EP0975003B1 - Téléviseur-couleur ou moniteur en couleur à écran plat - Google Patents

Téléviseur-couleur ou moniteur en couleur à écran plat Download PDF

Info

Publication number
EP0975003B1
EP0975003B1 EP98113322A EP98113322A EP0975003B1 EP 0975003 B1 EP0975003 B1 EP 0975003B1 EP 98113322 A EP98113322 A EP 98113322A EP 98113322 A EP98113322 A EP 98113322A EP 0975003 B1 EP0975003 B1 EP 0975003B1
Authority
EP
European Patent Office
Prior art keywords
color
electron
deflection
screen
electron beams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98113322A
Other languages
German (de)
English (en)
Other versions
EP0975003A1 (fr
Inventor
Johann Mitrowitsch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PSI Esslingen GmbH
Original Assignee
Matsushita Electronics Europe GmbH
Matsushita Display Devices Germany GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Europe GmbH, Matsushita Display Devices Germany GmbH filed Critical Matsushita Electronics Europe GmbH
Priority to EP98113322A priority Critical patent/EP0975003B1/fr
Priority to DE59807070T priority patent/DE59807070D1/de
Priority to US09/351,513 priority patent/US6483558B1/en
Publication of EP0975003A1 publication Critical patent/EP0975003A1/fr
Application granted granted Critical
Publication of EP0975003B1 publication Critical patent/EP0975003B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/70Arrangements for deflecting ray or beam

