EP0975003B1 - Farbfernsehgerät oder Farbmonitor mit flachem Bildschirm - Google Patents

Farbfernsehgerät oder Farbmonitor mit flachem Bildschirm Download PDF

Info

Publication number
EP0975003B1
EP0975003B1 EP98113322A EP98113322A EP0975003B1 EP 0975003 B1 EP0975003 B1 EP 0975003B1 EP 98113322 A EP98113322 A EP 98113322A EP 98113322 A EP98113322 A EP 98113322A EP 0975003 B1 EP0975003 B1 EP 0975003B1
Authority
EP
European Patent Office
Prior art keywords
color
electron
deflection
screen
electron beams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98113322A
Other languages
English (en)
French (fr)
Other versions
EP0975003A1 (de
Inventor
Johann Mitrowitsch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PSI Esslingen GmbH
Original Assignee
Matsushita Electronics Europe GmbH
Matsushita Display Devices Germany GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Europe GmbH, Matsushita Display Devices Germany GmbH filed Critical Matsushita Electronics Europe GmbH
Priority to DE59807070T priority Critical patent/DE59807070D1/de
Priority to EP98113322A priority patent/EP0975003B1/de
Priority to US09/351,513 priority patent/US6483558B1/en
Publication of EP0975003A1 publication Critical patent/EP0975003A1/de
Application granted granted Critical
Publication of EP0975003B1 publication Critical patent/EP0975003B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/70Arrangements for deflecting ray or beam

