 2006-02-02 Ceramtec Ag Innovative Ceramic Engineering Ceramic cores
    US20070089849A1 (en) * 2005-10-24 2007-04-26 Mcnulty Thomas Ceramic molds for manufacturing metal casting and methods of manufacturing thereof
    US8851442B2 (en) * 2008-01-22 2014-10-07 Honeywell International Inc. Aerogel-bases mold for MEMS fabrication and formation thereof
    DE102008056856A1 (en) * 2008-11-12 2010-05-20 Deutsches Zentrum für Luft- und Raumfahrt e.V. Foundry cores with improved gutting properties I
    US8293657B2 (en) 2010-11-05 2012-10-23 Honeywell International Inc. Sacrificial layers made from aerogel for microelectromechanical systems (MEMS) device fabrication processes
    CN102351506B (en) * 2011-07-18 2013-04-10 南京工业大学 Preparation method of block high temperature resistant silicon-charcoal composite aerogel material
    CN102343285B (en) * 2011-07-18 2013-04-10 南京工业大学 Preparation method of blocky silicon-carbon composite aerogel
    CN104246138B (en) 2012-04-23 2016-06-22 通用电气公司 There is turbine airfoil and turbo blade that local wall thickness controls
    DE102015225227A1 (en) * 2015-12-15 2017-06-22 Robert Bosch Gmbh Feeder for castings consisting in particular of cast iron
    DE102016223619A1 (en) * 2015-12-15 2017-06-22 Robert Bosch Gmbh Sizing for application to the porous surface of molds and / or cores for metal casting
    CN110114390A (en) * 2016-10-24 2019-08-09 蓝移材料有限公司 Fiber reinforcement organic polymer aeroge
    WO2018140804A1 (en) 2017-01-26 2018-08-02 Blueshift International Materials, Inc. Organic polymer aerogels comprising microstructures
    BG67252B1 (en) * 2017-06-27 2021-02-15 Е.Миролио ЕАД Method of obtaining a viscous artificial silk with variable thickness, a product obtained by this method and an installation for the implementation of the method
    CN109675620B (en) * 2017-10-18 2021-07-09 中国石油化工股份有限公司 Cobalt-containing catalyst, preparation method and application thereof

    Family Cites Families (8)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4873218A (en) * 1988-05-26 1989-10-10 The United States Department Of Energy Low density, resorcinol-formaldehyde aerogels
    US5242647A (en) * 1990-08-23 1993-09-07 Regents Of The University Of California Method of casting aerogels
    DE19523382C2 (en) * 1995-06-30 2003-04-30 Jochen Fricke Carbon aerogels and processes for their manufacture
    WO1997017308A1 (en) * 1995-11-09 1997-05-15 Aspen Systems, Inc. Flexible aerogel superinsulation and its manufacture
    WO1997043116A1 (en) * 1996-05-15 1997-11-20 Hyperion Catalysis International, Inc. Rigid porous carbon structures, methods of making, methods of using and products containing same
    DE19721600A1 (en) * 1997-05-23 1998-11-26 Hoechst Ag Gel materials comprising interpenetrating organic and inorganic networks
    DE19738466C1 (en) * 1997-09-03 1998-12-24 Deutsch Zentr Luft & Raumfahrt Continuous casting apparatus
    DE19911847A1 (en) * 1999-03-17 2000-09-28 Deutsch Zentr Luft & Raumfahrt Fine and molded casting in plastic / carbon aerogels

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN104399446A (en) * 2014-11-06 2015-03-11 北京化工大学 TiO2/RFC composite microballoon supported photodegradant and preparation method thereof
    CN107498003A (en) * 2017-08-10 2017-12-22 合肥市田源精铸有限公司 A kind of processing method of light wear-resistant steel casting

    Also Published As

    Publication number Publication date
    US6599953B1 (en) 2003-07-29
    US6887915B2 (en) 2005-05-03
    DE50011046D1 (en) 2005-10-06
    ATE303214T1 (en) 2005-09-15
    EP1036610A1 (en) 2000-09-20
    US20030212152A1 (en) 2003-11-13
    DE19911847A1 (en) 2000-09-28

