EP0933441B1 - Process for producing an aluminium alloy pressure die cast component - Google Patents

Process for producing an aluminium alloy pressure die cast component Download PDF

Info

Publication number
EP0933441B1
EP0933441B1 EP98810062A EP98810062A EP0933441B1 EP 0933441 B1 EP0933441 B1 EP 0933441B1 EP 98810062 A EP98810062 A EP 98810062A EP 98810062 A EP98810062 A EP 98810062A EP 0933441 B1 EP0933441 B1 EP 0933441B1
Authority
EP
European Patent Office
Prior art keywords
component
weight
aluminium alloy
annealing
hardening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98810062A
Other languages
German (de)
French (fr)
Other versions
EP0933441A1 (en
Inventor
Reinhard Winkler
Günther Höllrigl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3A Composites International AG
Original Assignee
Alcan Technology and Management Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DK98810062T priority Critical patent/DK0933441T3/en
Application filed by Alcan Technology and Management Ltd filed Critical Alcan Technology and Management Ltd
Priority to DE59805967T priority patent/DE59805967D1/en
Priority to ES98810062T priority patent/ES2181152T3/en
Priority to SI9830301T priority patent/SI0933441T1/en
Priority to AT98810062T priority patent/ATE226263T1/en
Priority to EP98810062A priority patent/EP0933441B1/en
Priority to PT98810062T priority patent/PT933441E/en
Priority to BR9900621-9A priority patent/BR9900621A/en
Publication of EP0933441A1 publication Critical patent/EP0933441A1/en
Application granted granted Critical
Publication of EP0933441B1 publication Critical patent/EP0933441B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions

Definitions

  • the invention relates to a method for producing a component from an aluminum alloy hardenable by precipitation of Mg 2 Si with Si and / or Mg 2 Si eutectic by die casting.
  • Crash behavior is an increasingly important aspect in vehicle construction. This applies to road traffic as well as for rail traffic.
  • the die casting process enables high-volume production of thin-walled castings, such as those used as crash-relevant components in automotive engineering.
  • Thin-walled parts place high demands on the castability.
  • Aluminum alloys that can meet the requirements placed on the flow behavior or mold filling capacity are alloys with a Si and / or Mg 2 Si eutectic.
  • FR-A-2 323 771 discloses a heat treatment process for a Aluminum alloy with silicon and magnesium as essential Alloy components.
  • the heat treatment process includes, among other things an annealing between 300 and 340 ° C for 4 to 8 h.
  • the object of the invention is therefore to find a heat treatment with which can achieve a high elongation at break with a sufficient yield strength.
  • the component after die casting to increase the ductility to the desired level in a temperature range from 380 to 410 ° C for 90 to 10 minutes of heterogenization annealing is subjected.
  • the heterogenization annealing according to the invention is also an annealing in which the Supersaturation of the rapid solidification is reduced. For the diffusion required for this Si is used for annealing in the temperature range between 380 and 410 ° C carried out. This heterogenization annealing ensures that the Al matrix becomes completely ductile. The crash behavior of the component is improved, because there are larger deformation paths during the ductile fracture.
  • An essential aspect of the heat treatment method according to the invention lies in that to a high temperature anneal followed by water quenching dispensed with and the component can be manufactured without warpage.
  • the component is cured before the heterogenization annealing in order to set the desired strength level, preferably in the temperature range of the precipitation hardening of Mg 2 Si in the falling part of the hardness curve.
  • This pre-hardening brings a higher level of strength than in the cast state and thus creates a defined initial state.
  • the temperatures and times used for this pre-hardening are in the over-hardening range and aim to produce a pre-segregation of Mg 2 Si precipitates which is as homogeneous as possible. It is thus achieved that the heterogenization annealing can take place with short diffusion paths, ie with shorter times, and consequently a structure which is very homogeneous with respect to the coarsened Mg 2 Si particles.
  • Pre-curing in a temperature range of approximately 190 to 210 ° C. is preferred carried out.
  • Rapid solidification of thin-walled castings leads to high Si supersaturation, which can be greater than the equilibrium solubility (> 1.60% Si).
  • the heat treatment usually carried out according to the prior art at 490 to 530 ° C. with subsequent quenching treatment in water reduces the Si supersaturation to 0.7 to 0.8% Si, while at the same time creating the prerequisite for hardening the workpiece by precipitation hardening of Mg 2 Si to bring higher strength.
  • the increase in ductility usually determined as an A5 elongation at break by tensile testing, can be explained by reducing the Si supersaturation and by simultaneously rounding (shaping) the Si or Mg 2 Si eutectic.
  • the essential essence of the present invention lies in the over-hardening of the Al matrix to be controlled so that the desired yield point is reached. At the same time the diffusion of the Si, which takes place at a higher temperature, rapidly degrades the high Enable casting supersaturation of Si.
  • the coarsening of the hardening phase Mg 2 Si is specifically controlled by placing the aforementioned pre-hardening in the temperature range of the precipitation hardening of Mg 2 Si in the falling part of the hardness curve of the heterogenization annealing, an optimal ratio of yield strength and elongation at break can be achieved.
  • the demixing reaction of the Mg 2 Si is controlled in a controlled manner by coarsening the Mg 2 Si particles already present.
  • An aluminum alloy used with preference contains essential alloy elements 2.0 to 11.0% by weight of Si and 0.10 to 5.5% by weight of Mg.
  • the aluminum alloy can optionally be used still contain 0.1 to 0.5 wt .-% Fe and 0.1 to 1.2 wt .-% Mn.
  • the aluminum alloy can add further elements individually max. 0.05 wt%, total Max. 0.2% by weight, as well as aluminum as the remainder along with production-related impurities contain.
  • the heterogenization annealing expediently takes place continuously in one Continuous furnace, preferably in the passage through a heating zone with controllable heat transfer.
  • the preferred field of application of the method according to the invention is in production thin-walled components with high absorption capacity for kinetic energy through plastic deformation, i.e. crash-relevant components, such as those used as safety parts in the Vehicle construction and in particular used in the automotive industry.
  • Fig. 1 shows schematically the conditions for the pre-hardening in the temperature range of the precipitation hardening of Mg 2 Si in the falling part of the hardening curve for three different annealing temperatures.
  • alloy Composition (% by weight) Si Fe Mn mg Ti 1 2.5 0.1 0.68 5.4 00:14 2 10.4 0.1 00:57 00:11 00:04

