EP0971172B1 - Brennkammer für eine Gasturbine mit schalldämpfender Wandstruktur - Google Patents

Brennkammer für eine Gasturbine mit schalldämpfender Wandstruktur Download PDF

Info

Publication number
EP0971172B1
EP0971172B1 EP98810656A EP98810656A EP0971172B1 EP 0971172 B1 EP0971172 B1 EP 0971172B1 EP 98810656 A EP98810656 A EP 98810656A EP 98810656 A EP98810656 A EP 98810656A EP 0971172 B1 EP0971172 B1 EP 0971172B1
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
orifices
wall
damping
perforated plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98810656A
Other languages
English (en)
French (fr)
Other versions
EP0971172A1 (de
Inventor
Jakob Prof. Dr. Keller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Schweiz AG filed Critical Alstom Schweiz AG
Priority to EP98810656A priority Critical patent/EP0971172B1/de
Priority to DE59810343T priority patent/DE59810343D1/de
Publication of EP0971172A1 publication Critical patent/EP0971172A1/de
Application granted granted Critical
Publication of EP0971172B1 publication Critical patent/EP0971172B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/12Intake silencers ; Sound modulation, transmission or amplification
    • F02M35/1255Intake silencers ; Sound modulation, transmission or amplification using resonance
    • F02M35/1261Helmholtz resonators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/02Silencing apparatus characterised by method of silencing by using resonance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/02Silencing apparatus characterised by method of silencing by using resonance
    • F01N1/023Helmholtz resonators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B77/00Component parts, details or accessories, not otherwise provided for
    • F02B77/11Thermal or acoustic insulation
    • F02B77/13Acoustic insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M20/00Details of combustion chambers, not otherwise provided for, e.g. means for storing heat from flames
    • F23M20/005Noise absorbing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • G10K11/168Plural layers of different materials, e.g. sandwiches
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/172Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2490/00Structure, disposition or shape of gas-chambers
    • F01N2490/15Plurality of resonance or dead chambers
    • F01N2490/155Plurality of resonance or dead chambers being disposed one after the other in flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • F05B2260/201Heat transfer, e.g. cooling by impingement of a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00014Reducing thermo-acoustic vibrations by passive means, e.g. by Helmholtz resonators