Definitions

  • the invention relates to a color television set or a color monitor with a flat screen.
  • Color television sets and (computer) monitors are used to convert electrical signals into color images. Both television sets and monitors nowadays generally have an interface for various video signal formats (such as composite signals, analog or digital component signals). These signals are converted into analog RGB signals in a television set and a monitor for controlling a picture tube.
  • the video signals fed to a television set or a monitor are each converted in such a way that the video signal to be displayed contains brightness or color values for each individual pixel of a display screen.
  • three electron beams (one for each of the basic colors of the additive color mixture: red, green, blue) are generated in a color image display tube of a color television set or monitor and, depending on the position of the pixel information in the video signal, on the corresponding pixel distracted the fluorescent screen of the color picture tube.
  • the fluorescent screen of such a color picture tube consists of approximately 400,000 color triples, which are arranged in groups of three fluorescent dots, each with a red, a green and a blue fluorescent spot. The diameter of such a light spot is approximately 0.3 mm. Each of these points is from one of the three Illuminated electron beams generated by the electron gun in the neck of the color picture tube.
  • the electron beams are deflected by a deflection unit such that they hit all the pixels of the luminescent screen one after the other.
  • the color picture tube At a distance of about 15 mm from the fluorescent screen, there is a shadow mask inside the color picture tube, which has a hole in precise association with each color triple.
  • the holes with a diameter of about 0.25 mm are etched into the shadow mask at regular intervals.
  • the three electron beams meet in the shadow mask's hole, which is controlled by the common beam deflection, and fall on the fluorescent spots of the fluorescent screen located behind it.
  • the majority of the electrons generated by the electron beam generation system land on the shadow mask. This leads to a heating up and corresponding expansion of the shadow mask, the position of the holes in particular at the edge of the mask being able to shift relative to the phosphor dots of the fluorescent screen. Due to such a shift, the color purity is usually deteriorated, since each of the three electron beams may only strike the phosphor point of the phosphor screen assigned to it.
  • shadow masks in the form of stripe masks are also used.
  • the fluorescent screen of a color picture tube is not provided with fluorescent dots, but with fluorescent strips. Accordingly, the shadow mask has strip-shaped openings for the individual electron beams, which are each assigned to the strips on the fluorescent screen.
  • the three electron beams In order for the color separation images to appear congruent, the three electron beams must always hit the corresponding phosphor dots of a color triple over the entire fluorescent screen area. Therefore, the convergence of the 3 electron beams depends on the location of their point of impact set on the fluorescent screen of a picture tube, ie depending on the deflection (so-called dynamic convergence).
  • a known solution to this problem are so-called tension masks. With them it is possible to use shadow masks for absolutely flat screens.
  • the shape of these masks is determined in that they are mechanically prestressed either only in the vertical direction or simultaneously in the vertical and horizontal directions. This results in either flat or cylindrical shapes.
  • This mask remains dimensionally stable as long as the thermal expansion of the mask does not compensate for the mechanical preload during operation.
  • a disadvantage of this solution is that the generation of the high mechanical pretension requires very massive mask frame constructions. This increases both the cost and the weight of a color television set or monitor.
  • the use of conventionally shaped masks would also be desirable for televisions and monitors with a flat screen.
  • the distance between the mask and the fluorescent screen increases extremely with increasing distance from the center of the screen. Accordingly, the distance between the individual luminous dots of a color triplet on the luminescent screen increases in the direction of the edges of a screen, so that individual fluorescent dots or stripes become clearly disruptive to the observer in the edge areas (in picture tubes with an aspect ratio of 16: 9, especially in the lateral edge areas).
  • a cathode ray tube is known from WO-A-97/44808, in which the angle of incidence of the outer electron beams is corrected with the aid of an electron lens system. A deviation of the points of incidence of the outer electron beams is caused by their mutual influence.
  • correction elements are provided which are controlled by a control circuit which calculates the required signal correction based on the magnitude of the cathode current.
  • WO-A-92/02033 describes a cathode ray tube with magnetic quadrupoles for correcting the size and shape of the impingement points of the electron beams.
  • a stigmator is provided which compensates for an elliptical shape of the impact points caused by the deflection in the deflection direction. This compensation takes place via a control circuit based on the respective position of the impact points on the fluorescent screen.
  • a color television set or a color monitor contains a device, in particular an electron lens system, which detects the mutual distance of the in one Electron beam generating system can change generated electron beams.
  • the shadow mask between the center of the screen and the edge of the screen can be curved more than conventional, even with a flat fluorescent screen.
  • curved masks can be used for flatter or even absolutely flat screens without the need to use special mask materials (e.g. Invar) or a larger screen pitch, i.e. a coarser resolution in the marginal areas, must be accepted.
  • special mask materials e.g. Invar
  • a larger screen pitch i.e. a coarser resolution in the marginal areas
  • the mutual distance of the electron beams is preferably set according to the following formula: s ⁇ Tri / 3 * (Ias-q) / q
  • This formula indicates that the mutual distance of the electron beams in the convergence plane is proportional to the desired size of the triple dimensions Tri and the ratio of the distance between the convergence plane and the mask to the distance between the mask and the luminescent screen.
  • an electron lens system that can bring about a variable distance between the electron beams is brought about by a double magnetic quadrupole, which is arranged in the vicinity of the deflection plane.
  • a double magnetic quadrupole With such a quadrupole, the two marginal rays of the electron beams generated by the electron beam system become corresponding to the deflection influenced by the deflection field of the deflection unit.
  • Such a double magnetic quadrupole has the advantage that the desired change in the spacing of the electron beams can be achieved in a particularly simple manner.
  • Another advantageous implementation possibility is the use of a double controllable electrostatic deflection element, e.g. in the electron gun.
  • the distances can also be influenced in a targeted manner with such a deflection element.
  • An advantageous combination of the advantages of magnetic or electrostatic elements described above is a combination of an electrical and a magnetic quadrupole / deflection element. Such a solution represents an advantageous compromise between the inexpensive implementation using magnetic quadrupoles and the advantageous controllability using electrostatic deflection elements represents.
  • Another alternative implementation is to integrate the quadrupole functions into the deflection unit, the deflection unit specifically deviating from the ideal dynamic convergence and at the same time correcting this deviation by means of an electrostatic or magnetic quadrupole / deflection element. In this way too, a favorable implementation can be combined with a targeted influencing of the change in the distance between the electron beams.
  • FIGS. 1 to 5 each show electron beams 6 to 8 which are at a distance s from one another.
  • FIG. 6 shows the basic structure of a television set or monitor according to the invention.
  • a video signal 40 with an image signal to be displayed on the fluorescent screen 3 of the television set or monitor is fed to a video signal processing device 41.
  • This video signal processing device 41 converts the input video signal 40 so that the electron beam generating system 42 is supplied with the brightness or color information of the three color signals (red, green, blue).
  • the corresponding horizontal and vertical synchronization pulses 44 are fed to a deflection control 45.
  • the vertical synchronization pulses synchronize the image change
  • the horizontal synchronization pulses ensure that the line grid of the image to be displayed is synchronized.
  • This deflection controller 45 controls the deflection of the electron beams generated by the electron gun 42 so that the electron beams are deflected to the pixel of the fluorescent screen 3, for which the brightness or color information from the video signal processing device 41 is forwarded to the electron gun 42 at the same time.
  • the deflection control 45 ensures that the brightness and color information of the video signal processing device 41 is assigned to the correct pixel of the fluorescent screen 3 of the color picture tube 43.
  • the deflection control signals 47 are fed to the deflection unit 46.
  • This deflection device changes the direction of the electron beams by an electric or magnetic field. In the vast majority of cathode ray tubes 43, the beam deflection takes place magnetically.
  • the deflection unit 46 is used to generate the required fields generally has two coil sections for horizontal deflection and two coil sections for vertical deflection.
  • the shadow mask 1 is curved significantly more than the fluorescent screen 3. That is, despite a flat screen 2, a conventionally curved shadow mask 1 can be used .
  • the distance between the three electron beams is also changed as a function of the deflection angle. Since the distance between shadow mask 1 and luminescent screen 3 is particularly large, particularly in the edge regions of the screen, when using conventionally curved shadow masks 1, the distance between appropriately deflected electron beams is reduced with the aid of an additional electron lens system 49.
  • the distance variation of the electron beams is controlled by the electron lens system 49 via an electron lens system controller 48 as a function of the deflection (deflection signal 47) of the electron beams or the synchronization pulses 44.
  • Electron lens systems contain electron lenses that represent electrostatic and / or magnetic fields, the force of which acts on moving electrons.
  • the setting of the distance of the electron beams by means of the electron lens system 49 is decoupled from the setting of the convergence of the electron beams or independently of the influence on the angle of incidence of the marginal beams of the three electron beams on the screen plane.
  • the marginal rays of the For in-line electron gun systems three electron beams are usually the electron beams that strike the red and blue color pixels of the screen plane.
  • FIGS. 1 to 4 show the electron beams 6-8 generated by the electron beam generating system, each with two different deflections.
  • the electron beams 6 to 8 that hit the center 5 of the screen are shown bright.
  • the electron beams 9 to 11 are shown dark, which impinge on a color triplet 4 in the edge region of the screen.
  • the fluorescent screen 3 with the luminous dots or luminous strips is applied to the inside of the front screen glass body 2.
  • the shadow mask 1 At a certain distance from the luminescent layer 3 is the shadow mask 1 with holes 12, 13, which are each assigned to one of the color triplets 4, 5 on the luminescent screen 3.
  • the frame with which the mask 1 is held in its position within the color picture tube is not shown.
  • the curvature of the shadow mask 1 corresponds approximately to the curvature of the fluorescent screen 3 on the inside of the screen 2. Because of this curvature of the fluorescent screen 3, the shadow mask 1 can have a corresponding curvature, so that the distance between the shadow mask 1 and the fluorescent screen 3 from the center of the screen to the Marginal areas increases only slightly. This makes it easy to achieve a small screen pitch even in the peripheral areas.
  • Fig. 2 shows a conventional solution for realizing a flat screen 2. Also in this case, the distance between the fluorescent screen 3 and shadow mask 1 must remain approximately constant so that the screen pitch 4, 5 in the edge areas of the Fluorescent screen 3 does not exceed a certain size. It is therefore necessary for the shadow mask 1 to have a significantly smaller curvature than in FIG. 1. The production of a shadow mask 1 with such a slight curvature causes considerable technical problems, since extremely flat shadow masks 1 are extremely sensitive to mechanical stress and, moreover, deform strongly during normal operation during local heating.
  • FIG. 3 shows a flat screen 2 with a conventionally curved mask 1.
  • Such an arrangement is easy to manufacture, but leads to a lower resolution in the edge areas of the luminescent screen 3. While in FIG. 2 the mask openings 12, 13 in the center of the picture and at the edge of the picture lie at approximately the same distance from the luminescent screen 3 and are accordingly small Generate screen pitches 4, 5, the mask opening 12 shown further in the interior of the color picture tube leads to a significantly enlarged screen pitch 4.
  • Such an arrangement would be inexpensive to manufacture, but unacceptable to the viewer due to its poor resolution in the edge areas.
  • FIG. 3 shows the construction of a color picture tube in accordance with the invention.
  • a conventionally curved shadow mask 1 and a flat screen 2 are used according to the invention.
  • the distance between the electron beams 9 to 11 generated is reduced when the electron beams 9 to 11 hit a triple color in the edge region of the fluorescent screen 3.
  • the distance between the generated electron beams 6 to 8 remains unchanged, however, when the electron beams hit a color triplet 5 in the center of the luminescent screen 3.
  • a color picture tube according to the invention have an electron lens system in the vicinity of the deflection unit or the electron gun.
  • This electron lens system influences the distance between the electron beams generated by the electron beam generation system as a function of the respective deflection angle or the respective point of impact 4, 5 of the electron beams 9 to 11 on the fluorescent screen 3.
  • the mutual distance between the electron beams is changed without influencing the convergence of the beams in the screen plane.
  • the electron beams 20 to 22 are generated in an electron beam generating system, not shown, and are at a distance s from one another in the convergence plane 32. Without deflection, the electron beams hit the fluorescent screen 3 in the screen plane 36 as pixel triples 26 to 28.
  • the mask has a normal Q distance 30 from the screen plane 36.
  • the triple dimensions Tri change directly proportional to the distance s of the electron beams 20-22. That by reducing the mutual distance s of the electron beams 20-22, the dimensions Tri of a color triple can be reduced accordingly.
  • the best imaging properties, in particular color purity, are achieved when the triple dimensions Tri match the horizontal screen pitch Ps (distance of the same color stripes or luminous dots).
  • Table 1 Comparison of a 29 "super flat Invar tube 3.5 R after conventional design and a picture tube with flat screen and construction according to the invention.
  • Conventional color picture tube flat color picture tube according to the present invention la 278 mm 278 mm read 345 mm 345 mm s 5.5 mm sm 5.5 mm se 2.8 mm square meter 15 mm 15 mm Qe 18 mm 31 mm Trim 0.80 mm 0.80 mm Trie 0.98 mm 1.04 mm pm 0.75 mm 0.75 mm Pe 0.87 mm 0.87 mm
  • quadrupoles are used to control the distance between the electron beams.
  • 7 shows the structure of a magnetic quadrupole with four field generating devices (coils) 50.
  • the electron beams move longitudinally through the cylindrical space shown in FIG. 7, which is enclosed by the field generating devices 50.
  • Each of the adjacent field generating devices 50 generates an opposite magnetic field.
  • the field strength is represented by arrows in FIG. 7.
  • the further electron beams are moved from the central axis of the cylinder during the movement through the cylinder, the more they are deflected either inwards to the central axis or outwards away from the central axis.
  • Quadrupoles connected in series, in which the electron beams in the edge regions move successively through a focusing and a defocusing region (or in reverse order), allow the distance between the electron beams to be changed.
  • Such magnetic quadrupoles surround the tube neck and thus the electron beam generating system from the outside.
  • electrostatic electron-optical lenses are an integral part of the electron gun.