Definitions

  • the invention relates to a color television set or a color monitor with a flat screen.
  • Color television sets and (computer) monitors are used to convert electrical signals into color images. Both television sets and monitors nowadays generally have an interface for various video signal formats (such as composite signals, analog or digital component signals). These signals are converted into analog RGB signals in a television set and a monitor for controlling a picture tube.
  • the video signals fed to a television set or a monitor are each converted in such a way that the video signal to be displayed contains brightness or color values for each individual pixel of a display screen.
  • three electron beams (one for each of the basic colors of the additive color mixture: red, green, blue) are generated in a color image display tube of a color television set or monitor and, depending on the position of the pixel information in the video signal, on the corresponding pixel distracted the fluorescent screen of the color picture tube.
  • the fluorescent screen of such a color picture tube consists of approximately 400,000 color triples, which are arranged in groups of three fluorescent dots, each with a red, a green and a blue fluorescent spot. The diameter of such a light spot is approximately 0.3 mm. Each of these points is from one of the three Illuminated electron beams generated by the electron gun in the neck of the color picture tube.
  • the electron beams are deflected by a deflection unit such that they hit all the pixels of the luminescent screen one after the other.
  • the color picture tube At a distance of about 15 mm from the fluorescent screen, there is a shadow mask inside the color picture tube, which has a hole in precise association with each color triple.
  • the holes with a diameter of about 0.25 mm are etched into the shadow mask at regular intervals.
  • the three electron beams meet in the shadow mask's hole, which is controlled by the common beam deflection, and fall on the fluorescent spots of the fluorescent screen located behind it.
  • the majority of the electrons generated by the electron beam generation system land on the shadow mask. This leads to a heating up and corresponding expansion of the shadow mask, the position of the holes in particular at the edge of the mask being able to shift relative to the phosphor dots of the fluorescent screen. Due to such a shift, the color purity is usually deteriorated, since each of the three electron beams may only strike the phosphor point of the phosphor screen assigned to it.
  • shadow masks in the form of stripe masks are also used.
  • the fluorescent screen of a color picture tube is not provided with fluorescent dots, but with fluorescent strips. Accordingly, the shadow mask has strip-shaped openings for the individual electron beams, which are each assigned to the strips on the fluorescent screen.
  • the three electron beams In order for the color separation images to appear congruent, the three electron beams must always hit the corresponding phosphor dots of a color triple over the entire fluorescent screen area. Therefore, the convergence of the 3 electron beams depends on the location of their point of impact set on the fluorescent screen of a picture tube, ie depending on the deflection (so-called dynamic convergence).
  • a known solution to this problem are so-called tension masks. With them it is possible to use shadow masks for absolutely flat screens.
  • the shape of these masks is determined in that they are mechanically prestressed either only in the vertical direction or simultaneously in the vertical and horizontal directions. This results in either flat or cylindrical shapes.
  • This mask remains dimensionally stable as long as the thermal expansion of the mask does not compensate for the mechanical preload during operation.
  • a disadvantage of this solution is that the generation of the high mechanical pretension requires very massive mask frame constructions. This increases both the cost and the weight of a color television set or monitor.
  • the use of conventionally shaped masks would also be desirable for televisions and monitors with a flat screen.
  • the distance between the mask and the fluorescent screen increases extremely with increasing distance from the center of the screen. Accordingly, the distance between the individual luminous dots of a color triplet on the luminescent screen increases in the direction of the edges of a screen, so that individual fluorescent dots or stripes become clearly disruptive to the observer in the edge areas (in picture tubes with an aspect ratio of 16: 9, especially in the lateral edge areas).
  • a cathode ray tube is known from WO-A-97/44808, in which the angle of incidence of the outer electron beams is corrected with the aid of an electron lens system. A deviation of the points of incidence of the outer electron beams is caused by their mutual influence.
  • correction elements are provided which are controlled by a control circuit which calculates the required signal correction based on the magnitude of the cathode current.
  • WO-A-92/02033 describes a cathode ray tube with magnetic quadrupoles for correcting the size and shape of the impingement points of the electron beams.
  • a stigmator is provided which compensates for an elliptical shape of the impact points caused by the deflection in the deflection direction. This compensation takes place via a control circuit based on the respective position of the impact points on the fluorescent screen.
  • a color television set or a color monitor contains a device, in particular an electron lens system, which detects the mutual distance of the in one Electron beam generating system can change generated electron beams.
  • the shadow mask between the center of the screen and the edge of the screen can be curved more than conventional, even with a flat fluorescent screen.