    Similar Documents

    Publication Publication Date Title
    EP1036610B1 (en) Investment and mould casting in carbon and organic aerogels
    EP2244870B1 (en) Production of molded parts for casting purposes
    AU595567B2 (en) Mold core for investment casting, process for preparing the same and process for preparing mold for investment casting having therewithin said mold core
    KR940011096A (en) Process for producing non-porous carbon foundry sand and cast metal
    DE1262515B (en) Thermally insulated molds
    DE2219163A1 (en) Investment casting process
    EP1077097B1 (en) Use of plastic and/or carbon aerogels as core material
    DE2520993C3 (en) Refractory mass on the basis of silicic acid anhydride and its use for the production of the lining of a pouring funnel and a method for treating such a lining
    EP1820582B1 (en) Aerogel containing core for light alloy and/or lost wax casting
    DE10216403B4 (en) Airgel-bound molded materials with high thermal conductivity
    DE10216464B4 (en) Silica-bonded core materials, processes for their production and their use
    EP0143954B1 (en) Process for manufacturing mould parts according to the cold-box method and moulding apparatus used
    DE102011010548A1 (en) Inorganic binding agent useful for producing molds and cores for casting of liquid metals, and for producing composite structures, comprises non-self-curing, aqueous alkali silicate solution
    WO2002064285A2 (en) Casting mould
    EP0958260B1 (en) Method for producing ceramic or powder-metallurgy components
    DE4442884B4 (en) Process for the production of a shaped body
    DE3629079A1 (en) Method for the precision casting of castings in a ceramic shell mould
    EP3852950A1 (en) Casting core for casting molds and method for the production thereof
    DE102005011019A1 (en) Manufacture of destructible mold core for metal casting entails use of porously designed original form which is produced by means of rapid prototyping method
    DE19703176C2 (en) Process for the production of ceramic or powder metallurgical components
    DE102005053627B4 (en) Process for the manufacture of ceramic products
    WO2020058394A1 (en) Casting core for casting moulds and method for the production of same
    WO2020058402A1 (en) Casting core for casting moulds, and method for the production thereof
    DE2459088C3 (en) Monolithic mold for precision casting with a lost model
    DE1583551C (en) Manufacturing process of casting molds for the manufacture of precision castings using lost models

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT CH DE FR GB IT LI

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 20001124

    AKX Designation fees paid

    Free format text: AT CH DE FR GB IT LI

    17Q First examination report despatched

    Effective date: 20041014

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT CH DE FR GB IT LI

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 50011046

    Country of ref document: DE

    Date of ref document: 20051006

    Kind code of ref document: P

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: RITSCHER & PARTNER AG

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20051024

    ET Fr: translation filed
    RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

    Owner name: DEUTSCHES ZENTRUM FUER LUFT- UND RAUMFAHRT E.V.

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20060601

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PFA

    Owner name: DEUTSCHES ZENTRUM FUER LUFT- UND RAUMFAHRT E.V.

    Free format text: DEUTSCHES ZENTRUM FUER LUFT- UND RAUMFAHRT E.V.# #53175 BONN (DE) -TRANSFER TO- DEUTSCHES ZENTRUM FUER LUFT- UND RAUMFAHRT E.V.#LINDER HOEHE#51147 KOELN (DE)

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PCAR

    Free format text: RITSCHER & PARTNER AG;RESIRAIN 1;8125 ZOLLIKERBERG (CH)

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20100325

    Year of fee payment: 11

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20100325

    Year of fee payment: 11

    Ref country code: FR

    Payment date: 20100331

    Year of fee payment: 11

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20100322

    Year of fee payment: 11

    Ref country code: GB

    Payment date: 20100324

    Year of fee payment: 11

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20110301

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110301

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20111130

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110331

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110331

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110331

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110301

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110301

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20190215

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20190215

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 50011046

    Country of ref document: DE