Landscapes

  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Extrusion Of Metal (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Forging (AREA)
  • Continuous Casting (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heat Treatment Of Articles (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

A die cast component of precipitation hardenable aluminum-magnesium-silicon alloy is subjected to a heterogenization anneal to increase its ductility. In the production of a component of Mg2Si precipitation hardenable aluminum alloy with a Si or Mg2Si eutectic by die casting, the die cast component is subjected to a heterogenization anneal at 320-410 degrees C for 320-10 min. Preferred Features: The aluminum alloy contains 2.0-11.0 wt.% Si and 0.10-5.5 wt.% Mg, with optional additions of 0.1-0.5 wt.% Fe and 0.2-1.2 wt.% Mn.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines Bauteiles aus einer durch Ausscheidung von Mg2Si aushärtbaren Aluminiumlegierung mit Si- und/oder Mg2Si-Eutektikum durch Druckgiessen.The invention relates to a method for producing a component from an aluminum alloy hardenable by precipitation of Mg 2 Si with Si and / or Mg 2 Si eutectic by die casting.

Das Crashverhalten ist im Fahrzeugbau ein zunehmend wichtiger Aspekt. Dies gilt für den Strassenverkehr ebenso wie für den Schienenverkehr.Crash behavior is an increasingly important aspect in vehicle construction. This applies to road traffic as well as for rail traffic.

Hersteller von Strassen- und Schienenfahrzeugen gehen immer mehr dazu über, spezielle Bauelemente oder sogar ganze Baugruppen des Fahrzeuges so zu dimensionieren, dass diese bei einem Zusammenstoss möglichst viel Energie absorbieren, um damit das Verletzungsrisiko der Passagiere zu verringern.Manufacturers of road and rail vehicles are increasingly turning to special ones Dimension components or even entire assemblies of the vehicle so that they absorb as much energy as possible in a collision to reduce the risk of injury of passengers to decrease.

Neben der konstruktiven Gestaltung dieser sogenannten crashrelevanten Bauteile sind die mechanischen Eigenschaften der eingesetzten Werkstoffe von ausschlaggebender Bedeutung. Angestrebt wird eine möglichst grosse Absorption von Energie vor dem Bruch.In addition to the constructive design of these so-called crash-relevant components mechanical properties of the materials used are of crucial importance. The aim is to absorb as much energy as possible before breaking.

Das Druckgiessverfahren ermöglicht bei hohen Stückzahlen die kostengünstige Herstellung dünnwandiger Gussstücke, wie sie als crashrelevante Bauteile im Automobilbau eingesetzt werden. Dünnwandige Teile stellen hohe Anforderungen an die Giessbarkeit. Aluminiumlegierungen, welche die an das Fliessverhalten bzw. Formfüllungsvermögen gestellten Anforderungen erfüllen können, sind Legierungen mit einem Si- und/oder Mg2Si-Eutektikum.The die casting process enables high-volume production of thin-walled castings, such as those used as crash-relevant components in automotive engineering. Thin-walled parts place high demands on the castability. Aluminum alloys that can meet the requirements placed on the flow behavior or mold filling capacity are alloys with a Si and / or Mg 2 Si eutectic.

