EP0918096B1 - Process of manufacturing a structural element made of a die-cast aluminium alloy - Google Patents

Process of manufacturing a structural element made of a die-cast aluminium alloy Download PDF

Info

Publication number
EP0918096B1
EP0918096B1 EP97810885A EP97810885A EP0918096B1 EP 0918096 B1 EP0918096 B1 EP 0918096B1 EP 97810885 A EP97810885 A EP 97810885A EP 97810885 A EP97810885 A EP 97810885A EP 0918096 B1 EP0918096 B1 EP 0918096B1
Authority
EP
European Patent Office
Prior art keywords
maximum
vanadium
iron
manganese
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97810885A
Other languages
German (de)
French (fr)
Other versions
EP0918096A1 (en
Inventor
Pius Schwellinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3A Composites International AG
Original Assignee
Alcan Technology and Management Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP97810885A priority Critical patent/EP0918096B1/en
Application filed by Alcan Technology and Management Ltd filed Critical Alcan Technology and Management Ltd
Priority to DE59709639T priority patent/DE59709639D1/en
Priority to ES97810885T priority patent/ES2192258T3/en
Priority to PT97810885T priority patent/PT918096E/en
Priority to HU9802625A priority patent/HU220129B/en
Priority to PL98329758A priority patent/PL329758A1/en
Priority to CZ983762A priority patent/CZ376298A3/en
Priority to BR9804708-6A priority patent/BR9804708A/en
Publication of EP0918096A1 publication Critical patent/EP0918096A1/en
Application granted granted Critical
Publication of EP0918096B1 publication Critical patent/EP0918096B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent

Definitions

  • the invention relates to a method for producing a structural component made of an aluminum alloy by die casting.
  • JP-A-56 087 646 is a die-cast aluminum alloy with 1.7 up to 4.0% manganese, 0.05 to 0.6% vanadium and less than 0.5% Impurities known as iron and silicon. By adding Manganese and vanadium are said to improve the castability. In addition, should the castings have high strength and the formation of a enable uniform anodic oxide layer.
  • the invention has for its object to provide suitable materials with further improved mechanical properties for structural components of the type mentioned manufactured in die casting.
  • the natural hard alloys known for die casting are to be further improved with regard to their combination of properties of strength and elongation at break.
  • a method with the features of claim 1 leads to the achievement of the object according to the invention.
  • Die-cast alloys suitable for the production of the structural component consist of Max. 1.4 % By weight silicon Max. 0.8 Wt% iron 0.1 to 1.6 Wt% manganese Max. 5.0 % By weight magnesium Max. 0.2 % By weight titanium Max. 0.1 % By weight zinc 0.05 to 0.3 % By weight vanadium as well as aluminum as the rest with further impurities individually max. 0.02% by weight, max. 0.2% by weight.
  • the alloy in a first alloy system (AlMnFe), preferably consists of 0.1 to 0.8, preferably 0.15 to 0.25 % By weight silicon 0.2 to 0.8, preferably 0.3 to 0.6 Wt% iron 0.5 to 1.6, preferably 0.7 to 0.9 Wt% manganese Max. 1.5 % By weight magnesium Max. 0.2 % By weight titanium Max. 0.1 % By weight zinc 0.05 to 0.3, preferably 0.1 to 0.2 % By weight vanadium as well as aluminum as the rest with further impurities individually max. 0.02% by weight, max. 0.2% by weight.
  • the alloy in a second preferred alloy system (AlMgMn), preferably consists of 0.05 to 1.0, preferably 0.15 to 0.25 % By weight silicon 0.05 to 0.2, preferably 0.05 to 0.1 Wt% iron 0.5 to 1.6, preferably 0.7 to 0.9 Wt% manganese 2.0 to 4.5, preferably 2.5 to 3.0 % By weight magnesium Max. 0.2 % By weight titanium Max. 0.1 % By weight zinc 0.05 to 0.3, preferably 0.1 to 0.2 % By weight vanadium as well as aluminum as the rest with further impurities individually max. 0.02% by weight, max. 0.2% by weight.
  • the known ones Naturally hard aluminum die casting alloys are decisive with regard to their ductility improve.
  • the alloys are therefore particularly suitable for Manufacture of structural components used as safety components in vehicle construction and especially in automotive engineering, for example as a space frame node or as crash elements.
  • the structural components are suitable especially for applications in which a temperature load up to about 180 ° C occurs.
  • Alloys 4 and 8 are according to the invention, the other alloys are commercially available comparative alloys.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Body Structure For Vehicles (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Forging (AREA)
  • Heat Treatment Of Articles (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines Strukturbauteiles aus einer Aluminiumlegierung durch Druckgiessen.The invention relates to a method for producing a structural component made of an aluminum alloy by die casting.