Landscapes

  • Video Image Reproduction Devices For Color Tv Systems (AREA)

Description

  • Die Erfindung betrifft ein Farbfernsehgerät oder einen Farbmonitor mit einem flachen Bildschirm.
  • Farbfernsehgeräte und (Computer-) Monitore dienen zur Umwandlung elektrischer Signale in Farbbilder. Sowohl Fernsehgeräte als auch Monitore haben heutzutage in der Regel eine Schnittstelle für verschiedene Videosignalformate (wie z.B. FBAS-Signale, analoge oder digitale Komponentensignale). Diese Signale werden in einem Fernsehgerät und einem Monitor zur Ansteuerung einer Bildröhre in analoge RGB-Signale umgewandelt. Die einem Fernsehgerät oder einem Monitor zugeleiteten Videosignale werden jeweils so umgewandelt, daß das darzustellende Videosignal Helligkeits- bzw. Farbwerte für jeden einzelnen Bildpunkt eines Wiedergabebildschirms enthält. Zur Darstellung eines in einem Videosignal enthaltenen Bildes werden in einer Farbbildwiedergaberöhre eines Farbfernsehgerätes bzw. Monitors drei Elektronenstrahlen (jeweils einer für die Grundfarben der additiven Farbmischung: rot, grün, blau) erzeugt und entsprechend der Lage der Bildpunktinformation in dem Videosignal zu dem entsprechenden Bildpunkt auf dem Leuchtschirm der Farbbildröhre abgelenkt.
  • Bei einer Farbbildröhre kommt eine additive Farbmischung durch eine bildpunktweise Überlagerung von drei Farbauszugsbildern zustande. Der Leuchtschirm einer solchen Farbbildröhre besteht aus ca. 400 000 Farbtripeln, das sind in Dreiergruppen angeordnete Leuchtstoffpunkte mit je einem rot leuchtenden, einem grün leuchtenden und einem blau leuchtenden Leuchtstoffpunkt. Der Durchmesser eines solchen Leuchtpunktes beträgt etwa 0,3 mm. Jeder dieser Punkte wird von einem der drei Elektronenstrahlen zum Leuchten gebracht, die von dem Elektronenstrahlerzeugungssystem im Hals der Farbbildröhre erzeugt werden. Durch eine Ablenkeinheit werden die Elektronenstrahlen so abgelenkt, daß sie nacheinander auf alle Bildpunkte des Leuchtschirms treffen. In einem Abstand von etwa 15 mm zum Leuchtschirm befindet sich im Inneren der Farbbildröhre eine Schattenmaske, die in genauer Zuordnung zu jedem Farbtripel ein Loch aufweist. Die Löcher mit einem Durchmesser von etwa 0,25 mm sind in regelmäßigen Abständen in die Lochmaske eingeätzt. In dem jeweils durch die gemeinsame Strahlablenkung angesteuerten Loch der Schattenmaske treffen sich die drei Elektronenstrahlen und fallen auf die dahinter liegenden Leuchtstoffpunkte des Leuchtschirms. Ein Großteil der vom Elektronenstrahlerzeugungssystem erzeugten Elektronen landet dabei auf der Schattenmaske. Dies führt zu einer Erwärmung und entsprechenden Ausdehnung der Schattenmaske, wobei sich insbesondere die am Rand der Maske befindlichen Löcher in ihrer Lage gegenüber den Leuchtstoffpunkten des Leuchtschirms verschieben können. Aufgrund einer solchen Verschiebung wird in der Regel die Farbreinheit verschlechtert, da jeder der drei Elektronenstrahlen nur auf den ihm zugeordneten Leuchtstoffpunkt des Leuchtschirms treffen darf.
  • Neben Schattenmasken, die als Lochmasken ausgebildet sind, werden auch Schattenmasken in Form von Streifenmasken verwendet. Bei diesen ist der Leuchtschirm einer Farbbildröhre nicht mit Leuchtstoffpunkten, sondern mit Leuchtstoffstreifen versehen. Dementsprechend weist die Schattenmaske streifenförmige Öffnungen für die einzelnen Elektronenstrahlen auf, die jeweils den Streifen auf den Leuchtschirm zugeordnet sind.
  • Damit die Farbauszugsbilder deckungsgleich erscheinen, müssen die drei Elektronenstrahlen über die gesamte Leuchtschirmfläche jeweils immer auf die zusammengehörigen Leuchtstoffpunkte eines Farbtripels treffen. Deshalb wird die Konvergenz der 3 Elektronenstrahlen in Abhängigkeit von der Lage ihres Auftreffpunktes auf dem Leuchtschirm einer Bildröhre, d.h. abhängig von der Ablenkung, eingestellt (sogenannte dynamische Konvergenz).
  • Der direkte Abstand zweier gleichfarbiger; benachbarter Leuchtstoff-Bildpunkte wird Schirmpitch (dot pitch) genannt. Bei herkömmlichen Farbbildröhren nimmt dieser Abstand zwischen gleichfarbigen Leuchtpunkten bzw. Leuchtstreifen vom Leuchtschirmmittelpunkt zum Rand hin zu. Durch die Größe des Schirmpitches wird die Auflösung einer Farbbildröhre festgelegt. Eine Variation des Schirmpitches oder Maskenpitches (mask pitch) ist ein einfaches Mittel, um die Krümmung der Schattenmaske in einer gewünschten Art und Weise zu beeinflussen. Da jedoch ein zu großer Schirmpitch vom Betrachter als störende Streifenstruktur wahrgenommen wird, muß beim Entwurf einer Schattenmaske eine mindestens einzuhaltende Bildpunktauflösung beachtet werden.
  • In den letzten Jahren wurden Farbbildröhren (Farb-Kathodenstrahlröhren) mit immer flacheren Bildschirmen entwickelt. Dementsprechend sind auch die Krümmungsradien bzw. Maskenkonturen der Masken (Schattenmasken bzw. Lochmasken) entsprechend flach geworden. Eine Entwicklung immer flacherer Masken ist durch die Verwendung von Invar als Maskenmaterial und durch die Beschichtung der Maske zur Temperaturreduzierung beim Betrieb möglich geworden. Eine weitere Steigerung der Flachheit der Masken ist auf diesem Wege jedoch nicht mehr möglich. Trotz aller Anstrengungen ist es deshalb bisher nicht gelungen, Bildschirme mit geformten Schattenmasken zu realisieren, die einen völlig planen Bildschirm besitzen. Der Grund dafür liegt in der extrem geringen Wölbung einer Schattenmaske, die für einen solch flachen Bildschirm erforderlich ist. Die Hauptproblematik einer extrem flachen Maske liegt in ihrer Empfindlichkeit gegenüber mechanischer Beanspruchung und ihrer starken Deformation bei lokaler Erwärmung im normalen Betrieb.
  • Eine bekannte Lösung für dieses Problem sind sogenannte Spannmasken. Mit ihnen ist es möglich, Schattenmasken für absolut flache Bildschirme zu verwenden. Dabei wird die Form dieser Masken dadurch festgelegt, daß sie entweder nur in vertikaler Richtung oder gleichzeitig in vertikaler und horizontaler Richtung mechanisch vorgespannt werden. Dies ergibt entweder plane oder zylindrische Formen. Diese Maske bleibt solange formstabil, wie die thermische Ausdehnung der Maske im Betrieb die mechanische Vorspannung nicht kompensiert. Nachteilig an dieser Lösung ist jedoch, daß die Erzeugung der hohen mechanischen Vorspannung sehr massive Maskenrahmenkonstruktionen erforderlich macht. Dadurch werden sowohl die Kosten als auch das Gewicht eines Farbfernsehgerätes bzw. eines Monitors erhöht.