Bauteile mit teilweise geringen Wandstärken, wie sie beispielsweise als Strukturbauteile im Automobilbau eingesetzt werden, verziehen sich beim Abschrecken und müssen daher gerichtet werden. Zudem kann die hohe Glühtemperatur infolge einer Restgasporosität zu Blasenbildung an der Oberfläche der Bauteile führen. Zur Herstellung von Strukturbauteilen der genannten Art durch Druckgiessen wurde deshalb nach Möglichkeiten gesucht, die geforderten Festigkeits- und Dehnungswerte auch ohne Durchführung einer Lösungsglühung zu erzielen.Components with sometimes thin walls, such as structural components used in automobile construction warp when quenching and must therefore be judged. In addition, the high annealing temperature can result from residual gas porosity lead to blistering on the surface of the components. For the production of structural components of the type mentioned by die casting was therefore sought the required strength and elongation values even without carrying out a To achieve solution annealing.

Für crashrelevante Bauteile im Automobilbau wird der Schwerpunkt auf die Duktilität, also auf das Verformungsvermögen und auf den duktilen Bruch, ausgedrückt durch die Bruchdehnung (A5), gelegt. Die Festigkeit, ausgedrückt durch die 0.2% Streckgrenze (Rp 0.2), kann dabei relativ tiefe Werte annehmen. An einen Werkstoff für die Herstellung crashrelevanter Bauteile werden beispielsweise folgende Bedingungen gestellt: Streckgrenze Rp0.2 > 120 MPa Bruchdehnung A5 > 15% For crash-relevant components in automotive engineering, the focus is on ductility, i.e. on the deformability and on the ductile fracture, expressed by the elongation at break (A5). The strength, expressed by the 0.2% yield strength (Rp 0.2), can take on relatively low values. For example, the following conditions are placed on a material for the manufacture of crash-relevant components: Yield strength Rp0.2> 120 MPa Elongation at break A5> 15%

Aus Gründen der Formstabilität müssen die genannten Minimalwerte ohne Durchführung einer Hochtemperaturglühung mit nachfolgender Wasserabschreckung erreicht werden können. Diese Bedingung scheint im Zusammenhang mit den geforderten mechanischen Eigenschaften nach dem heutigen Kenntnisstand nicht erfüllbar zu sein.For reasons of dimensional stability, the minimum values mentioned must not be carried out high temperature annealing followed by water quenching can. This condition seems related to the required mechanical Properties according to the current state of knowledge cannot be fulfilled.

Aus der GB-A-616 413 ist es bekannt, eine Aluminiumlegierung mit Silizium und Magnesium als wesentliche Legierungsbestandteile bei einer Temperatur von 350°C während einer Zeitdauer von 1 h zu glühen. Ein entsprechendes Bauteil kann auch durch Druckgiessen hergestellt werden.From GB-A-616 413 it is known to use an aluminum alloy with silicon and Magnesium as essential alloy components at a temperature of 350 ° C to glow for a period of 1 h. A corresponding component can also be produced by die casting.

Die FR-A-2 323 771 offenbart ein Wärmebehandlungsverfahren für eine Aluminiumlegierung mit Silizium und Magnesium als wesentliche Legierungsbestandteile. Das Wärmebehandlungsverfahren schliesst unter anderem eine Glühung zwischen 300 und 340°C während 4 bis 8 h ein.FR-A-2 323 771 discloses a heat treatment process for a Aluminum alloy with silicon and magnesium as essential Alloy components. The heat treatment process includes, among other things an annealing between 300 and 340 ° C for 4 to 8 h.

Der Erfindung liegt daher die Aufgabe zugrunde, eine Wärmebehandlung zu finden, mit welcher eine hohe Bruchdehnung bei ausreichender Streckgrenze erreicht werden kann.The object of the invention is therefore to find a heat treatment with which can achieve a high elongation at break with a sufficient yield strength.

Zur erfindungsgemässen Lösung der Aufgabe führt, dass das Bauteil nach dem Druckgiessen zur Erhöhung der Duktilität auf das gewünschte Mass in einem Temperaturbereich von 380 bis 410° C während einer Zeitdauer von 90 bis 10 min einer Heterogenisierungsglühung unterworfen wird.In order to achieve the object according to the invention, the component after die casting to increase the ductility to the desired level in a temperature range from 380 to 410 ° C for 90 to 10 minutes of heterogenization annealing is subjected.

Die erfindungsgemässe Heterogenisierungsglühung ist zugleich eine Glühung, bei der die Übersättigung der raschen Erstarrung abgebaut wird. Für die hierzu erforderliche Diffusion von Si wird die Glühung im Temperaturbereich zwischen 380 und 410° C durchgeführt. Mit dieser Heterogenisierungsglühung wird erreicht, dass die Al-Matrix vollkommen duktil wird. Das Crashverhalten des Bauteiles wird verbessert, weil sich während des duktilen Bruches grössere Verformungswege ergeben.The heterogenization annealing according to the invention is also an annealing in which the Supersaturation of the rapid solidification is reduced. For the diffusion required for this Si is used for annealing in the temperature range between 380 and 410 ° C carried out. This heterogenization annealing ensures that the Al matrix becomes completely ductile. The crash behavior of the component is improved, because there are larger deformation paths during the ductile fracture.