  • curved masks can be used for flatter or even absolutely flat screens without the need to use special mask materials (e.g. Invar) or a larger screen pitch, i.e. a coarser resolution in the marginal areas, must be accepted.
  • special mask materials e.g. Invar
  • a larger screen pitch i.e. a coarser resolution in the marginal areas
  • the mutual distance of the electron beams is preferably set according to the following formula: s ⁇ Tri / 3 * (Ias-q) / q
  • This formula indicates that the mutual distance of the electron beams in the convergence plane is proportional to the desired size of the triple dimensions Tri and the ratio of the distance between the convergence plane and the mask to the distance between the mask and the luminescent screen.
  • an electron lens system that can bring about a variable distance between the electron beams is brought about by a double magnetic quadrupole, which is arranged in the vicinity of the deflection plane.
  • a double magnetic quadrupole With such a quadrupole, the two marginal rays of the electron beams generated by the electron beam system become corresponding to the deflection influenced by the deflection field of the deflection unit.
  • Such a double magnetic quadrupole has the advantage that the desired change in the spacing of the electron beams can be achieved in a particularly simple manner.
  • Another advantageous implementation possibility is the use of a double controllable electrostatic deflection element, e.g. in the electron gun.
  • the distances can also be influenced in a targeted manner with such a deflection element.
  • An advantageous combination of the advantages of magnetic or electrostatic elements described above is a combination of an electrical and a magnetic quadrupole / deflection element. Such a solution represents an advantageous compromise between the inexpensive implementation using magnetic quadrupoles and the advantageous controllability using electrostatic deflection elements represents.
  • Another alternative implementation is to integrate the quadrupole functions into the deflection unit, the deflection unit specifically deviating from the ideal dynamic convergence and at the same time correcting this deviation by means of an electrostatic or magnetic quadrupole / deflection element. In this way too, a favorable implementation can be combined with a targeted influencing of the change in the distance between the electron beams.
  • FIGS. 1 to 5 each show electron beams 6 to 8 which are at a distance s from one another.
  • FIG. 6 shows the basic structure of a television set or monitor according to the invention.
  • a video signal 40 with an image signal to be displayed on the fluorescent screen 3 of the television set or monitor is fed to a video signal processing device 41.
  • This video signal processing device 41 converts the input video signal 40 so that the electron beam generating system 42 is supplied with the brightness or color information of the three color signals (red, green, blue).
  • the corresponding horizontal and vertical synchronization pulses 44 are fed to a deflection control 45.
  • the vertical synchronization pulses synchronize the image change
  • the horizontal synchronization pulses ensure that the line grid of the image to be displayed is synchronized.
  • This deflection controller 45 controls the deflection of the electron beams generated by the electron gun 42 so that the electron beams are deflected to the pixel of the fluorescent screen 3, for which the brightness or color information from the video signal processing device 41 is forwarded to the electron gun 42 at the same time.
  • the deflection control 45 ensures that the brightness and color information of the video signal processing device 41 is assigned to the correct pixel of the fluorescent screen 3 of the color picture tube 43.
  • the deflection control signals 47 are fed to the deflection unit 46.
  • This deflection device changes the direction of the electron beams by an electric or magnetic field. In the vast majority of cathode ray tubes 43, the beam deflection takes place magnetically.
  • the deflection unit 46 is used to generate the required fields generally has two coil sections for horizontal deflection and two coil sections for vertical deflection.
  • the shadow mask 1 is curved significantly more than the fluorescent screen 3. That is, despite a flat screen 2, a conventionally curved shadow mask 1 can be used .
  • the distance between the three electron beams is also changed as a function of the deflection angle. Since the distance between shadow mask 1 and luminescent screen 3 is particularly large, particularly in the edge regions of the screen, when using conventionally curved shadow masks 1, the distance between appropriately deflected electron beams is reduced with the aid of an additional electron lens system 49.
  • the distance variation of the electron beams is controlled by the electron lens system 49 via an electron lens system controller 48 as a function of the deflection (deflection signal 47) of the electron beams or the synchronization pulses 44.
  • Electron lens systems contain electron lenses that represent electrostatic and / or magnetic fields, the force of which acts on moving electrons.
  • the setting of the distance of the electron beams by means of the electron lens system 49 is decoupled from the setting of the convergence of the electron beams or independently of the influence on the angle of incidence of the marginal beams of the three electron beams on the screen plane.
  • the marginal rays of the For in-line electron gun systems three electron beams are usually the electron beams that strike the red and blue color pixels of the screen plane.
  • FIGS. 1 to 4 show the electron beams 6-8 generated by the electron beam generating system, each with two different deflections.