Definitions

  • the present invention relates to the field of gas turbines. It affects a combustion chamber for a gas turbine according to the preamble of claim 1.
  • Gas turbines can cause pressure vibrations during operation under certain conditions or acoustic vibrations that occur in terms of frequency Range of several kHz, e.g. 1.8 kHz or around 5 kHz.
  • Vibrations are disruptive to operation and are therefore undesirable.
  • a way to dampen or suppress such vibrations consists in providing fluidic means in the combustion chamber, which influence the flow of hot gases in that the acoustic vibrations are not excited or only to a small extent.
  • Helmholtz resonators on the combustion chamber attach to the vibrations as damping elements couple and dampen the vibrations or completely to disappear bring.
  • a gas turbine combustor is described in US Pat. No. 5,644,918, with the leading within the cooling air surrounding the combustion chamber Double jacket and on the front of the combustion chamber in the area of the burner by pulling in additional dividing walls Helmholtz resonators 48 and 56 are formed, the constrictions 50 and 58 in connection with the combustion chamber stand, but are otherwise completely completed, so that a Flow of cooling air through the resonator rooms does not take place.
  • European publication EP-A1-0 576 717 discloses a gas turbine combustor.
  • the flame tube is located away from the combustion chamber Side exposed to an air flow supplied by the gas turbine compressor.
  • the flame tube is essentially composed of wall parts, the combustion chamber outer wall parts facing away from each have a plurality of inlet openings distributed over the circumference have, introduced via the cooling air into an intermediate space arranged in the flame tube becomes. From the intermediate space, the cooling air is passed through outlet bores into the combustion chamber facing inner wall parts introduced into the combustion chamber.
  • the space between the wall parts is on to form a Helmholtz resonator large, closed additional volume coupled, with the inlet openings in the outer wall parts as feed pipes and the outlet bores as damping pipes of the Helmholtz resonator, are formed.
  • the object is achieved in a combustion chamber of the type mentioned in that the geometric dimensions of the individual first openings and / or the distance between Perforated plate and inner wall in the area of the individual first openings and / or the periodic spacing of the individual first openings from one another to produce a broadened damping frequency band with each other substantially the same or within of a range of values can be selected differently.
  • the invention is therefore based on an embodiment in which a plurality of interconnected ones Helmholtz resonators by arranging two parallel ones Perforated plate can be created. The one perforated plate, the relatively large openings At the same time, the damping tubes of the individual resonators form the inner wall of the Combustion chamber itself.
  • the other, outside perforated plate bounds together with the inner wall the intervening, interconnected damping volumes of the individual resonators.
  • the relatively small openings on the outside Perforated plate is flowed through by cooling air, which on the one hand the resonators stabilized thermally and frequency and on the other hand by impact highly effective impingement cooling of the inner wall on the outside of the inner wall allows.
  • the additional effort to create the resonators exists - if the large openings in the Inner wall already exist - just from attaching the outer one Perforated plate.
  • the first embodiment of the combustion chamber according to the invention is characterized in that the geometric dimensions of each first openings and the periodic intervals between the first openings are chosen essentially the same.
  • the individual partial resonators are in this case, all tuned to the same damping frequency, so that for the damping arrangement overall a high damping in a relative results in a narrow frequency range.
  • the second embodiment of the combustion chamber according to the invention is characterized in that the geometric dimensions of each first openings and / or the distance between the perforated plate and the inner wall in Area of the individual first openings and / or the periodic distance of the individual first openings with each other to produce a widened Damping frequency band selected differently within a range of values become.
  • the distribution of values for the individual partial resonators means that the overall arrangement of the frequency range in which a noticeable attenuation takes place, significantly broadened, which is advantageous when the combustion chamber vibrations scatter more in frequency.
  • the first openings For common frequency values of combustion chamber vibrations in the range of several kHz are the first openings as through holes with a length of a few millimeters and a diameter of a few millimeters.
  • the periodic distance between adjacent first openings is a few millimeters, and the distance of the perforated plate from the inner wall is also a few millimeters.
  • the length of the first openings is approximately 5 mm, the Diameter of the first openings about 4.3 mm, the periodic distance of the first openings to each other about 10 mm, and the distance between the Perforated plate and the inner wall about 5 mm.
  • the second openings are chosen so small that there is sufficient Pressure drop for the cooling air flowing through results.
  • the diameter is preferred the second openings are smaller than 1 mm, in particular approximately 0.7 mm.
  • the damping behavior is particularly advantageous if according to another Embodiment the combustion chamber is designed as a secondary combustion chamber, if the combustion chamber is in the combustion zone and an upstream Inflow zone is divided if the inflow zone is in a step-like manner Transition to the combustion zone expanded when the combustion zone in the Area of the step-like transition delimited by a radial inner wall and when the perforated plate is arranged on the outside of the radial inner wall is.
  • a secondary combustion chamber is shown in a simplified longitudinal section, which is known from EP-A1 0 669 500, and which is preferred for implementation the invention is suitable.
  • the combustion chamber 10 includes a combustion zone 23, which of an inner wall extending in the axial direction 12 and a radial inner wall 17 is limited.
  • the inflow zone 20 is delimited by an inner wall 15. Protrudes into the inflow zone 20 a fuel lance 18 from the side, a nozzle at the front end 19 for fuel injection.
  • the inner walls 12, 15 and 17 are from an outer wall 11 extending in the axial direction.
  • a cooling air duct 14 remains free through the inner wall 12 and the outer wall 11 which cooling air against the flow direction of the hot gases in between the inner wall 15 and the outer wall 11 formed extended space 16 streams.
  • the inner wall 12 is convectively cooled by the cooling air.
  • the cooling air flows from the space 16 through openings 21 in the inner wall 15 into the inflow zone 20, and through openings 22 in the inner wall 17 into the combustion zone 23, and thereby effects an effusion cooling.
  • a Helmholtz resonator arrangement can be integrated, which is simultaneously an effective Cooling of the inner wall 17 ensured.
  • On the outside of the radial inner wall 17 is a perforated plate according to FIG. 2 at a distance (A in FIG. 3) 24 arranged in parallel, together with the radial inner wall 17 (Ring-shaped) damping volume 26 includes.
  • the inner wall 17 has one A plurality of more or less regularly distributed openings 27, the identical to the openings 22 for the effusion cooling in the combustion chamber 1 can be, but also different geometric dimensions can have.
  • the as through holes with a diameter D1 and Length B (Fig. 3) trained openings 27 each act as a damping tube of a Helmholtz partial resonator, which emerges from the respective opening 27 and the underlying partial volume of the damping volume 26 is formed.
  • the total damping volume 26 and the entirety of the openings 27 can be understood as individual Helmholtz resonators, their individual damping volumes are interconnected to form the damping volume 26.
  • the perforated plate 24 has two more besides the limitation of the damping volume important tasks.
  • the openings 25 provided in the perforated plate 24 allow cooling air to flow into the damping volume 26 from the space 16.
  • the incoming cooling air cools the Helmholtz resonator arrangement.
  • the openings 25 are relative to the openings 27 offset or arranged "on gap". This hits the damping volume 26 incoming cooling air on the opposite of the openings 25 Outside of the inner wall 17, resulting in an effective impingement cooling of the inner wall 17 leads.
  • the diameter D2 of the openings 25 (FIG. 3) is opposite the diameter D1 is comparatively small. This ensures that the cooling air flowing through suffers a sufficient pressure drop.
  • the resonance frequency of the resonator arrangement or the partial resonators is in the essentially by the distance A, the thickness B of the inner wall 17 or the length of the openings 27, the diameter of the openings 27 and the periodic Distance L (Fig. 3) of the openings 27 is determined.
  • the openings 27 are through holes with a length B of a few millimeters and a diameter D1 of a few Millimeters.
  • the periodic distance L between neighboring ones Openings 27 are a few millimeters, and the distance A of the perforated plate 24 of the inner wall 17 is also a few millimeters.
  • FIGS. 4 and 5 The damping behavior of the individual for the values from the table Partial resonators is shown in FIGS. 4 and 5.
  • Fig. 4 shows the relative attenuation power over frequency.
  • Fig. 5 shows the displacement amplitude in the damping tube (Opening 27) above the frequency. It can be seen that both curves are pronounced Have maximum at the desired frequency of 5500 Hz.
  • the resonator arrangement according to FIGS. 2 and 3 requires a cooling air flow that is large enough to withstand a heat-related deviation of the resonance frequency from the prevent constructively determined value. Such a flow of cooling air is in everyone Case sufficient for cooling the inner wall 17.
  • the damping capacity of the single opening 27 is large enough to dampen the overall arrangement to extend to a wider frequency range. A certain amount can do this Scattering range for the values A, B, D1 and L can be chosen to be different Realize resonance frequencies of the individual partial resonators.
  • the length of the Openings 25 are not important as long as the pressure drop across them Openings are sufficiently large.
  • the invention results in a combustion chamber which, with good acoustic Damping ensures efficient cooling of the inner walls and at the same time can be made compact. It goes without saying that the Helmholtz resonator arrangement in the context of the invention also on others Place of the inner walls can be arranged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