Ein wesentlicher Aspekt des erfindungsgemässen Wärmebehandlungsverfahrens liegt darin, dass auf eine Hochtemperaturglühung mit nachfolgender Wasserabschreckung verzichtet und das Bauteil verzugsfrei hergestellt werden kann.An essential aspect of the heat treatment method according to the invention lies in that to a high temperature anneal followed by water quenching dispensed with and the component can be manufactured without warpage.

Zur optimalen Einstellung der Werte für die Streckgrenze und die Bruchdehnung wird das Bauteil vor der Heterogenisierungsglühung zur Einstellung des gewünschten Festigkeitsniveaus bevorzugt im Temperaturbereich der Ausscheidungshärtung von Mg2Si im abfallenden Teil der Härtekurve ausgehärtet. Diese Voraushärtung bringt ein höheres Festigkeitsniveau als im Gusszustand und stellt somit einen definierten Ausgangszustand her.In order to optimally set the values for the yield strength and the elongation at break, the component is cured before the heterogenization annealing in order to set the desired strength level, preferably in the temperature range of the precipitation hardening of Mg 2 Si in the falling part of the hardness curve. This pre-hardening brings a higher level of strength than in the cast state and thus creates a defined initial state.

Die verwendeten Temperaturen und Zeiten für diese Voraushärtung liegen im Überhärtungsbereich und haben zum Ziel, eine möglichst homogene Vorentmischung von Mg2Si-Ausscheidungen zu erzeugen. Damit wird erreicht, dass die Heterogenisierungsglühung mit kurzen Diffusionswegen, d.h. mit kürzeren Zeiten ablaufen kann und sich demzufolge ein bezüglich der vergröberten Mg2Si-Teilchen sehr homogenes Gefüge einstellt.The temperatures and times used for this pre-hardening are in the over-hardening range and aim to produce a pre-segregation of Mg 2 Si precipitates which is as homogeneous as possible. It is thus achieved that the heterogenization annealing can take place with short diffusion paths, ie with shorter times, and consequently a structure which is very homogeneous with respect to the coarsened Mg 2 Si particles.

Bevorzugt wird die Voraushärtung in einem Temperaturbereich von etwa 190 bis 210° C durchgeführt.Pre-curing in a temperature range of approximately 190 to 210 ° C. is preferred carried out.

Eine rasche Erstarrung dünnwandiger Gussteile führt zu hoher Si-Übersättigung, welche grösser als die Gleichgewichtslöslichkeit (>1.60% Si) sein kann. Die nach dem Stand der Technik üblicherweise durchgeführte Wärmebehandlung bei 490 bis 530°C mit anschliessender Abschreckbehandlung in Wasser reduziert die Si-Übersättigung auf 0,7 bis 0,8% Si, wobei gleichzeitig die Voraussetzung geschaffen wird, das Werkstück durch Ausscheidungshärtung von Mg2Si auf höhere Festigkeit zu bringen. Der Anstieg der Duktilität, meistens ermittelt als A5-Bruchdehnung durch Zugprüfung, ist durch Abbau der Si-Übersättigung und durch gleichzeitige Abrundung (Einformung) des Si- bzw. Mg2Si-Eutektikums erklärbar.Rapid solidification of thin-walled castings leads to high Si supersaturation, which can be greater than the equilibrium solubility (> 1.60% Si). The heat treatment usually carried out according to the prior art at 490 to 530 ° C. with subsequent quenching treatment in water reduces the Si supersaturation to 0.7 to 0.8% Si, while at the same time creating the prerequisite for hardening the workpiece by precipitation hardening of Mg 2 Si to bring higher strength. The increase in ductility, usually determined as an A5 elongation at break by tensile testing, can be explained by reducing the Si supersaturation and by simultaneously rounding (shaping) the Si or Mg 2 Si eutectic.

Der wesentliche Kern der vorliegenden Erfindung liegt darin, die Überhärtung der Al-Matrix so zu steuern, dass die gewünschte Streckgrenze erreicht wird. Gleichzeitig soll die bei höherer Temperatur ablaufende Diffusion des Si einen raschen Abbau der hohen Guss-Übersättigung von Si ermöglichen.The essential essence of the present invention lies in the over-hardening of the Al matrix to be controlled so that the desired yield point is reached. At the same time the diffusion of the Si, which takes place at a higher temperature, rapidly degrades the high Enable casting supersaturation of Si.