  • Aus diesem Grund wäre eine Verwendung konventionell geformter Masken auch für Fernsehgeräte und Monitore mit einem flachen Bildschirm wünschenswert. Bei einer solchen Anordnung vergrößert sich der Abstand zwischen Maske und Leuchtschirm mit zunehmender Entfernung vom Bildschirmmittelpunkt extrem. Dementsprechend vergrößert sich entsprechend der Abstand der einzelnen Leuchtpunkte eines Farbtripels auf dem Leuchtschirm in Richtung der Ränder eines Bildschirms, so daß für den Betrachter in den Randbereichen einzelne Leuchtstoffpunkte oder -streifen deutlich störend sichtbar werden (bei Bildröhren mit einem Bildseitenverhältnis von 16:9 insbesondere in den seitlichen Randbereichen).
  • Aus der WO-A-97/44808 ist eine Kathodenstrahlröhre bekannt, bei der der Auftreffwinkel der äußeren Elektronenstrahlen mit Hilfe eines Elektronenlinsensystems korrigiert wird. Eine Abweichung der Auftreffpunkte der äußeren Elektronenstrahlen wird durch deren gegenseitige Beeinflussung bewirkt. Um diesen Fehler zu korrigieren, sind Korrekturelemente vorgesehen, die von einer Steuerschaltung angesteuert werden, die die erforderliche Signalkorrektur basierend auf der Größe des Kathodenstroms berechnet.
  • WO-A-92/02033 beschreibt eine Kathodenstrahlröhre mit magnetischen Quadrupolen zur Korrektur der Größe und Form der Auftreffpunkte der Elektronenstrahlen. Dazu ist ein Stigmator vorgesehen, der eine durch die Ablenkung in Ablenkrichtung bewirkte elliptische Form der Auftreffpunkte kompensiert. Diese Kompensation erfolgt über eine Steuerschaltung basierend auf der jeweiligen Position der Auftreffpunkte auf dem Leuchtschirm.
  • Es ist daher die Aufgabe der vorliegenden Erfindung, ein Farbfernsehgerät bzw. einen Farbmonitor mit verbesserter Wiedergabequalität zu schaffen.
  • Diese Aufgabe wird durch ein Farbfernsehgerät bzw. einen Farbmonitor mit den Merkmalen des Patentanspruchs 1 erreicht.
  • Erfindungsgemäß enthält ein Farbfernsehgerät bzw. ein Farbmonitor eine Vorrichtung, insbesondere ein Elektronenlinsensystem, die den gegenseitigen Abstand der in einem Elektronenstrahlerzeugungssystem erzeugten Elektronenstrahlen verändern kann. Durch Verkleinerung des gegenseitigen Abstands der erzeugten Elektronenstrahlen in Abhängigkeit von der Ablenkung der Elektronenstrahlen kann der Abstand der Schattenmaske zum Leuchtschirm mit zunehmender Entfernung vom Schirmmittelpunkt entsprechend vergrößert werden, ohne die bekannten Nachteile in Kauf nehmen zu müssen.
  • Auf diese Weise kann z.B. die Schattenmaske zwischen Schirmmitte und Schirmrand auch bei flachem Leuchtschirm stärker als herkömmlich gekrümmt werden. Somit können gekrümmte Masken für flachere oder sogar absolut plane Bildschirme verwendet werden, ohne daß spezielle Maskenmaterialien (z.B. Invar) verwendet werden müssen oder ein größerer Schirmpitch, d.h. eine gröbere Auflösung in den Randbereichen, in Kauf genommen werden muß.
  • Der gegenseitige Abstand der Elektronenstrahlen wird vorzugsweise gemäß folgender Formel eingestellt: s ≈ Tri/3 * (Ias-q)/q
  • Diese Formel gibt an, daß der gegenseitige Abstand der Elektronenstrahlen in der Konvergenzebene proportional von der gewünschten Größe der Tripelabmessungen Tri und dem Verhältnis des Abstands zwischen Konvergenzebene und Maske zum Abstand zwischen Maske und Leuchtschirm abhängt.
  • Ein Elektronenlinsensystem, das einen veränderlichen Abstand der Elektronenstrahlen voneinander bewirken kann, wird im einfachsten Fall durch einen zweifachen magnetischen Quadrupol bewirkt, der in der Nähe der Ablenkebene angebracht ist. Mit einem solchen Quadrupol werden die beiden Randstrahlen der vom Elektronenstrahlsystem erzeugten Elektronenstrahlen entsprechend der Ablenkung durch das Ablenkfeld der Ablenkeinheit beeinflußt. Ein solcher zweifacher magnetischer Quadrupol hat den Vorteil, daß sich durch ihn die gewünschte Veränderung der Abstände der Elektronenstrahlen auf besonders einfache Weise erreichen läßt.
  • Eine weitere vorteilhafte Realisierungsmöglichkeit ist die Verwendung eines doppelten steuerbaren elektrostatischen Ablenkelements z.B. im Elektronenstrahlerzeugungssystem. Mit einem solchen Ablenkelement lassen sich ebenfalls die Abstände gezielt beeinflussen.
  • Eine vorteilhafte Verknüpfung der oben beschriebenen Vorteile von magnetischen oder elektrostatischen Elementen stellt eine Kombination aus einem elektrischen und einem magnetischen Quadrupol/Ablenkelement dar. Eine solche Lösung stellt einen vorteilhaften Kompromiß aus der preisgünstigen Realisierung mit Hilfe magnetischer Quadrupole und der vorteilhaften Steuerbarkeit mit Hilfe von elektrostatischen Ablenkelementen dar.
  • Eine weitere alternative Realisierungsform ist, die Quadrupolfunktionen in die Ablenkeinheit zu integrieren, wobei die Ablenkeinheit gezielt von der idealen dynamischen Konvergenz abweicht und gleichzeitig eine Korrektur dieser Abweichung durch einen elektrostatischen oder magnetischen Quadrupol/Ablenkelement bewirkt wird. Auch auf diese Weise läßt sich eine günstige Realisierung mit einer gezielten Beeinflussung der Veränderung des Abstandes der Elektronenstrahlen verbinden.
  • Besonders gute Ergebnisse lassen sich erreichen, wenn die Ebenen der beiden verwendeten Quadrupole einen bestimmten Mindestabstand nicht unterschreiten.
  • Außerdem lassen sich bessere Ergebnisse dadurch erzielen, daß sich die Wirkung beider verwendeter Quadrupole in bezug auf die statische und die dynamische Konvergenz aufhebt.
  • Ausführungsbeispiele der Erfindung werden anhand der Zeichnungen näher erläutert. Im einzelnen zeigt:
  • Fig. 1
    eine konventionelle Farbbildröhre,
    Fig. 2
    eine konventionelle flache Farbbildröhre,
    Fig. 3
    eine konventionelle flache Farbbildröhre mit maximal realisierbarer Maskenkrümmung,
    Fig. 4
    eine Farbbildröhre eines erfindungsgemäßen Farbfernsehgerätes bzw. Farbmonitors mit variablem Abstand der Elektronenstrahlen,
    Fig. 5
    die geometrischen Verhältnisse der Elektronenstrahlen bei einer Farbbildröhre gemäß Fig. 4,
    Fig. 6
    ein Blockschaltbild eines Fernsehgerätes bzw. Monitors und
    Fig. 7
    den Aufbau eines magnetischen Quadrupalfeldes.
  • Zu allen Figuren werden für die gleichen Bildelemente die gleichen Bezugszeichen verwendet.
  • In Fig.1 ist eine herkömmliche Farbbildröhre (Farb-Kathodenstrahlröhre) dargestellt. Farbbildröhren werden heutzutage überwiegend als Dreistrahl-Farbbildröhren nach dem Schattenmaskenprinzip eingesetzt. In Abhängigkeit von der Anordnung der drei Elektronenstrahlsysteme unterscheidet man Delta-Röhren und Inline-Röhren. Bei Delta-Anordnungen liegen Elektronenstrahlerzeugungssysteme auf den Ecken eines gleichschenkligen Dreiecks. Bei Inline-Anordnungen sind sie dagegen in einer horizontalen Ebene nebeneinanderliegend angeordnet. Die Standard-Bildröhren für Fernsehanwendungen enthalten in der Regel die Inline-Anordnung, die Vorteile in der Konvergenz-Korrektur aufweist. In den Figuren 1 bis 5 sind jeweils Elektronenstrahlen 6 bis 8 dargestellt, die voneinander den Abstand s aufweisen.