TECHNISCHES GEBIET
Die vorliegende Erfindung bezieht sich auf das Gebiet der Gasturbinen. Sie betrifft eine Brennkammer für eine Gasturbine gemäss dem Oberbegriff des Anspruchs 1.
STAND DER TECHNIK
In den Brennkammern, insbesondere den Sekundärbrennkammem, herkömmlicher Gasturbinen kann es im Betrieb unter bestimmten Bedingungen zu Druckschwingungen bzw. akustischen Schwingungen kommen, die frequenzmässig im Bereich von mehreren kHz, z.B. 1,8 kHz oder um 5 kHz herum liegen. Derartige Schwingungen erweisen sich als störend für den Betrieb und sind daher unerwünscht. Eine Möglichkeit zur Dämpfung oder Unterdrückung derartiger Schwingungen besteht darin, strömungstechnische Mittel in der Brennkammer vorzusehen, welche die Strömung der heissen Gase dahingehend beeinflussen, dass die akustischen Schwingungen nicht oder nur in geringem Masse angeregt werden. Eine andere Möglichkeit besteht darin, an der Brennkammer sogenannte Helmholtzresonatoren anzubringen, die als Dämpfungselemente an die Schwingungen ankoppeln und die Schwingungen dämpfen oder vollständig zum Verschwinden bringen.
Aus dem Stand der Technik sind verschiedene Beispiele für den Einsatz von Helmholtzresonatoren bekannt. In der Druckschrift US-A-5,373,695 wird eine Ringbrennkammer für eine Gasturbine beschrieben, bei welcher an der Stirnseite neben den Brennern einzelne, mit Kühlluft gespülte Helmholtzresonatoren angeordnet sind, die jeweils ein aussenliegendes Dämpfungsvolumen umfassen, das über ein Dämpfungsrohr mit der Brennkammer in Verbindung steht und zur Verhinderung einer hitzebedingten frequenzmässigen Verstimmung über ein dünnes Versorgungsrohr von aussen mit Kühlluft beaufschlagt wird.
In der Druckschrift US-A-5,644,918 wird eine Gasturbinen-Brennkammer beschrieben, bei der innerhalb des die Brennkammer umgebenden Kühlluft führenden Doppelmantels und an der Stirnseite der Brennkammer im Bereich der Brenner durch Einziehen zusätzlicher Trennwände Helmholtzresonatoren 48 und 56 gebildet werden, die über Verengungen 50 bzw. 58 mit der Brennkammer in Verbindung stehen, im übrigen aber vollkommen abgeschlossen sind, so dass ein Durchfluss von Kühlluft durch die Resonatorräume nicht stattfindet.
Eine andere Lösung, die sich speziell auf eine Sekundärbrennkammer bezieht, ist in der Druckschrift US-A-5, 431,018 dargestellt. Ein mit Kühlluft gespülter Helmholtzresonator umgibt hier konzentrisch die radial in die Brennkammer einmündende Brennstoffleitung, durch welche der Brennstoff für die Nachverbrennung in die Brennkammer eingedüst wird.
Die bekannten, mit Helmholtzresonatoren arbeitenden Lösungen sind aufwendig in der Konstruktion, lassen sich bei vorhandenen Gasturbinen nur schwer nachrüsten, nehmen, wenn sie in einer Mehrzahl eingesetzt werden, erheblichen Platz ein, und sind nicht kompatibel mit Kühlkonzepten, bei denen die Innenwand der Brennkammer durch von aussen herangeführte Kühlluft gekühlt wird.
Die Europäische Veröffentlichung EP-A1-0 576 717 offenbart eine Gasturbinenbrennkammer. In dieser Brennkammer ist das Flammrohr aus seiner vom Verbrennungsraum abgewandten Seite einem vom Verdichter des Gasturbine gelieferten Luftstrom ausgesetzt. Das Flammrohr setzt sich im wesentlichen aus Wandteilen zusammen, wobei die dem Verbrennungsraum abgewandten äusseren Wandteile jeweils mehrere über den Umfang verteilte Einlassöffnungen aufweisen, über die Kühlluft in einen im Flammrohr angeordneten Zwischenraum eingeleitet wird. Aus den Zwischenraum wird die Kühlluft über Austrittsbohrungen in den dem Verbrennungsraum zugewandten inneren Wandteilen in den Verbrennungsraum eingeleitet. Der Zwischenraum zwischen den Wandteilen ist zwecks Bildung eines Helmholtzresonators an ein grosses, abgeschlossenes Zusatzvolumen angekoppelt, wobei die Einlassöffnungen in den äusseren Wandteilen als Zuführrohre und die Austrittsbohrungen als Dämpfungsrohre des Helmholtzresonators, ausgebildet sind.
DARSTELLUNG DER ERFINDUNG
Es ist daher Aufgabe der Erfindung, eine durch Helmholtzresonatoren akustisch bedämpfte Brennkammer für Gasturbinen zu schaffen, welche die Nachteile der bekannten Lösungen vermeidet und sich insbesondere durch einen geringem zusätzlichen Aufwand und Platzbedarf für die integrierten Resonatoren auszeichnet, und zugleich eine effektive Kühlung der Innenwände der Brennkammer erlaubt.
Die Aufgabe wird bei einer Brennkammer der eingangs genannten Art dadurch gelöst, dass die geometrischen Abmessungen der einzelnen ersten Öffnungen und/oder der Abstand zwischen Lochplatte und Innenwand im Bereich der einzelnen ersten Öffnungen und/oder der periodische Abstand der einzelnen ersten Öffnungen untereinander zur Erzeugung eines verbreiterten Dämpfungsfrequenzbandes untereinander im wesentlichen gleich oder innerhalb eines Wertebereiches unterschiedlich gewählt werden. Die Erfindung geht also von einer Ausführungsform aus, in der eine Mehrzahl von miteinander verbundenen Helmholtzresonatoren durch die Anordnung zweier parallel verlaufenden Lochplatte geschaffen werden. Die eine Lochplatte, deren relativ grosse Öffnungen zugleich die Dämpfungsrohre der Einzelresonatoren bilden, ist die Innenwand der Brennkammer selbst. Die andere, aussenliegende Lochplatte begrenzt zusammen mit der Innenwand die dazwischenliegenden, untereinander verbundenen Dämpfungsvolumina der Einzelresonatoren. Die relativ kleinen Öffnungen der aussenliegenden Lochplatte werden von Kühlluft durchströmt, die einerseits die Resonatoren thermisch und frequenzmässig stabilisiert und andererseits durch Auftreffen auf die Aussenseite der Innenwand eine hochwirksame Prallkühlung der Innenwand ermöglicht. Der zusätzliche Aufwand zur Schaffung der Resonatoren besteht dabei - wenn bei vorhandener Effusionskühlung die grossen Öffnungen in der Innenwand bereits vorhanden sind - lediglich aus dem Anbringen der äusseren Lochplatte.