Im Rahmen des erfindungsgemässen Verfahrens wurde festgestellt, dass bereits kurzzeitige Glühungen im Temperaturbereich der Mg2Si-Entmischung (Überhärtung) ausreichen, um die Duktilität auf das gewünschte Mass zu erhöhen. Der Konzentrationsausgleich des Si durch Diffusion bei Temperaturen unter etwa 400°C und damit der notwendige Abbau der Gussübersättigung wird vor allem ermöglicht durch die hohe Erstarrungsgeschwindigkeit beim Druckgiessen und die damit verbundene hohe Leerstellendichte.In the context of the method according to the invention, it was found that brief annealing in the temperature range of the Mg 2 Si segregation (over-hardening) is sufficient to increase the ductility to the desired level. The concentration compensation of the Si by diffusion at temperatures below about 400 ° C and thus the necessary reduction of the cast oversaturation is made possible above all by the high solidification speed during die casting and the associated high vacancy density.

Wird die Vergröberung der Aushärtungsphase Mg2Si gezielt gesteuert, indem man die erwähnte Voraushärtung im Temperaturbereich der Ausscheidunghärtung von Mg2Si im abfallenden Teil der Härtekurve der Heterogenisierungsglügung voranstellt, kann ein optimales Verhältnis von Streckgrenze und Bruchdehnung erreicht werden. Erfindungsgemäss wird die Entmischungreaktion des Mg2Si durch Vergröberung der bereits vorhandenen Mg2Si-Teilchen kontrolliert gesteuert.If the coarsening of the hardening phase Mg 2 Si is specifically controlled by placing the aforementioned pre-hardening in the temperature range of the precipitation hardening of Mg 2 Si in the falling part of the hardness curve of the heterogenization annealing, an optimal ratio of yield strength and elongation at break can be achieved. According to the invention, the demixing reaction of the Mg 2 Si is controlled in a controlled manner by coarsening the Mg 2 Si particles already present.

Eine bevorzugt eingesetzte Aluminiumlegierung enthält als wesentliche Legierungselemente 2.0 bis 11.0 Gew.-% Si und 0.10 bis 5.5 Gew.-% Mg. Wahlweise kann die Aluminiumlegierung noch 0.1 bis 0.5 Gew.-% Fe sowie 0.1 bis 1.2 Gew.-% Mn enthalten.An aluminum alloy used with preference contains essential alloy elements 2.0 to 11.0% by weight of Si and 0.10 to 5.5% by weight of Mg. The aluminum alloy can optionally be used still contain 0.1 to 0.5 wt .-% Fe and 0.1 to 1.2 wt .-% Mn.

Die Aluminiumlegierung kann weitere Elemente einzeln max. 0.05 Gew.-%, insgesamt max. 0.2 Gew.-%, sowie Aluminium als Rest nebst herstellungsbedingten Verunreinigungen enthalten. The aluminum alloy can add further elements individually max. 0.05 wt%, total Max. 0.2% by weight, as well as aluminum as the remainder along with production-related impurities contain.

Zweckmässigerweise erfolgt die Heterogenisierungsglühung kontinuierlich in einem Durchlaufofen, vorzugsweise im Durchgang durch eine Heizzone mit steuerbarem Wärmeübergang.The heterogenization annealing expediently takes place continuously in one Continuous furnace, preferably in the passage through a heating zone with controllable heat transfer.

Die erfindungsgemäss bevorzugte Kombination von Voraushärtung und Heterogenisierungglühung führt zu einer gezielten Heterogenisierung, welche zusammenfassend folgende Vorteile beinhaltet:

  • Das Werkstoffverhalten zeichnet sich durch einen duktilen Bruch aus und führt zu guten Crasheigenschaften des Bauteiles.
  • Der Abbau der Si-Übersättigung erfolgt bei Temperaturen unterhalb von etwa 400° C.
  • Es ist keine Abschreckbehandlung erforderlich, so dass Bauteile ohne Verzug hergestellt werden können. Das erfindungsgemässe Verfahren erlaubt auch eine Abkühlung von Bauteilen im Ofen.
  • Die gegenläufigen Werkstoffkennwerte wie Rp0.2 und A5 sind gezielt einstellbar, bevorzugt im Bereich tiefer Streckgrenzen (Rp0.2:115 bis 140 MPa).
  • Eine infolge kürzerer Diffusionswege mögliche kürzere Glühdauer bei der Heterogenisierungsglühung ermöglicht eine kontinuierliche Glühung in einem Durchlaufofen.
The combination of pre-hardening and heterogenization annealing preferred according to the invention leads to targeted heterogenization, which in summary includes the following advantages:
  • The material behavior is characterized by a ductile fracture and leads to good crash properties of the component.
  • The reduction of the Si supersaturation takes place at temperatures below about 400 ° C.
  • No quenching treatment is required, so that components can be manufactured without warpage. The method according to the invention also allows components to be cooled in the furnace.
  • The opposing material properties such as Rp0.2 and A5 can be set in a targeted manner, preferably in the range of low yield strengths (Rp0.2: 115 to 140 MPa).
  • A shorter annealing time in heterogenization annealing due to shorter diffusion paths enables continuous annealing in a continuous furnace.