  • In Fig. 6 ist der grundsätzliche Aufbau eines erfindungsgemäßen Fernsehgerätes bzw. Monitors dargestellt. Ein Videosignal 40 mit einem Bildsignal, das auf dem Leuchtschirm 3 des Fernsehgerätes bzw. Monitors dargestellt werden soll, wird einer Videosignalverarbeitungseinrichtung 41 zugeleitet. Diese Videosignalverarbeitungseinrichtung 41 wandelt das Eingangsvideosignal 40 so um, daß dem Elektronenstrahlerzeugungssystem 42 die Helligkeits- bzw. Farbinformation der drei Farbsignale (rot, grün, blau) zugeleitet wird. Gleichzeitig werden die entsprechenden horizontalen und vertikalen Synchronisationsimpulse 44 einer Ablenksteuerung 45 zugeleitet. Die vertikalen Synchronisationsimpulse synchronisieren den Bildwechsel, die horizontalen Synchronistionsimpulse stellen sicher, daß das Zeilenraster des darzustellenden Bildes synchronisiert wird. Diese Ablenksteuerung 45 steuert die Ablenkung der von dem Elektronenstrahlerzeugungssystem 42 erzeugten Elektronenstrahlen so, daß die Elektronenstrahlen jeweils zu dem Bildpunkt des Leuchtschirms 3 abgelenkt werden, für den zum selben Zeitpunkt die Helligkeits- bzw. Farbinformation von der Videosignalverarbeitungseinrichtung 41 an das Elektronenstrahlerzeugungssystem 42 weitergeleitet wird. Die Ablenksteuerung 45 sorgt mit anderen Worten dafür, daß die Helligkeits- und Farbinformation der Videosignalverarbeitungseinrichtung 41 jeweils dem richtigen Bildpunkt des Leuchtschirms 3 der Farbbildröhre 43 zugeordnet wird. Dazu werden die Ablenkungssteuersignale 47 der Ablenkeinheit 46 zugeleitet. Diese Ablenkeinrichtung ändert die Richtung der Elektronenstrahlen durch ein elektrisches oder magnetisches Feld. Bei den weitaus meisten Kathodenstrahlröhren 43 erfolgt die Strahlablenkung magnetisch. Der dafür erforderlichen Felderzeugung dient die Ablenkeinheit 46. Diese hat im allgemeinen zwei Teilspulen für die Horizontalablenkung und zwei Teilspulen für die Vertikalablenkung.
  • Die drei abgelenkten Elektronenstrahlen passieren die Schattenmaske 1 und treffen anschließend auf den Leuchtschirm 3 des Bildschirms 2 der Farbbildröhre 43. Erfindungsgemäß ist die Schattenmaske 1 deutlich stärker gewölbt als der Leuchtschirm 3. D.h., trotz eines flachen Bildschirms 2 läßt sich eine herkömmlich gekrümmte Schattenmaske 1 verwenden. Um damit nicht gleichzeitig einen vergrößerten Schirmpitch in Kauf nehmen zu müssen, wird zusätzlich der Abstand der drei Elektronenstrahlen zueinander in Abhängigkeit vom Ablenkwinkel verändert. Da der Abstand zwischen Schattenmaske 1 und Leuchtschirm 3 insbesondere in den Randbereichen des Bildschirms bei Verwendung herkömmlich gekrümmter Schattenmasken 1 besonders groß ist, wird der Abstand entsprechend abgelenkter Elektronenstrahlen mit Hilfe eines zusätzlichen Elektronenlinsensystems 49 verkleinert. Dadurch wird die Abmessung von Farbtripeln in den Randbereichen des Bildschirms 2 so klein gehalten, daß ein Betrachter keine verschlechterte Bildauflösung wahrnimmt. Die Steuerung der Abstandsvariation der Elektronenstrahlen durch das Elektronenlinsensystem 49 erfolgt über eine Elektronenlinsensystemsteuerung 48 in Abhängigkeit von der Ablenkung (Ablenksignal 47) der Elektronenstrahlen bzw. den Synchronisationsimpulsen 44.
  • Elektronenlinsensysteme enthalten Elektronenlinsen, die elektrostatische oder/und magnetische Felder darstellen, deren Kraft auf bewegte Elektronen wirkt.
  • Die Einstellung des Abstands der Elektronenstrahlen durch das Elektronenlinsensystem 49, d.h. insbesondere die Einstellung des Abstands der roten und blauen Randstrahlen zueinander, erfolgt entkoppelt von der Einstellung der Konvergenz der Elektronenstrahlen bzw. unabhängig von der Beeinflussung des Auftreffwinkels der Randstrahlen der drei Elektronenstrahlen auf der Schirmebene. Die Randstrahlen der drei Elektronenstrahlen sind bei in-line Elektronenstrahlerzeugungssystemen üblicherweise die Elektronenstrahlen, die auf den roten und blauen Farbpixeln der Schirmebene auftreffen.
  • In den Figuren 1 bis 4 werden die vom Elektronenstrahlerzeugungssystem erzeugten Elektronenstrahlen 6-8 mit jeweils zwei verschiedenen Ablenkungen dargestellt. Hell sind die Elektronenstrahlen 6 bis 8 dargestellt, die im Bildschirmmittelpunkt 5 auftreffen. Dunkel sind dagegen die Elektronenstrahlen 9 bis 11 dargestellt, die auf einem Farbtripel 4 im Randbereich des Bildschirms auftreffen. Der Leuchtschirm 3 mit den Leuchtpunkten bzw. Leuchtstreifen ist auf der Innenseite des Frontschirmglaskörpers 2 aufgebracht. In einem bestimmten Abstand von der Leuchtschicht 3 befindet sich die Lochmaske 1 mit Löchern 12, 13, die jeweils einem der Farbtripel 4, 5 auf dem Leuchtschirm 3 zugeordnet sind. Nicht dargestellt ist dabei der Rahmen, mit dem die Maske 1 innerhalb der Farbbildröhre in ihrer Position gehalten wird.
  • In Fig. 1 ist ein Bildschirm 2 und eine Schattenmaske 1 mit einer herkömmlichen Krümmung dargestellt. Bei einem solchen gekrümmten Bildschirm ist es möglich, die Schattenmaske auf herkömmliche Weise ohne großen Aufwand herzustellen. Ein flacher Bildschirm läßt sich auf diese Weise mit der herkömmlichen Technik nicht erreichen. Die Krümmung der Schattenmaske 1 entspricht in etwa der Krümmung des Leuchtschirms 3 auf der Innenseite des Bildschirms 2. Wegen dieser Krümmung des Leuchtschirms 3 kann die Schattenmaske 1 eine entsprechende Krümmung aufweisen, so daß der Abstand der Schattenmaske 1 zum Leuchtschirm 3 von der Schirmmitte zu den Randbereichen hin nur leicht zunimmt. Dadurch ist es unproblematisch, einen kleinen Schirmpitch auch in den Randbereichen zu erreichen.
  • Fig. 2 zeigt eine herkömmliche Lösung zur Realisierung eines flachen Bildschirms 2. Auch in diesem Fall muß der Abstand zwischen Leuchtschirm 3 und Schattenmaske 1 in etwa konstant bleiben, damit der Schirmpitch 4, 5 in den Randbereichen des Leuchtschirms 3 eine bestimmte Größe nicht überschreitet. Es ist deshalb erforderlich, daß die Schattenmaske 1 eine deutlich geringere Krümmung als in Fig. 1 aufweist. Die Herstellung einer Schattenmaske 1 mit einer solch geringen Krümmung bereitet erhebliche technische Probleme, da extrem flache Schattenmasken 1 gegenüber mechanischer Beanspruchung extrem empfindlich sind und sich zudem bei lokaler Erwärmung im normalen Betrieb stark deformieren.