Die erste erfindungsgemässe Ausführungsform der Brennkammer ist dadurch gekennzeichnet, dass die geometrischen Abmessungen der einzelnen ersten Oeffnungen und die periodischen Abstände der ersten Oeffnungen untereinander im wesentlichen gleich gewählt sind. Die einzelnen Teilresonatoren sind in diesem Fall alle auf dieselbe Dämpfungsfrequenz abgestimmt, so dass sich für die Dämpfungsanordnung insgesamt eine hohe Dämpfung in einem relativ schmalen Frequenzbereich ergibt.
Die zweite erfindungsgemässe Ausführungsform der Brennkammer zeichnet sich dadurch aus, dass die geometrischen Abmessungen der einzelnen ersten Öffnungen und/oder der Abstand zwischen Lochplatte und Innenwand im Bereich der einzelnen ersten Öffnungen und/oder der periodische Abstand der einzelnen ersten Öffnungen untereinander zur Erzeugung eines verbreiterten Dämpfungsfrequenzbandes innerhalb eines Wertebereiches unterschiedlich gewählt werden. Durch die Wertestreuung für die einzelnen Teilresonatoren wird für die Gesamtanordnung der Frequenzbereich, in welchem eine merkliche Dämpfun stattfindet, deutlich verbreitert, was vorteilhaft ist, wenn die Brennkammerschwingungen in der Frequenz stärker streuen.
Für übliche Frequenzwerte der Brennkammerschwingungen im Bereich von mehreren kHz sind die ersten Öffnungen als Durchgangsbohrungen mit einer Länge von wenigen Millimetern und einem Durchmesser von wenigen Millimetern ausgebildet. Der periodische Abstand zwischen benachbarten ersten Öffnungen beträgt wenige Millimeter, und der Abstand der Lochplatte von der Innenwand beträgt ebenfalls wenige Millimeter. Insbesondere betragen zur Dämpfung von Frequenzen von etwa 5500 Hz die Länge der ersten Öffnungen etwa 5 mm, der Durchmesser der ersten Öffnungen etwa 4,3 mm, der periodische Abstand der ersten Öffnungen untereinander etwa 10 mm, und der Abstand zwischen der Lochplatte und der Innenwand etwa 5 mm.
Die zweiten Öffnungen werden so klein gewählt, dass sich ein ausreichender Druckabfall für die durchströmende Kühlluft ergibt. Bevorzugt ist der Durchmesser der zweiten Öffnungen kleiner als 1 mm, insbesondere etwa 0,7 mm.
Besonders vorteilhaft ist das Dämpfungsverhalten, wenn gemäss einer weiteren Ausführungsform die Brennkammer als Sekundärbrennkammer ausgebildet ist, wenn die Brennkammer in die Verbrennungszone und eine stromaufwärts angeordnete Zuströmzone unterteilt ist, wenn die Zuströmzone sich in einem stufenartigen Übergang zur Verbrennungszone erweitert, wenn die Verbrennungszone im Bereich des stufenartigen Übergangs durch eine radiale Innenwand begrenzt wird, und wenn die Lochplatte an der Aussenseite der radialen Innenwand angeordnet ist.
KURZE ERLÄUTERUNG DER FIGUREN
Die Erfindung soll nachfolgend anhand von Ausführungsbeispielen im Zusammenhang mit der Zeichnung näher erläutert werden. Es zeigen
Fig. 1
im vereinfachten Längsschnitt eine Sekundärbrennkammer, wie sie aus dem Stand der Technik, insbesondere der EP-A1 0 669 500, bekannt ist;
Fig. 2
einen vergrösserten Ausschnitt der Brennkammer nach Fig. 1 im Bereich des stufenartigen Übergangs zwischen Zuströmzone und Verbrennungszone mit einer integrierten Helmholtzresonator-Anordnung gemäss einem bevorzugten Ausführungsbeispiel der Erfindung;
Fig. 3
in einer perspektivischen, vergrösserten Darstellung die Helmholtzresonator-Anordnung aus Fig. 2 mit den beiden parallelen Lochplatten;
Fig. 4
eine beispielhafte Dämpfungskurve für einen der Teilresonatoren aus der Anordnung nach Fig. 3; und
Fig. 5
der zu Fig. 4 gehörende Frequenzgang der Verschiebungsamplitude im Dämpfungsrohr (Öffnung 27) eines Teilresonators aus Fig. 3.
WEGE ZUR AUSFÜHRUNG DER ERFINDUNG
In Fig. 1 ist im vereinfachten Längsschnitt eine Sekundärbrennkammer wiedergegeben, die aus der EP-A1 0 669 500, bekannt ist, und die sich bevorzugt zur Verwirklichung der Erfindung eignet. Die Brennkammer 10 umfasst eine Verbrennungszone 23, welche von einer sich in axialer Richtung erstreckenden Innenwand 12 und einer radialen Innenwand 17 begrenzt ist. In die Verbrennungszone 23 treten die heissen Gase einer vorgeschalteten Verbrennungsstufe durch eine Zuströmzone 20 ein und durch einen Heissgasauslass 13 wieder aus. Die Zuströmzone 20 ist durch eine Innenwand 15 begrenzt. In die Zuströmzone 20 ragt von der Seite her eine Brennstofflanze 18 hinein, die am vorderen Ende eine Düse 19 zum Eindüsen von Brennstoff aufweist. Die Innenwände 12, 15 und 17 sind von einer sich in axialer Richtung erstreckenden Aussenwand 11 umgeben. Zwischen der Innenwand 12 und der Aussenwand 11 bleibt ein Kühlluftkanal 14 frei, durch welchen Kühlluft entgegen der Strömungsrichtung der heissen Gase in einen zwischen der Innenwand 15 und der Aussenwand 11 gebildeten erweiterten Zwischenraum 16 strömt. Die Innenwand 12 wird dabei von der Kühlluft konvektiv gekühlt. Vom Zwischenraum 16 strömt die Kühlluft durch Öffnungen 21 in der Innenwand 15 in die Zuströmzone 20, und durch Öffnungen 22 in der Innenwand 17 in die Verbrennungszone 23 ein, und bewirkt dabei eine Effusionskühlung.