Das bevorzugte Anwendungsgebiet des erfindungsgemässen Verfahrens liegt in der Herstellung dünnwandiger Bauteile mit hohem Aufnahmevermögen für kinetische Energie durch plastische Verformung, d.h. crashrelevanter Bauteile, wie sie als Sicherheitsteile im Fahrzeugbau und insbesondere im Automobilbau eingesetzt werden.The preferred field of application of the method according to the invention is in production thin-walled components with high absorption capacity for kinetic energy through plastic deformation, i.e. crash-relevant components, such as those used as safety parts in the Vehicle construction and in particular used in the automotive industry.

Die vorteilhafte Wirkung der erfindungsgemässen Wärmebehandlung ergibt sich aus den nachfolgend zusammengestellten Versuchsergebnissen beispielhafter Legierungen. The advantageous effect of the heat treatment according to the invention results from the The test results of exemplary alloys summarized below.

Fig. 1 zeigt schematisch die Bedingungen für die Voraushärtung im Temperaturbereich der Ausscheidungshärtung von Mg2Si im abfallenden Teil der Härtkurve für drei verschiedene Glühtemperaturen.Fig. 1 shows schematically the conditions for the pre-hardening in the temperature range of the precipitation hardening of Mg 2 Si in the falling part of the hardening curve for three different annealing temperatures.

BeispieleExamples

Die untersuchten Legierungen sind in Tabelle 1 zusammengestellt. Legierung Zusammensetzung (Gew.-%) Si Fe Mn Mg Ti 1 2.5 0.1 0.68 5.4 0.14 2 10.4 0.1 0.57 0.11 0.04 The alloys examined are listed in Table 1. alloy Composition (% by weight) Si Fe Mn mg Ti 1 2.5 0.1 0.68 5.4 00:14 2 10.4 0.1 00:57 00:11 00:04

Aus den Legierungen 1 und 2 wurden Bauteile im Druckgiessverfahren hergestellt und nachfolgend verschiedenen Wärmebehandlungen unterzogen. Anschliessend wurden aus den Gussteilen Probestäbe für Zugversuche herausgearbeitet und an diesen die mechanischen Eigenschaften ermittelt. Die Ergebnisse sind in Tabelle 2 zusammengefasst.Alloys 1 and 2 were used to manufacture components using the die casting process subsequently subjected to various heat treatments. Then were out Test pieces for the tensile tests worked out on the castings and the mechanical ones on them Properties determined. The results are summarized in Table 2.

Die Versuche zeigen deutlich die Vorteilhaftigkeit der erfindungsgemässen Wärmebehandlung zur Erzielung eines optimalen Verhältnisses von Bruchdehnung und Streckgrenze am gegossenen Bauteil. Leg. Wärmebehandlung Mech. Eigenschaften Wärmebehandlung Mech.Eigenschaften Rp0.2
(MPa)
Rm
(MPa)
A5
(%)
Rp0.2
(MPa)
Rm
(MPa)
A5
(%)
1 380°C x 90 min 115 255 18 190°C x 45 min + 380°C x 90 min 122 265 16 2 400°C x 20 min 102 205 19 200°C x 45 min + 400°C x 20 min 110 210 18 2 400°C x 10 min 110 215 17 200°C x 45 min + 400°C x 10 min 113 219 17 2 380°C x 20 min 112 216 16 200°C x 45 min + 380°C x 20 min 122 220 16
The tests clearly show the advantageousness of the heat treatment according to the invention in order to achieve an optimal ratio of elongation at break and yield strength on the cast component. Leg. heat treatment Mechanical properties heat treatment Mech.Eigenschaften Rp0.2
(MPa)
rm
(MPa)
A5
(%)
Rp0.2
(MPa)
rm
(MPa)
A5
(%)
1 380 ° C x 90 min 115 255 18 190 ° C x 45 min + 380 ° C x 90 min 122 265 16 2 400 ° C x 20 min 102 205 19 200 ° C x 45 min + 400 ° C x 20 min 110 210 18 2 400 ° C x 10 min 110 215 17 200 ° C x 45 min + 400 ° C x 10 min 113 219 17 2 380 ° C x 20 min 112 216 16 200 ° C x 45 min + 380 ° C x 20 min 122 220 16

Claims (9)