  • In Fig. 3 ist ein flacher Bildschirm 2 mit einer konventionell gekrümmten Maske 1 dargestellt. Eine solche Anordnung läßt sich zwar leicht herstellen, führt jedoch zu einer geringeren Auflösung in den Randbereichen des Leuchtschirms 3. Während in Fig. 2 die Maskenöffnungen 12, 13 in der Bildmitte und am Bildrand in etwa in gleichem Abstand vom Leuchtschirm 3 liegen und dementsprechend kleine Schirmpitche 4, 5 erzeugen, führt die in Fig. 3 dargestellte weiter im Inneren der Farbbildröhre liegende Maskenöffnung 12 zu einem deutlich vergrößerten Schirmpitch 4. Eine solche Anordnung wäre zwar günstig herzustellen, aber aufgrund ihrer schlechten Auflösung in den Randbereichen für den Betrachter unakzeptabel.
  • Um eine Anordnung mit einer gekrümmten Maske und einem flachen Bildschirm, wie in Fig. 3 dargestellt, verwenden zu können, sind deshalb zusätzliche Maßnahmen erforderlich. In Fig. 4 ist der Aufbau einer Farbbildröhre in Übereinstimmung mit der Erfindung wiedergegeben. Wie in Fig. 3 wird erfindungsgemäß eine herkömmlich gekrümmte Schattenmaske 1 und ein flacher Bildschirm 2 verwendet. Um jedoch zu verhindern, daß die Schirmpitche 4 in den Randbereichen des Leuchtschirms 3 unzulässig groß werden, wird der Abstand der erzeugten Elektronenstrahlen 9 bis 11 verkleinert, wenn die Elektronenstrahlen 9 bis 11 auf ein Farbtripel im Randbereich des Leuchtschirms 3 treffen. Der Abstand der erzeugten Elektronenstrahlen 6 bis 8 bleibt jedoch unverändert, wenn die Elektronenstrahlen auf ein Farbtripel 5 in der Mitte des Leuchtschirms 3 treffen. Auf diese Weise ist es möglich, zwischen Schattenmaske 1 und Leuchtschirm 3 in den Randbereichen einen deutlich größeren Abstand vorzusehen als in der Bildschirmmitte. Der Vorteil liegt insbesondere darin, daß sich eine günstig herzustellende Schattenmaske 1 verwenden läßt, die gleichzeitig unempfindlich gegenüber mechanischer Beanspruchung ist und sich auch bei lokaler Erwärmung im normalen Betrieb nicht extrem deformiert. Dadurch werden die Herstellungskosten von extrem flachen bzw. planaren Farbbildröhren deutlich gesenkt.
  • Dazu ist es erforderlich, daß eine erfindungsgemäße Farbbildröhre ein Elektronenlinsensystem in der Nähe der Ablenkeinheit oder des Elektronenstrahlerzeugungssystems aufweist. Dieses Elektronenlinsensystem beeinflusst den Abstand der von dem Elektronenstrahlerzeugungssystem erzeugten Elektronenstrahlen in Abhängigkeit von dem jeweiligen Ablenkwinkel bzw. dem jeweiligen Auftreffpunkt 4, 5 der Elektronenstrahlen 9 bis 11 auf dem Leuchtschirm 3.
  • Die Veränderung des gegeseitigen Abstands der Elektronenstrahlen erfolgt ohne Beeinflussung der Konvergenz der Strahlen in der Bildschirmebene.
  • In Fig. 5 sind die geometrischen Verhältnisse mit und ohne Anwendung eines Elektronenlinsensystems dargestellt. Die Elektronenstrahlen 20 bis 22 werden in einem nicht gezeigten Elektronenstrahlerzeugungssystem erzeugt und weisen in der Konvergenzebene 32 den Abstand s voneinander auf. Ohne Ablenkung treffen die Elektronenstrahlen als Bildpunkttripel 26 bis 28 auf den Leuchtschirm 3 in der Schirmebene 36 auf. Die Maske weist einen normalen Q- Abstand 30 von der Schirmebene 36 auf. Die Größe der Tripelabmessungen Tri ergibt sich dabei zu Tri = 3· s · q Ias - q
  • In dieser Formel bedeuten:
  • Tri
    Tripelabmessungen,
    s
    Abstand der Elektronenstrahlen in der Konvergenzebene 32,
    q
    Abstand der Schattenmaske 1 zum Leuchtschirm 3 (Q-Abstand 30,31),
    Ias
    Abstand der Konvergenzebene 32 zum Leuchtschirm 3 (Schirmebene 36).
  • Aus diesen geometrischen Verhältnissen ergibt sich, daß sich die Tripelabmessungen Tri direkt proportional zum dem Abstand s der Elektronenstrahlen 20-22 verändern. D.h. durch Verringerung des gegenseitigen Abstands s der Elektronenstrahlen 20-22 lassen sich die Abmessungen Tri eines Farbtripels entsprechend reduzieren.
  • Die besten Abbildungseigenschaften, insbesondere Farbreinheit, wird dann erzielt, wenn die Tripelabmessungen Tri mit dem horizontalen Schirmpitch Ps (Abstand gleicher Farbstreifen bzw. Leuchtpunkte) übereinstimmt. Die Größe des horizontalen Schirmpitches Ps einer Farbbildröhre ergibt sich aus folgender Formel: Ps = Pm · Ia Ia - q
  • Dabei bedeuten:
  • Ps
    horizontaler Schirmpitch,
    Pm
    horizontaler Maskenpitch (Schlitzabstand bzw. Lochabstand),
    Ia
    Abstand der Ablenkebene 33 zum Leuchtschirm 3 (Schirmebene 36),
    q
    Abstand der Schattenmaske 1 zum Leuchtschirm 3 (Q-Abstand 30, 31).
  • Maße für ein Ausführungsbeispiel sind in Tabelle 1 angegeben. Tabelle1 :
    Gegenüberstellung einer 29" superflachen Invar-Röhre 3,5 R nach konventionellem Design und einer Bildröhre mit flachem Bildschirm und erfindungsgemäßem Aufbau.
    Konventionelle Farbbildröhre flache Farbbildröhre gemäß der vorliegenden Erfindung
    la 278 mm 278 mm
    las 345 mm 345 mm
    s 5,5 mm
    sm 5,5 mm
    se 2,8 mm
    Qm 15 mm 15 mm
    Qe 18 mm 31 mm
    Trim 0,80 mm 0,80 mm
    Trie 0,98 mm 1,04 mm
    Pm 0,75 mm 0,75 mm
    Pe 0,87 mm 0,87 mm
  • Dabei bedeuten:
  • la
    Abstand der Ablenkebene 33 zur Schirmebene 36,
    las
    Abstand der Konvergenzebene 32 zur Schirmebene 36,
    s
    Abstand der Elektronenstrahlen in der Konvergenzebene 32,
    sm
    Abstand der Elektronenstrahlen für die Schirmmitte,
    se
    Abstand der Elektronenstrahlen für eine Schirmecke,
    Qm
    Abstand der Maskenebene 30 zur Schirmebene 36 in der Schirmmitte,
    Qe
    Abstand der Maskenebene 31 zur Schirmebene 36 in einer Schirmecke,
    Trim
    Tripelamessungen in der Schirmmitte,
    Trie
    Tripelabmessungen in der Schirmecke,
    Pm
    Schirmpitch in der Schirmmitte,
    Pe
    Schirmpitch in einer Schirmecke.
  • Erfindungsgemäß werden Quadrupole zur Steuerung des Abstands der Elektronenstrahlen eingesetzt. In Fig. 7 ist der Aufbau eines magnetischen Quadrupols mit vier Felderzeugungseinrichtungen (Spulen) 50 dargestellt. Die Elektronenstrahlen bewegen sich längs durch den in Fig. 7 dargestellten zylinderförmigen Raum, der von den Felderzeugungseinrichtungen 50 umschlossen wird. Jede der benachbarten Felderzeugungseinrichtungen 50 erzeugt ein entgegengesetztes Magnetfeld. Die Feldstärke ist in Fig. 7 durch Pfeile dargestellt. Je weiter Elektronenstrahlen bei der Bewegung durch den Zylinder von der Mittelachse des Zylinders entfernt sind, desto mehr werden sie entweder nach innen zur Mittelachse oder nach außen weg von der Mittelachse abgelenkt. Durch hintereinandergeschaltete Quadrupole, bei denen sich die Elektronenstrahlen in den Randbereichen nacheinander durch einen fokussierenden und einen defokussierenden Bereich bewegen (oder in umgekehrter Reihenfolge), läßt sich der Abstand der Elektronenstrahlen zueinander verändern. Solche magnetischen Quadrupole umgeben den Röhrenhals und damit das Eletronenenstrahlerzeugungssystem von außen. Elektrostatische elektronenoptische Linsen dagegen sind ein integrierter Bestandteil des Elektronenstrahlerzeugungssystems.