An der radialen Innenwand 17, d.h., der stufenartigen Erweiterung zwischen Zuströmzone 20 und Verbrennungszone 23 kann nun gemäss einem bevorzugten Ausführungsbeispiel der Erfindung, wie es in Fig. 2 und 3 dargestellt ist, eine Helmholtzresonator-Anordnung integriert werden, die gleichzeitig eine effektive Kühlung der Innenwand 17 gewährleistet. Auf der Aussenseite der radialen Innenwand 17 wird dazu gemäss Fig. 2 in einem Abstand (A in Fig. 3) eine Lochplatte 24 parallel angeordnet, die zusammen mit der radialen Innenwand 17 ein (ringförmiges) Dämpfungsvolumen 26 einschliesst. Die Innenwand 17 weist eine Mehrzahl von mehr oder weniger regelmässig verteilten Öffnungen 27 auf, die identisch mit den Öffnungen 22 für die Effusionskühlung in der Brennkammer nach Fig. 1 sein können, aber auch abweichende geometrische Abmessungen haben können. Die als Durchgangsbohrungen mit einer Durchmesser D1 und einer Länge B (Fig. 3) ausgebildeten Öffnungen 27 wirken jede für sich als Dämpfungsrohr eines Helmholtz-Teilresonators, der aus der jeweiligen Öffnung 27 und dem dahinterliegenden Teilvolumen des Dämpfungsvolumens 26 gebildet wird. Das Dämpfungsvolumen 26 insgesamt und die Gesamtheit der Öffnungen 27 lassen sich als einzelne Helmholtzresonatoren auffassen, deren einzelne Dämpfungsvolumen untereinander zum Dämpfungsvolumen 26 verbunden sind.
Die Lochplatte 24 hat neben der Begrenzung des Dämpfungsvolumens zwei weitere wichtige Aufgaben. Die in der Lochplatte 24 vorgesehenen Öffnungen 25 lassen aus dem Zwischenraum 16 Kühlluft in das Dämpfungsvolumen 26 einströmen. Die einströmende Kühlluft kühlt einerseits die Helmholtzresonator-Anordnung. Dadurch wird die Geometrie und damit die Dämpfungsfrequenz der Anordnung stabil gehalten. Andererseits sind die Öffnungen 25 relativ zu den Öffnungen 27 versetzt bzw. "auf Lücke" angeordnet. Dadurch trifft die in das Dämpfungs-volumen 26 einströmende Kühlluft auf die den Öffnungen 25 gegenüberliegende Aussenseite der Innenwand 17, was zu einer effektiven Prallkühlung der Innenwand 17 führt. Der Durchmesser D2 der Öffnungen 25 (Fig. 3) ist gegenüber dem Durchmesser D1 vergleichsweise klein. Dadurch ist gewährleistet, dass die durchströmende Kühlluft einen ausreichenden Druckabfall erleidet.
Die Resonanzfrequenz der Resonatoranordnung bzw. der Teilresonatoren wird im wesentlichen durch den Abstand A, die Dicke B der Innenwand 17 bzw. die Länge der Öffnungen 27, den Durchmesser der Öffnungen 27 und den periodischen Abstand L (Fig. 3) der Öffnungen 27 bestimmt. Zur Dämpfung von Frequenzen im Bereich von mehreren kHz sind die Öffnungen 27 als Durchgangsbohrungen mit einer Länge B von wenigen Millimetern und einem Durchmesser D1 von wenigen Millimetern ausgebildet. Der periodische Abstand L zwischen benachbarten Öffnungen 27 beträgt wenige Millimeter, und der Abstand A der Lochplatte 24 von der Innenwand 17 beträgt ebenfalls wenige Millimeter.
Für die Dämpfung höherer Frequenzen um 5,5 kHz können die in der nachfolgenden Tabelle aufgeführten beispielhaften Werte angegeben werden:
Kühlluft
Druck 16,6 bar
Temperatur 770 K
Dichte 7,51 kg/m3
Schallgeschwindigkeit 556,22 m/s
kinematische Viskosität 4,71.10-6 m2/s
Heissgas in der Brennkammer
Temperatur 1740 K
Dichte 3,32 kg/m3
Schallgeschwindigkeit 836,14 m/s
Brennkammer
Druckschwingungsamplitude 100 mbar
Querschnittsfläche 0,0863 m2
akustische Leistung der Wanderwelle 388 W
Dämpfer
Resonanzfrequenz 5500 Hz
Volumen eines Teilresonators 0,0005 Liter
Länge (B) des Dämpfungsrohres 27 0,005 m
Strömungsgeschwindigkeit im Rohr 27 4 m/s
Länge der Öffnung 25 0,005 m
Durchmesser D2 der Öffnung 25 0,7 mm
Durchmesser D1 des Dämpfungsrohres27 4,32 mm
periodischer Lochabstand L 10 mm
Das sich für die Werte aus der Tabelle ergebende Dämpfungsverhalten der einzelnen Teilresonatoren ist in den Fig. 4 und 5 wiedergegeben. Fig. 4 zeigt dabei die relative Dämpfung (relative attenuation power) über der Frequenz. Fig. 5 zeigt die Verschiebungsamplitude (displacement amplitude) in dem Dämpfungsrohr (Öffnung 27) über der Frequenz. Man erkennt, dass beide Kurven ein ausgeprägtes Maximum bei der gewünschten Frequenz von 5500 Hz aufweisen.
Die Resonatoranordnung gemäss Fig. 2 und 3 benötigt einen Kühlluftstrom, der gross genug ist, um eine wärmebedingte Abweichung der Resonanzfrequenz vom konstruktiv festgelegten Wert zu verhindern. Ein solcher Kühlluftstrom ist in jedem Fall ausreichend für die Kühlung der Innenwand 17. Das Dämpfungsvermögen der einzelnen Öffnung 27 ist gross genug, um die Dämpfung der Gesamtanordnung auf einen breiteren Frequenzbereich auszudehnen. Dazu kann ein gewisser Streubereich für die Werte A, B, D1 und L gewählt werden, um unterschiedliche Resonanzfrequenzen der einzelnen Teilresonatoren zu realisieren. Die Länge der Öffnungen 25 ist solange nicht von Bedeutung, wie der Druckabfall über diese Öffnungen hinreichend gross ist.
Insgesamt ergibt sich mit der Erfindung eine Brennkammer, die bei guter akustischer Dämpfung eine effiziente Kühlung der Innenwände gewährleistet und zugleich kompakt ausgeführt werden kann. Es versteht sich dabei von selbst, dass die Helmholtzresonator-Anordnung im Rahmen der Erfindung auch an anderer Stelle der Innenwände angeordnet werden kann.
BEZUGSZEICHENLISTE
10
Sekundärbrennkammer
11
Aussenwand
12
Innenwand (Verbrennungszone)
13
Heissgasauslass
14
Kühlluftkanal
15
Innenwand (Zuströmzone)
16
Zwischenraum
17
radiale Innenwand
18
Brennstofflanze
19
Düse (Brennstofflanze)
20
Zuströmzone
21
Öffnung (Wand 15)
22,27
Öffnung (Wand 17)
23
Verbrennungszone
24
Lochplatte
25
Einlassöffnung
26
Dämpfungsvolumen