  1. Method of producing a component from an Mg2Si precipitation-hardenable aluminium alloy with an Si and/or Mg2Si eutectic by die casting, characterised in that the component is subjected to heterogenisation annealing at a temperature within the range of 380 to 410°C for a period of 90 to 10 min after the die casting in order to increase its ductility to the desired extent.
  2. Method according to claim 1, characterised in that the component is age-hardened within the temperature range of the precipitation hardening of Mg2Si in the downwardly-sloping part of the hardness curve prior to the heterogenisation annealing in order to set the desired strength level.
  3. Method according to claim 2, characterised in that the age hardening is carried out at a temperature within the range of 190 to 210°C.
  4. Method according to one of claims 1 to 3, characterised in that the aluminium alloy contains 2.0 to 11.0 % by weight Si and 0.10 to 5.5 % by weight Mg as essential alloying elements.
  5. Method according to claim 4, characterised in that the aluminium alloy also contains 0.1 to 0.5 % by weight Fe and 0.2 to 1.2 % by weight Mn.
  6. Method according to claim 4 or claim 5, characterised in that the aluminium alloy contains further elements individually to a maximum of 0.05 % by weight and in total to a maximum of 0.2 % by weight, with the remainder aluminium, together with impurities due to production.
  7. Method according to one of claims 1 to 6, characterised in that the heterogenisation annealing is carried out continuously in a continuous furnace.
  8. Method according to one of claims 1 to 7 for the production of thin-walled components with a high capacity for absorbing kinetic energy by plastic deformation.
  9. Method according to one of claims 1 to 7, in which the component produced is used as a safety component in vehicle construction.
EP98810062A 1998-01-29 1998-01-29 Process for producing an aluminium alloy pressure die cast component Expired - Lifetime EP0933441B1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE59805967T DE59805967D1 (en) 1998-01-29 1998-01-29 Process for producing a component from an aluminum alloy by die casting
ES98810062T ES2181152T3 (en) 1998-01-29 1998-01-29 PROCEDURE FOR MANUFACTURING A MOUNTING PART FROM AN ALUMINUM ALLOY BY PRESSURE COLADA.
SI9830301T SI0933441T1 (en) 1998-01-29 1998-01-29 Process for producing an aluminium alloy pressure die cast component
AT98810062T ATE226263T1 (en) 1998-01-29 1998-01-29 METHOD FOR PRODUCING A COMPONENT FROM AN ALUMINUM ALLOY BY DIE CASTING
DK98810062T DK0933441T3 (en) 1998-01-29 1998-01-29 Process for manufacturing a structural part of an aluminum alloy by die casting
PT98810062T PT933441E (en) 1998-01-29 1998-01-29 METHOD FOR THE MANUFACTURE OF A COMPONENT OF AN ALUMINUM LEAD BY MOLDING BY MOLDING BY INJECTION IN PRESSURE
EP98810062A EP0933441B1 (en) 1998-01-29 1998-01-29 Process for producing an aluminium alloy pressure die cast component
BR9900621-9A BR9900621A (en) 1998-01-29 1999-01-28 Process for the production of an aluminum alloy component by injection molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP98810062A EP0933441B1 (en) 1998-01-29 1998-01-29 Process for producing an aluminium alloy pressure die cast component

Publications (2)

Publication Number Publication Date
EP0933441A1 EP0933441A1 (en) 1999-08-04
EP0933441B1 true EP0933441B1 (en) 2002-10-16

Family

ID=8235907

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98810062A Expired - Lifetime EP0933441B1 (en) 1998-01-29 1998-01-29 Process for producing an aluminium alloy pressure die cast component

Country Status (8)

Country Link
EP (1) EP0933441B1 (en)
AT (1) ATE226263T1 (en)
BR (1) BR9900621A (en)
DE (1) DE59805967D1 (en)
DK (1) DK0933441T3 (en)
ES (1) ES2181152T3 (en)
PT (1) PT933441E (en)
SI (1) SI0933441T1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19916037C1 (en) * 1999-04-09 2000-09-14 Daimler Chrysler Ag Lamella clutch lamella carrier manufacturing method uses lightweight metal alloy components provided with surface coating of given hardness after machining
DE102008056511B4 (en) * 2008-11-08 2011-01-20 Audi Ag Process for producing thin-walled metal components from an Al-SiMg alloy, in particular components of a motor vehicle
GB2522716B (en) * 2014-02-04 2016-09-14 Jbm Int Ltd Method of manufacture
KR102602980B1 (en) * 2018-04-16 2023-11-16 현대자동차주식회사 Aluminium alloy for die casting and manufacturing method for aluminium alloy casting using the same
KR20210076329A (en) * 2019-12-16 2021-06-24 현대자동차주식회사 Aluminium alloy for die casting and manufacturing method for aluminium alloy casting using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB613413A (en) * 1942-03-21 1948-11-29 Clay Patrick Bedford Improvements in or relating to methods of shipbuilding