Claims (11)

  1. Farbfernsehgerät oder Farbmonitor mit
    einer Kathodenstrahlröhre (43) mit
       einem Elektronenstrahlerzeugungssystem (42) zur Erzeugung mehrerer Elektronenstrahlen (6-8) zur Wiedergabe eines Videosignals (40), wobei die Elektronenstrahlen (6-8) einen bestimmten gegenseitigen Abstand (s) voneinander aufweisen,
       einer Schattenmaske (1), und
       einem Leuchtschirm (3),
    einer Ablenkeinheit (46) zur gemeinsamen Ablenkung der Elektronenstrahlen (6-8) des Elektronenstrahlerzeugungssystems (42) in horizontaler und vertikaler Richtung,
    einer Ablenksteuerung (45) zur Steuerung der Ablenkeinheit (46) in Abhängigkeit von den Synchronisationsimpulsen (44) des Videosignals (40)
    einem Elektronenlinsensystem (49) zur Beeinflussung des gegenseitigen Abstands (s) der Elektronenstrahlen (6-8), das im Bereich der Ablenkeinheit (46) oder des Elektronenstrahlerzeugungssystems (42) der Kathodenstrahlröhre (43) vorgesehen ist, und
    einer Elektronenlinsensystemsteuerung (48), die in Abhängigkeit von dem Videosignal das Elektronenlinsensystem (49) steuert,
    dadurch gekennzeichnet, dass
    der Leuchtschirm (3) ein im wesentlichen flacher Leuchtschirm ist und
    die Elektronenlinsensystemsteuerung (48) den gegenseitigen Abstand der Elektronenstrahlen (6-8) in Abhängigkeit von den Steuersignalen (47) der Ablenksteuerung (45) oder den Synchronisationsimpulsen (44) des Videosignals (40) in etwa proportional zu dem Verhältnis des Abstands (las) der Konvergenzebene (32) und des Leuchtschirms (3) zum Abstand (q) der Schattenmaske (1) und des Leuchtschirms (3) einstellt.
  2. Farbfernsehgerät oder Farbmonitor nach Anspruch 1, dadurch gekennzeichnet, daß die Elektronenlinsensystemsteuerung (48) den gegenseitigen Abstand (s) der Elektronenstrahlen (6-8) gemäß folgender Formel einstellt: s ≈ Tri/3 * (Ias-q)/q wobei in der Formel bedeuten:
    s -   gegenseitiger Abstand der Elektronenstrahlen (6-8),
    Tri -   Tripelabmessungen,
    las -   Abstand der Konvergenzebene (32) zum Leuchtschirm (3) und
    q -   Abstand der Schattenmaske (1) zum Leuchtschirm (3).
  3. Farbfernsehgerät oder Farbmonitor nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Elektronenlinsensystem (49) durch einen zweifachen magnetischen Quadrupol realisiert ist, der in der Nähe der Ablenkebene (33) der Ablenkeinheit (46) angebracht ist.
  4. Farbfernsehgerät oder Farbmonitor nach Anspruch 3, dadurch gekennzeichnet, daß der zweifache magnetische Quadrupol die Randstrahlen (21, 22) der von dem Elektronenstrahlerzeugungssystem (42) erzeugten Elektronenstrahlen (20-22) durch einen dem Ablenkfeld der Ablenkeinheit (46) synchronen Effekt beeinflußt.
  5. Farbfernsehgerät oder Farbmonitor nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Elektronenlinsensystem (49) durch ein doppeltes steuerbares elektrostatisches Ablenkelement realisiert ist.
  6. Farbfemsehgerät oder Farbmonitor nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Elektronenlinsensystem (49) durch eine Kombination aus einem elektrostatischen Ablenkelement und einem magnetischen Quadrupol realisiert ist.
  7. Farbfernsehgerät oder Farbmonitor nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Elektronenlinsensystem (49) durch Einbindung einer Quadrupolfunktion in die Ablenkeinheit (46) realisiert ist.
  8. Farbfernsehgerät oder Farbmonitor nach Anspruch 7, dadurch gekennzeichnet, daß die Einbindung der Quadrupolfunktion in die Ablenkeinheit (46) durch gezielte Abweichung von der idealen dynamischen Konvergenz und gleichzeitige Korrektur dieser Abweichung durch eine elektrostatisches Ablenkelement oder einen magnetischen Quadrupol in einer anderen Ebene erreicht wird.
  9. Farbfernsehgerät oder Farbmonitor nach einem der Ansprüche 3 bis 8, dadurch gekennzeichnet, daß die erste Quadrupolebene (34) und die zweite Quadrupolebene (35) einen bestimmten Mindestabstand voneinander aufweisen.
  10. Farbfernsehgerät oder Farbmonitor nach einem der Ansprüche 3 bis 8, dadurch gekennzeichnet, daß sich die Wirkung der beiden Quadrupole bezüglich der statischen und der dynamischen Kovergenz aufhebt.
  11. Farbfernsehgerät oder Farbmonitor nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß der Abstand zwischen der Schattenmaske (1) und dem Leuchtschirm (3) mit zunehmender Entfernung vom Leuchtschirmmittelpunkt (5) größer wird.
EP98113322A 1998-07-16 1998-07-16 Farbfernsehgerät oder Farbmonitor mit flachem Bildschirm Expired - Lifetime EP0975003B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE59807070T DE59807070D1 (de) 1998-07-16 1998-07-16 Farbfernsehgerät oder Farbmonitor mit flachem Bildschirm
EP98113322A EP0975003B1 (de) 1998-07-16 1998-07-16 Farbfernsehgerät oder Farbmonitor mit flachem Bildschirm
US09/351,513 US6483558B1 (en) 1998-07-16 1999-07-12 Color television receiver or color monitor having a flat screen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP98113322A EP0975003B1 (de) 1998-07-16 1998-07-16 Farbfernsehgerät oder Farbmonitor mit flachem Bildschirm