  • the electron beams 6 to 8 that hit the center 5 of the screen are shown bright.
  • the electron beams 9 to 11 are shown dark, which impinge on a color triplet 4 in the edge region of the screen.
  • the fluorescent screen 3 with the luminous dots or luminous strips is applied to the inside of the front screen glass body 2.
  • the shadow mask 1 At a certain distance from the luminescent layer 3 is the shadow mask 1 with holes 12, 13, which are each assigned to one of the color triplets 4, 5 on the luminescent screen 3.
  • the frame with which the mask 1 is held in its position within the color picture tube is not shown.
  • the curvature of the shadow mask 1 corresponds approximately to the curvature of the fluorescent screen 3 on the inside of the screen 2. Because of this curvature of the fluorescent screen 3, the shadow mask 1 can have a corresponding curvature, so that the distance between the shadow mask 1 and the fluorescent screen 3 from the center of the screen to the Marginal areas increases only slightly. This makes it easy to achieve a small screen pitch even in the peripheral areas.
  • Fig. 2 shows a conventional solution for realizing a flat screen 2. Also in this case, the distance between the fluorescent screen 3 and shadow mask 1 must remain approximately constant so that the screen pitch 4, 5 in the edge areas of the Fluorescent screen 3 does not exceed a certain size. It is therefore necessary for the shadow mask 1 to have a significantly smaller curvature than in FIG. 1. The production of a shadow mask 1 with such a slight curvature causes considerable technical problems, since extremely flat shadow masks 1 are extremely sensitive to mechanical stress and, moreover, deform strongly during normal operation during local heating.
  • FIG. 3 shows a flat screen 2 with a conventionally curved mask 1.
  • Such an arrangement is easy to manufacture, but leads to a lower resolution in the edge areas of the luminescent screen 3. While in FIG. 2 the mask openings 12, 13 in the center of the picture and at the edge of the picture lie at approximately the same distance from the luminescent screen 3 and are accordingly small Generate screen pitches 4, 5, the mask opening 12 shown further in the interior of the color picture tube leads to a significantly enlarged screen pitch 4.
  • Such an arrangement would be inexpensive to manufacture, but unacceptable to the viewer due to its poor resolution in the edge areas.
  • FIG. 3 shows the construction of a color picture tube in accordance with the invention.
  • a conventionally curved shadow mask 1 and a flat screen 2 are used according to the invention.
  • the distance between the electron beams 9 to 11 generated is reduced when the electron beams 9 to 11 hit a triple color in the edge region of the fluorescent screen 3.
  • the distance between the generated electron beams 6 to 8 remains unchanged, however, when the electron beams hit a color triplet 5 in the center of the luminescent screen 3.
  • a color picture tube according to the invention have an electron lens system in the vicinity of the deflection unit or the electron gun.
  • This electron lens system influences the distance between the electron beams generated by the electron beam generation system as a function of the respective deflection angle or the respective point of impact 4, 5 of the electron beams 9 to 11 on the fluorescent screen 3.
  • the mutual distance between the electron beams is changed without influencing the convergence of the beams in the screen plane.
  • the electron beams 20 to 22 are generated in an electron beam generating system, not shown, and are at a distance s from one another in the convergence plane 32. Without deflection, the electron beams hit the fluorescent screen 3 in the screen plane 36 as pixel triples 26 to 28.
  • the mask has a normal Q distance 30 from the screen plane 36.
  • the triple dimensions Tri change directly proportional to the distance s of the electron beams 20-22. That by reducing the mutual distance s of the electron beams 20-22, the dimensions Tri of a color triple can be reduced accordingly.
  • the best imaging properties, in particular color purity, are achieved when the triple dimensions Tri match the horizontal screen pitch Ps (distance of the same color stripes or luminous dots).
  • Table 1 Comparison of a 29 "super flat Invar tube 3.5 R after conventional design and a picture tube with flat screen and construction according to the invention.
  • Conventional color picture tube flat color picture tube according to the present invention la 278 mm 278 mm read 345 mm 345 mm s 5.5 mm sm 5.5 mm se 2.8 mm square meter 15 mm 15 mm Qe 18 mm 31 mm Trim 0.80 mm 0.80 mm Trie 0.98 mm 1.04 mm pm 0.75 mm 0.75 mm Pe 0.87 mm 0.87 mm
  • quadrupoles are used to control the distance between the electron beams.
  • 7 shows the structure of a magnetic quadrupole with four field generating devices (coils) 50.
  • the electron beams move longitudinally through the cylindrical space shown in FIG. 7, which is enclosed by the field generating devices 50.
  • Each of the adjacent field generating devices 50 generates an opposite magnetic field.
  • the field strength is represented by arrows in FIG. 7.
  • the further electron beams are moved from the central axis of the cylinder during the movement through the cylinder, the more they are deflected either inwards to the central axis or outwards away from the central axis.
  • Quadrupoles connected in series, in which the electron beams in the edge regions move successively through a focusing and a defocusing region (or in reverse order), allow the distance between the electron beams to be changed.
  • Such magnetic quadrupoles surround the tube neck and thus the electron beam generating system from the outside.
  • electrostatic electron-optical lenses are an integral part of the electron gun.