Claims (5)

  1. Brennkammer (10) für eine Gasturbine,
    in welcher Brennkammer (10) die heissen Verbrennungsgase einer Verbrennungszone (23) durch Innenwände (12, 17) umschlossen werden, welche durch ausserhalb der Innenwände (12, 17) herangeführte Kühlluft gekühlt werden,
    wobei zumindest in einem Teilbereich an der Aussenseite der Innenwände (12, 17) eine von den Innenwänden (12, 17) beabstandete, im wesentlichen parallel zu den Innenwänden (12, 17) verlaufende Lochplatte (24) angeordnet ist, welche zusammen mit der zugehörigen Innenwand (17) ein geschlossenes Dämpfungsvolumen (26) bildet,
    wobei die Innenwände (17) im Bereich des Dämpfungsvolumens (26) eine Mehrzahl von verteilt angeordneten ersten Öffnungen (27) aufweist, durch welche das Dämpfungsvolumen (26) mit der Verbrennungszone (23) der Brennkammer (10) in Verbindung steht,
    wobei die Lochplatte (24) eine Mehrzahl von verteilt angeordneten zweiten Öffnungen (25) aufweist, durch welche Kühlluft von aussen in das Dämpfungsvolumen (26) einströmt und nach Art einer Prallkühlung zwischen den ersten Öffnungen (27) auf die gegenüberliegende Aussenseite der Innenwand (17) trifft, und
    wobei die ersten Öffnungen (27) zusammen mit den Dämpfungsvolumen (26) eine Mehrzahl von untereinander verbundenen Helmhottzresonatoren bilden und als Schalldämpfer für in der Brennkammer entstehende akustische Schwingungen wirken,
       dadurch gekennzeichnet, dass
    die geometrischen Abmessungen (B, D1) der einzelnen ersten Öffnungen (27) und/oder
    der Abstand zwischen Lochplatte (24) und Innenwand (17) im Bereich der einzelnen ersten Öffnungen (27) und/oder
    der periodische Abstand (L) der einzelnen ersten Öffnungen (27) untereinander zur Erzeugung eines verbreiterten Dämpfungsfrequenzbandes untereinander im wesentlichen gleich oder innerhalb eines Wertebereiches unterschiedlich gewählt werden.
  2. Brennkammer nach Anspruch 1, dadurch gekennzeichnet, dass zur Dämpfung von Frequenzen im Bereich von mehreren kHz die ersten Öffnungen (27) als Durchgangsbohrungen mit einer Länge (B) von wenigen Millimetern und einem Durchmesser (D1) von wenigen Millimetern ausgebildet sind, dass der periodische Abstand (L) zwischen benachbarten ersten Öffnungen (27) wenige Millimeter beträgt, und dass der Abstand (A) der Lochplatte (24) von der Innenwand (17) ebenfalls wenige Millimeter beträgt.
  3. Brennkammer nach Anspruch 2, dadurch gekennzeichnet, dass zur Dämpfung von Frequenzen von etwa 5500 Hz die Länge (B) der ersten Öffnungen (27) etwa 5 mm, der Durchmesser (D1) der ersten Öffnungen (27) etwa 4,3 mm, der periodische Abstand (L) der ersten Öffnungen (27) untereinander etwa 10 mm, und der Abstand (A) zwischen der Lochplatte (24) und der Innenwand (17) etwa 5 mm betragen.
  4. Brennkammer nach einem der Ansprüche 2 und 3, dadurch gekennzeichnet, dass der Durchmesser (D2) der zweiten Öffnungen kleiner als 1 mm, insbesondere etwa 0,7 mm, ist.
  5. Brennkammer nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Brennkammer (10) als Sekundärbrennkammer ausgebildet ist, dass die Brennkammer (10) in die Verbrennungszone (23) und eine stromaufwärts angeordnete Zuströmzone (20) unterteilt ist, dass die Zuströmzone (20) sich in einem stufenartigen Übergang zur Verbrennungszone (23) erweitert, dass die Verbrennungszone (23) im Bereich des stufenartigen Übergangs durch eine radiale Innenwand (17) begrenzt wird, und dass die Lochplatte (24) an der Aussenseite der radialen Innenwand (17) angeordnet ist.
EP98810656A 1998-07-10 1998-07-10 Brennkammer für eine Gasturbine mit schalldämpfender Wandstruktur Expired - Lifetime EP0971172B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP98810656A EP0971172B1 (de) 1998-07-10 1998-07-10 Brennkammer für eine Gasturbine mit schalldämpfender Wandstruktur
DE59810343T DE59810343D1 (de) 1998-07-10 1998-07-10 Brennkammer für eine Gasturbine mit schalldämpfender Wandstruktur