Publications (2)

Publication Number Publication Date
EP0975003A1 EP0975003A1 (de) 2000-01-26
EP0975003B1 true EP0975003B1 (de) 2003-01-29

Family

ID=8232291

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98113322A Expired - Lifetime EP0975003B1 (de) 1998-07-16 1998-07-16 Farbfernsehgerät oder Farbmonitor mit flachem Bildschirm

Country Status (3)

Country Link
US (1) US6483558B1 (de)
EP (1) EP0975003B1 (de)
DE (1) DE59807070D1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW428200B (en) * 1998-12-01 2001-04-01 Koninkl Philips Electronics Nv Colour display device with a deflection-dependent distance between outer beams
JP2000228156A (ja) * 1999-02-05 2000-08-15 Toshiba Corp 陰極線管装置
EP1209718A1 (de) * 2000-11-22 2002-05-29 Hitachi, Ltd. Farbbildröhre
FR2895145A1 (fr) * 2005-12-16 2007-06-22 Thomson Licensing Sas Systeme de convergence de faisceaux electroniques de tubes a rayons cathodiques

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997044808A1 (en) * 1996-05-21 1997-11-27 Philips Electronics N.V. Color display device having elements influencing the landing angle

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3761763A (en) * 1971-05-17 1973-09-25 Denki Onkyo Co Ltd Color television picture tube apparatus
GB1449700A (en) * 1974-10-18 1976-09-15 Balandin G D Cathode-ray tube with variable energy of beam electrons
IT1193827B (it) * 1978-10-13 1988-08-24 Rca Corp Complesso di regolazione della convergenza utilizzante barrette magnetiche suscettibili di movimenti differenziali
US4887009A (en) * 1986-02-12 1989-12-12 Rca Licensing Corporation Color display system
US4864195A (en) * 1988-05-05 1989-09-05 Rca Licensing Corp. Color display system with dynamically varied beam spacing
DE69020478T2 (de) * 1989-10-02 1996-02-22 Philips Electronics Nv Farbbildröhrensystem mit reduziertem Fleckwachstum.
US5327051A (en) * 1990-07-19 1994-07-05 Rca Thomson Licensing Corporation Deflection system with a pair of quadrupole arrangements
JP3339059B2 (ja) * 1991-11-14 2002-10-28 ソニー株式会社 陰極線管
US5248920A (en) * 1992-10-13 1993-09-28 Zenith Electronics Corporation Cathode ray tube dynamic electron-optic eyebrow effect distortion correction

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997044808A1 (en) * 1996-05-21 1997-11-27 Philips Electronics N.V. Color display device having elements influencing the landing angle

Also Published As

Publication number Publication date
DE59807070D1 (de) 2003-03-06
EP0975003A1 (de) 2000-01-26
US6483558B1 (en) 2002-11-19

Similar Documents

Publication Publication Date Title
DE69531907T2 (de) Farbkathodenstrahlröhre mit niedrigen dynamischen Fokussierspannung
DE2223818C3 (de) Selbstkonvergierende Farbbildwiedergabeeinrichtung
AT391380B (de) Selbstkonvergierendes ablenkjoch
DE4109855A1 (de) Kathodenstrahlroehre mit verbessertem schirmtraeger mit einem seitenverhaeltnis von 16 x 9
DE69600022T2 (de) Farbkathodenstrahlröhre
DD262525A5 (de) Farbbild-wiedergabesystem
DD259059A5 (de) Farbbild-wiedergabesystem
DE2544294B2 (de) Farbbildsichtgeraet
DE942747C (de) Schaltung fuer eine Fernseh-Wiedergaberoehre
DE68917948T2 (de) Flache Bildwiedergabevorrichtung mit Kathodenstrahlröhre.
EP0975003B1 (de) Farbfernsehgerät oder Farbmonitor mit flachem Bildschirm
DE2824881A1 (de) Elektronenstrahlablenkungskorrigierte farbfernseh-bildroehre
DE2520830A1 (de) Farbfernsehempfaenger
DE69720694T2 (de) Farbkathodenstrahlröhre
DE3743985C2 (de) Kathodenstrahlröhre
DE2541893C3 (de) Strahlablenkeinrichtung für eine Farbfernsehempfänger-Bildröhre
EP0556695B1 (de) Ablenkschaltung für einen Fernsehempfänger mit symmetrischer Ablenkung
DE68928273T2 (de) Vorrichtung für eine Farbkathodenstrahlröhre
DD238473A5 (de) Schlitzmaskenelektronenkanone fuer katodenstrahlroehren
DE69125423T2 (de) Anordnung mit Farb-Kathodenstrahlröhre
DE69734329T2 (de) Korrektur des negativ differentiellen Komafehlers in Kathodenstrahlröhren
DE4231720C2 (de) Kathodenstrahlröhren-Anzeigevorrichtung
DE4309944B4 (de) Ablenkjoch mit einer Kernverlängerung
DE69727119T2 (de) Farbkathodenstrahlröhre mit elementen zur beeinflussung der richtung einfallender elektronen
DE69720120T2 (de) Kathodenstrahlröhre

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990426

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AKX Designation fees paid

Free format text: DE FR GB IT NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MATSUSHITA DISPLAY DEVICES (GERMANY) GMBH

17Q First examination report despatched

Effective date: 20010424

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59807070

Country of ref document: DE

Date of ref document: 20030306

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030310

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031030

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: MT PICTURE DISPLAY GERMANY GMBH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040628

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040721

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20040727

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040830

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050716

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060201

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20060201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060331