Landscapes

  • Video Image Reproduction Devices For Color Tv Systems (AREA)

Claims (11)

  1. Téléviseur-couleur ou moniteur en couleur, comportant :
    un tube à rayonnement cathodique (43) avec
       un système de génération de rayons d'électrons (42) pour produire plusieurs rayons d'électrons (6 à 8) pour restituer un signal vidéo (40), les rayons d'électrons (6 à 8) présentant un espacement (s) mutuel déterminé les uns par rapport aux autres,
       un masque d'occultation (1), et
       un écran lumineux (3),
    une unité déviatrice (46) pour dévier conjointement les rayons d'électrons (6 à 8) du système de génération de rayons d'électrons (42), en direction horizontale et verticale,
    une commande de déviation (45) pour commander le signal de déviation (46) en fonction des impulsions de synchronisation (44) du signal vidéo (40),
    un système de lentilles électroniques (49) pour influer sur l'espacement (s) mutuel des rayons d'électrons (6 à 8), prévu dans la zone de l'unité déviatrice (46) ou du système de génération de rayons d'électrons (42) du tube à rayonnement cathodique (43), et
    une commande de système de lentilles électroniques (48), commandant le système de lentilles électroniques (49) en fonction du signal vidéo,
       caractérisé en ce que l'écran lumineux (3) est un écran lumineux pratiquement plat, et
    la commande de système de lentilles électroniques (48) règle l'espacement mutuel des rayons d'électrons (6 à 8) en fonction des signaux de commande (47) de la commande de déviation (45) ou des impulsions de synchronisation (44) du signal vidéo (40), à peu près proportionnellement au rapport entre l'espacement (Ias) du plan de convergence (32) et de l'écran lumineux (3) par rapport à l'espacement (q) du masque d'occultation (1) et de l'écran lumineux (3).
  2. Téléviseur-couleur ou moniteur en couleur selon la revendication 1, caractérisé en ce que la commande de système à lentilles électroniques (48) règle l'espacement mutuel (s) des rayons d'électrons (6 à 8) selon la formule suivante : s ≈ Tri/3 * (Ias-q)/q où, dans la formule :
    s -   désigne l'espacement mutuel des rayons d'électrons (6 à 8),
    Tri -   désigne des dimensions triples,
    Ias -   désigne l'espacement entre le plan de convergence (32) et l'écran lumineux (3), et
    Q -   désigne l'espacement entre le masque d'occultation (1) et l'écran lumineux (3).
  3. Téléviseur-couleur ou moniteur en couleur selon la revendication 1 ou 2, caractérisé en ce que le système à lentilles électroniques (42) est réalisé par un quadripôle magnétique double monté à proximité du plan de déviation (33) de l'unité déviatrice (46).
  4. Téléviseur-couleur ou moniteur en couleur selon la revendication 3, caractérisé en ce que le quadripôle magnétique double influe sur les rayons limitrophes (21, 22) des rayons d'électron (20 à 22) générés par le système de génération de rayons d'électrons (42), par un effet synchrone envers le champ déviateur de l'unité déviatrice (46).
  5. Téléviseur-couleur ou moniteur en couleur selon la revendication 1 ou 2, caractérisé en ce que le système à lentilles électroniques (49) est réalisé par un élément déviateur électrostatique pouvant être commandé, double.
  6. Téléviseur-couleur ou moniteur en couleur selon la revendication 1 ou 2, caractérisé en ce que le système à lentilles électroniques (49) est réalisé par une combinaison d'un élément déviateur électrostatique et d'un quadripôle magnétique.
  7. Téléviseur-couleur ou moniteur en couleur selon la revendication 1 ou 2, caractérisé en ce que le système à lentilles électroniques (49) est réalisé par intégration d'une fonction quadripôle dans l'unité déviatrice (46).
  8. Téléviseur-couleur ou moniteur en couleur selon la revendication 7, caractérisé en ce que l'intégration de la fonction quadripôle dans l'unité déviatrice (46) est obtenue par un écart, produit à dessein, par rapport à la convergence dynamique idéale et une correction simultanée de cet écart au moyen d'un élément déviateur électrostatique ou d'un quadripôle magnétique, dans un autre plan.
  9. Téléviseur-couleur ou moniteur en couleur selon l'une des revendications 3 à 8, caractérisé en ce que le premier plan de quadripôle (34) et le deuxième plan de quadripôle (35) présentent un espacement minimal mutuel déterminé.
  10. Téléviseur-couleur ou moniteur en couleur selon l'une des revendications 3 à 8, caractérisé en ce que l'effet des deux quadripôles, du point de vue de la convergence statique et dynamique, s'annule.
  11. Téléviseur-couleur ou moniteur en couleur selon l'une des revendications 1 à 10, caractérisé en ce que l'espacement entre le masque d'occultation (1) et l'écran lumineux (3) augmente lorsque la distance par rapport au point central de l'écran lumineux (5) augmenté.
EP98113322A 1998-07-16 1998-07-16 Téléviseur-couleur ou moniteur en couleur à écran plat Expired - Lifetime EP0975003B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP98113322A EP0975003B1 (fr) 1998-07-16 1998-07-16 Téléviseur-couleur ou moniteur en couleur à écran plat
DE59807070T DE59807070D1 (de) 1998-07-16 1998-07-16 Farbfernsehgerät oder Farbmonitor mit flachem Bildschirm
US09/351,513 US6483558B1 (en) 1998-07-16 1999-07-12 Color television receiver or color monitor having a flat screen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP98113322A EP0975003B1 (fr) 1998-07-16 1998-07-16 Téléviseur-couleur ou moniteur en couleur à écran plat

Publications (2)

Publication Number Publication Date
EP0975003A1 EP0975003A1 (fr) 2000-01-26
EP0975003B1 true EP0975003B1 (fr) 2003-01-29

Family

ID=8232291

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98113322A Expired - Lifetime EP0975003B1 (fr) 1998-07-16 1998-07-16 Téléviseur-couleur ou moniteur en couleur à écran plat

Country Status (3)

Country Link
US (1) US6483558B1 (fr)
EP (1) EP0975003B1 (fr)
DE (1) DE59807070D1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW428200B (en) * 1998-12-01 2001-04-01 Koninkl Philips Electronics Nv Colour display device with a deflection-dependent distance between outer beams
JP2000228156A (ja) * 1999-02-05 2000-08-15 Toshiba Corp 陰極線管装置
EP1209718A1 (fr) * 2000-11-22 2002-05-29 Hitachi, Ltd. Tube image couleur
FR2895145A1 (fr) * 2005-12-16 2007-06-22 Thomson Licensing Sas Systeme de convergence de faisceaux electroniques de tubes a rayons cathodiques