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP98810656A EP0971172B1 (de) 1998-07-10 1998-07-10 Brennkammer für eine Gasturbine mit schalldämpfender Wandstruktur

Publications (2)

Publication Number Publication Date
EP0971172A1 EP0971172A1 (de) 2000-01-12
EP0971172B1 true EP0971172B1 (de) 2003-12-03

Family

ID=8236187

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98810656A Expired - Lifetime EP0971172B1 (de) 1998-07-10 1998-07-10 Brennkammer für eine Gasturbine mit schalldämpfender Wandstruktur

Country Status (2)

Country Link
EP (1) EP0971172B1 (de)
DE (1) DE59810343D1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7424804B2 (en) 2003-03-07 2008-09-16 Alstom Technology Ltd Premix burner
EP2559942A1 (de) 2011-08-19 2013-02-20 Rolls-Royce Deutschland Ltd & Co KG Brennkammerkopf einer Gasturbine mit Kühlung und Dämpfung

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6351947B1 (en) * 2000-04-04 2002-03-05 Abb Alstom Power (Schweiz) Combustion chamber for a gas turbine
EP1221574B2 (de) * 2001-01-09 2017-12-20 Mitsubishi Heavy Industries, Ltd. Gasturbinenbrennkammer
EP1342953A1 (de) * 2002-03-07 2003-09-10 Siemens Aktiengesellschaft Gasturbine
GB2390150A (en) 2002-06-26 2003-12-31 Alstom Reheat combustion system for a gas turbine including an accoustic screen
US6964170B2 (en) 2003-04-28 2005-11-15 Pratt & Whitney Canada Corp. Noise reducing combustor
EP1623104A1 (de) * 2003-05-15 2006-02-08 Alstom Technology Ltd Vorrichtung zur schalldämpfung in einem strömungskanal
GB0425794D0 (en) 2004-11-24 2004-12-22 Rolls Royce Plc Acoustic damper
DE102006026969A1 (de) 2006-06-09 2007-12-13 Rolls-Royce Deutschland Ltd & Co Kg Gasturbinenbrennkammerwand für eine mager-brennende Gasturbinenbrennkammer
DE102009032277A1 (de) 2009-07-08 2011-01-20 Rolls-Royce Deutschland Ltd & Co Kg Brennkammerkopf einer Gasturbine
CH703357A1 (de) * 2010-06-25 2011-12-30 Alstom Technology Ltd Wärmebelastetes, gekühltes bauteil.
RU2682461C2 (ru) 2013-03-15 2019-03-19 Президент Энд Феллоуз Оф Гарвард Колледж Пористые структуры с повторяющимся порядком расположения продолговатых отверстий
JP6438000B2 (ja) * 2013-03-15 2018-12-19 プレジデント アンド フェローズ オブ ハーバード カレッジ 低孔隙率オーゼティックシート
RU2706056C2 (ru) 2015-01-09 2019-11-13 Президент Энд Феллоус Оф Харвард Колледж Структура с нулевой пористостью и отрицательным коэффициентом Пуассона и настройка структуры с отрицательным коэффициентом Пуассона для конкретных участков
CN108472913B (zh) 2015-01-09 2021-02-09 哈佛大学校董委员会 具有用于自定义npr特性的工程化图案的浅凹与空隙混合的拉胀结构
RU2706058C2 (ru) 2015-01-09 2019-11-13 Президент Энд Феллоус Оф Харвард Колледж Вафельная структура с отрицательным коэффициентом Пуассона
WO2019021483A1 (ja) * 2017-07-28 2019-01-31 イビデン株式会社 吸音部材、車両用部品及び自動車