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB390244A (en) * 1931-11-14 1933-04-06 Horace Campbell Hall Improvements in the heat treatment of aluminium alloys
FR2323771A1 (en) * 1975-09-12 1977-04-08 Snecma Heat treating aluminium-silicon-magnesium castings - in two stages to improve dimensional stability
US4419143A (en) * 1981-11-16 1983-12-06 Nippon Light Metal Company Limited Method for manufacture of aluminum alloy casting
ES2169173T3 (en) * 1995-05-19 2002-07-01 Tenedora Nemak Sa De Cv PROCEDURE AND APPLIANCE FOR THE SIMPLIFIED PRODUCTION OF A THERMALLY TREATABLE ALUMINUM ALLOY.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB613413A (en) * 1942-03-21 1948-11-29 Clay Patrick Bedford Improvements in or relating to methods of shipbuilding

Also Published As

Publication number Publication date
DK0933441T3 (en) 2003-02-17
ATE226263T1 (en) 2002-11-15
BR9900621A (en) 1999-12-14
ES2181152T3 (en) 2003-02-16
SI0933441T1 (en) 2003-04-30
DE59805967D1 (en) 2002-11-21
PT933441E (en) 2003-02-28
EP0933441A1 (en) 1999-08-04

Similar Documents

Publication Publication Date Title
EP0918095B1 (en) Process of manufacturing a structural element made of a die-cast aluminium alloy
DE10352932B4 (en) Cast aluminum alloy
DE60120987T2 (en) HIGH-ALUMINUM BASE ALLOY AND A PRODUCT MANUFACTURED THEREOF
EP3235917B1 (en) Alloy for pressure die casting
DE102016118729A1 (en) A new high-pressure injection molding process for aluminum alloys for high temperature and corrosive environments
DE102013212439A1 (en) Cast aluminum alloy for structural components
DE102017114162A1 (en) HIGH STRENGTH AND HIGH CRYAN RESISTANT ALUMINUM ALLOY ALLOYS AND HPDC MOTOR BLOCKS
DE69825414T2 (en) Aluminum alloy and process for its preparation
EP1719820A2 (en) Aluminium cast alloy
DE102010055011A1 (en) Readily castable ductile aluminum-silicon alloy comprises silicon, magnesium, manganese, copper, titanium, iron, molybdenum, zirconium, strontium, and aluminum and unavoidable impurities, and phosphorus for suppressing primary silicon phase
EP0997550B1 (en) Method for fabricating a component from an aluminium alloy by pressure die-casting
EP1118685A1 (en) Aluminium cast alloy
DE2500084C3 (en) Process for the production of aluminum semi-finished products
DE102017109614B4 (en) Process for solution annealing a casting
DE60114281T2 (en) Cast and forged product using a copper-based alloy
EP2041328B1 (en) Aluminum alloy and the utilization thereof for a cast component, in particular a motor vehicle
EP0989195B1 (en) Heat resisting aluminium alloy of the type AlCuMg
EP0933441B1 (en) Process for producing an aluminium alloy pressure die cast component
DE60220835T2 (en) ALUMINUM ALLOY, CAST COPPER OF ALUMINUM ALLOYING AND METHOD FOR PRODUCING A CAST COPPER OF AN ALUMINUM ALLOY
DE102012017711B4 (en) Method for heat treating a component
EP0918096B1 (en) Process of manufacturing a structural element made of a die-cast aluminium alloy
DE2500083A1 (en) ALUMINUM WICKED ALLOYS AND PROCESSING METHODS
EP1234893B1 (en) Cast alloy of the type AlMgSi
DE2311509A1 (en) WELDABLE AND CHARGING ALUMINUM ALLOYS AND METHOD FOR MANUFACTURING THE SAME
EP1442150B1 (en) Aluminum-silicon alloys having improved mechanical properties

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IE IT LI NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000204

AKX Designation fees paid

Free format text: AT BE CH DE DK ES FR GB IE IT LI NL PT SE

AXX Extension fees paid

Free format text: LT PAYMENT 20000204;LV PAYMENT 20000204;SI PAYMENT 20000204

17Q First examination report despatched

Effective date: 20010625

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCAN TECHNOLOGY & MANAGEMENT AG

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IE IT LI NL PT SE

AX Request for extension of the european patent

Free format text: LT PAYMENT 20000204;LV PAYMENT 20000204;SI PAYMENT 20000204

REF Corresponds to:

Ref document number: 226263

Country of ref document: AT

Date of ref document: 20021115

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59805967

Country of ref document: DE

Date of ref document: 20021121

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20021224

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20030115

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030116

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030120

Year of fee payment: 6

Ref country code: BE

Payment date: 20030120

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030121

Year of fee payment: 6

Ref country code: DK

Payment date: 20030121

Year of fee payment: 6

Ref country code: AT

Payment date: 20030121

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20030127

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20030129

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20030130

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030205

Year of fee payment: 6

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2181152

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030205

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20021219

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040129

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040129

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040130

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040202

BERE Be: lapsed

Owner name: *ALCAN TECHNOLOGY & MANAGEMENT A.G.

Effective date: 20040131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040803

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040129

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

LTLA Lt: lapse of european patent or patent extension

Effective date: 20040129

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041029

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20041027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050129

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20040130