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997044808A1 (fr) * 1996-05-21 1997-11-27 Philips Electronics N.V. Dispositif d'affichage couleur avec elements influençant l'angle de reception

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3761763A (en) * 1971-05-17 1973-09-25 Denki Onkyo Co Ltd Color television picture tube apparatus
GB1449700A (en) * 1974-10-18 1976-09-15 Balandin G D Cathode-ray tube with variable energy of beam electrons
IT1193827B (it) * 1978-10-13 1988-08-24 Rca Corp Complesso di regolazione della convergenza utilizzante barrette magnetiche suscettibili di movimenti differenziali
US4887009A (en) * 1986-02-12 1989-12-12 Rca Licensing Corporation Color display system
US4864195A (en) * 1988-05-05 1989-09-05 Rca Licensing Corp. Color display system with dynamically varied beam spacing
DE69020478T2 (de) * 1989-10-02 1996-02-22 Philips Electronics Nv Farbbildröhrensystem mit reduziertem Fleckwachstum.
US5327051A (en) * 1990-07-19 1994-07-05 Rca Thomson Licensing Corporation Deflection system with a pair of quadrupole arrangements
JP3339059B2 (ja) * 1991-11-14 2002-10-28 ソニー株式会社 陰極線管
US5248920A (en) * 1992-10-13 1993-09-28 Zenith Electronics Corporation Cathode ray tube dynamic electron-optic eyebrow effect distortion correction

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997044808A1 (fr) * 1996-05-21 1997-11-27 Philips Electronics N.V. Dispositif d'affichage couleur avec elements influençant l'angle de reception

Also Published As

Publication number Publication date
DE59807070D1 (de) 2003-03-06
US6483558B1 (en) 2002-11-19
EP0975003A1 (fr) 2000-01-26

Similar Documents

Publication Publication Date Title
DE69531907T2 (de) Farbkathodenstrahlröhre mit niedrigen dynamischen Fokussierspannung
DE69422082T2 (de) Farbkathodenstrahlröhrevorrichtung
DE2223818C3 (de) Selbstkonvergierende Farbbildwiedergabeeinrichtung
AT391380B (de) Selbstkonvergierendes ablenkjoch
DE4109855A1 (de) Kathodenstrahlroehre mit verbessertem schirmtraeger mit einem seitenverhaeltnis von 16 x 9
DE69502062T2 (de) Farbkathodenstrahlröhre
DE69600022T2 (de) Farbkathodenstrahlröhre
DE2544294B2 (de) Farbbildsichtgeraet
DD262525A5 (de) Farbbild-wiedergabesystem
DD259059A5 (de) Farbbild-wiedergabesystem
DE69505846T2 (de) Kathodenstrahlröhrenvorrichtung
DE68917948T2 (de) Flache Bildwiedergabevorrichtung mit Kathodenstrahlröhre.
EP0975003B1 (fr) Téléviseur-couleur ou moniteur en couleur à écran plat
DE69404960T2 (de) Farbkathodenstrahlröhrevorrichtung
DE69618564T2 (de) Farbanzeigevorrichtung mit anordnung zur korrektur von landungsfehlern
DE2824881A1 (de) Elektronenstrahlablenkungskorrigierte farbfernseh-bildroehre
DE2520830A1 (de) Farbfernsehempfaenger
DE69720694T2 (de) Farbkathodenstrahlröhre
DE3743985C2 (de) Kathodenstrahlröhre
EP0556695B1 (fr) Circuit de déflexion pour récepteur de télévision à la déflexion symétrique
DD238473A5 (de) Schlitzmaskenelektronenkanone fuer katodenstrahlroehren
DE2541893A1 (de) Strahlablenkeinrichtung fuer eine farbfernsehempfaenger-bildroehre
DE69125423T2 (de) Anordnung mit Farb-Kathodenstrahlröhre
DE69734329T2 (de) Korrektur des negativ differentiellen Komafehlers in Kathodenstrahlröhren
DE4231720C2 (de) Kathodenstrahlröhren-Anzeigevorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990426

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AKX Designation fees paid

Free format text: DE FR GB IT NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MATSUSHITA DISPLAY DEVICES (GERMANY) GMBH

17Q First examination report despatched

Effective date: 20010424

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59807070

Country of ref document: DE

Date of ref document: 20030306

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030310

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031030

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: MT PICTURE DISPLAY GERMANY GMBH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040628

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040721

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20040727

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040830

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050716

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060201

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20060201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060331