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2191025B1 (de) * 1972-07-04 1975-03-07 Aerospatiale
US4199936A (en) * 1975-12-24 1980-04-29 The Boeing Company Gas turbine engine combustion noise suppressor
FR2447069A1 (fr) * 1979-01-16 1980-08-14 Westeel Guy Perfectionnements aux dispositifs d'insonorisation disposes dans des ecoulements fluides
DE3318863A1 (de) * 1983-05-25 1984-12-13 Erich 8480 Weiden Bielefeldt Kraftmaschine mit gasturbine
DE3700444A1 (de) * 1987-01-09 1988-07-21 Siegfried W Schilling Heizkessel
EP0576717A1 (de) * 1992-07-03 1994-01-05 Abb Research Ltd. Gasturbinen-Brennkammer
US5528904A (en) * 1994-02-28 1996-06-25 Jones; Charles R. Coated hot gas duct liner
GB9623615D0 (en) * 1996-11-13 1997-07-09 Rolls Royce Plc Jet pipe liner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7424804B2 (en) 2003-03-07 2008-09-16 Alstom Technology Ltd Premix burner
EP2559942A1 (de) 2011-08-19 2013-02-20 Rolls-Royce Deutschland Ltd & Co KG Brennkammerkopf einer Gasturbine mit Kühlung und Dämpfung

Also Published As

Publication number Publication date
DE59810343D1 (de) 2004-01-15
EP0971172A1 (de) 2000-01-12

Similar Documents

Publication Publication Date Title
EP0971172B1 (de) Brennkammer für eine Gasturbine mit schalldämpfender Wandstruktur
EP0985882B1 (de) Schwingungsdämpfung in Brennkammern
EP1336800B1 (de) Verfahren zur Verminderung verbrennungsgetriebener Schwingungen in Verbrennungssystemen sowie Vormischbrenner zur Durchführung des Verfahrens
EP1423645B1 (de) Dämpfungsanordnung zur reduzierung von brennkammerpulsationen in einer gasturbinenanlage
DE10058688B4 (de) Dämpferanordnung zur Reduktion von Brennkammerpulsationen
DE4316475C2 (de) Gasturbinen-Brennkammer
EP2559942A1 (de) Brennkammerkopf einer Gasturbine mit Kühlung und Dämpfung
DE10325691A1 (de) Wiederaufheizverbrennungssystem für eine Gasturbine
EP1483536B1 (de) Gasturbine
CH680523A5 (de)
DE4009196A1 (de) Flammenhalter fuer einen gasturbinentriebwerks-nachbrenner
EP2423597B1 (de) Vormischbrenner für eine Gasturbine
EP0990851B1 (de) Brennkammer für eine Gasturbine
EP0892217B1 (de) Vorrichtung zur Dämpfung von Brennkammerschwingungen
DE102008016931A1 (de) System zur Reduktion der Brennkammerdynamik
EP1048898B1 (de) Brenner
DE19948674B4 (de) Verbrennungseinrichtung, insbesondere für den Antrieb von Gasturbinen
DE112019004946B4 (de) Brennerkomponente, Brenner, Gasturbine und Herstellungsverfahren für Brennerkomponente
DE102004010620B4 (de) Brennkammer zur wirksamen Nutzung von Kühlluft zur akustischen Dämpfung von Brennkammerpulsation
EP1605209B1 (de) Brennkammer mit einer Dämpfungseinrichtung zur Dämpfung von thermoakustischen Schwingungen
EP2187125A1 (de) Vorrichtung und Verfahren zur Dämpfung von Verbrennungsschwingungen
EP0892216B1 (de) Schwingungsdämpfende Brennkammerwandstruktur
DE19939235B4 (de) Verfahren zum Erzeugen von heissen Gasen in einer Verbrennungseinrichtung sowie Verbrennungseinrichtung zur Durchführung des Verfahrens
WO2015176887A1 (de) Brenneranordnung mit resonator
EP1001214B1 (de) Brenner

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000510

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ABB ALSTOM POWER (SCHWEIZ) AG

AKX Designation fees paid

Free format text: DE GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

17Q First examination report despatched

Effective date: 20020917

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ALSTOM TECHNOLOGY LTD

REF Corresponds to:

Ref document number: 59810343

Country of ref document: DE

Date of ref document: 20040115

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040225

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040906

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110622

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110729

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120710

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59810343

Country of ref document: DE

Effective date: 20130201