Mit modernen Giessverfahren können heute hochbelastbare Formteile auch aus Aluminiumlegierungen hergestellt werden. Die eingesetzten Aluminiumwerkstoffe müssen allerdings eine Reihe von Anforderungen erfüllen. Eine wesentliche Voraussetzung für die Eignung eines Werkstoffs ist die Einhaltung bestimmter mechanischer Kennwerte. So bestimmen etwa Mindestwerte von Streckgrenze und Festigkeit die Tragfähigkeit einer Konstruktion. im Fahrzeugbau kommt die Anforderung hinzu, dass die bei einem Zusammenstoss deformierten Bauteile vor dem Bruch möglichst viel Energie durch plastische Verformung absorbieren sollen, was eine hohe Duktilität des eingesetzten Werkstoffs erfordert. Eine weitere Voraussetzung ist eine kostengünstige Herstellungsmöglichkeit des Formteils. Hier bietet sich der Druckguss an, wobei für höchste Qualitätsansprüche Spezialverfahren zu bevorzugen sind, mit denen eine gute Formfüllung auch bei geringen Wandstärken des Gussteils erreicht und die Bildung von die Duktilität des Bauteils herabsetzenden Gaseinschlüssen vermindert werden kann.With modern casting processes, heavy-duty molded parts can also be used today be made from aluminum alloys. The aluminum materials used however, must meet a number of requirements. An essential one Compliance is a prerequisite for the suitability of a material certain mechanical parameters. For example, minimum values of Yield strength and strength are the load-bearing capacity of a construction. in vehicle construction there is also the requirement that those deformed in a collision Components break as much energy as possible through plastic deformation should absorb what a high ductility of the material used requires. Another requirement is an inexpensive manufacturing option of the molded part. Here the die casting lends itself, whereby for highest quality standards Special processes are to be preferred with which achieves good mold filling even with thin wall thicknesses of the casting and the formation of gas inclusions which reduce the ductility of the component can be reduced.

Zur Herstellung von Druckgussteilen aus Aluminiumwerkstoffen werden heute noch zu einem wesentlichen Teil Aluminiumlegierungen mit einem Anteil von 7 bis 10% Silizium eingesetzt. Diese AlSi-Legierungen mit kleinem Magnesium-Zusatz zeichnen sich durch eine ausserordentlich gute Giessbarkeit bei geringer Klebeneigung des Gussteils in der Form auf. Diese Legierungen erfordern jedoch zur Einformung des Eutektikums eine Hochglühung bei Temperaturen von mindestens 480° C. Damit das Bauteil die geforderten Festigkeitswerte aufweist, muss das derart lösungsgeglühte Bauteil abgeschreckt und nachfolgend warm ausgelagert werden; der kleine Magnesium-Zusatz bis zu 0,4% ist dafür verantwortlich.For the production of die-cast parts from aluminum materials today still a substantial part of aluminum alloys with a share of 7 up to 10% silicon used. These AlSi alloys with a small magnesium additive are characterized by an extraordinarily good castability at low The casting part tends to stick in the mold. These alloys require however, in order to mold the eutectic, a high-temperature glow at temperatures of at least 480 ° C. So that the component has the required strength values the solution-annealed component must be quenched and subsequently be stored warm; the small magnesium additive is up to 0.4% responsible for.

Bauteile mit teilweise geringen Wandstärken, wie sie beispielsweise als Strukturbauteile im Automobilbau eingesetzt werden, verziehen sich beim Abschrecken und müssen daher gerichtet werden. Zudem kann die hohe Glühtemperatur infolge einer Restgasporosität zu Blasenbildung an der Oberfläche der Bauteile führen. Zur Herstellung von Strukturbauteilen der genannten Art durch Druckgiessen wurde deshalb nach Möglichkeiten gesucht, die geforderten Festigkeits- und Dehnungswerte auch mit naturharten Legierungen ohne Durchführung einer Lösungsglühung zu erzielen. Um das Kleben des Gussteils in der Form zu vermindern, wurden unter Inkaufnahme einer Duktilitätseinbusse Legierungen mit bis zu 1% Eisen eingesetzt.Components with thin walls, such as those used as structural components used in automotive engineering warp when quenched and therefore must be judged. In addition, the high Annealing temperature due to residual gas porosity to form bubbles on the surface of the components. For the production of structural components of the above Art by die casting was therefore searched for opportunities that required strength and elongation values even with naturally hard alloys to achieve without performing solution annealing. To stick the Reduce casting in the mold were at the expense of a loss of ductility Alloys with up to 1% iron used.

Zur Erzielung der heute an Sicherheitsbauteile im Fahrzeug- und insbesondere im Automobilbau gestellten Anforderungen bezüglich Festigkeit und Duktilität ist ein wesentlicher Fortschritt durch die Einführung von Werkstoffen mit niedrigem Eisengehalt gelungen. Mit dieser Massnahme wird der Volumenanteil spröder intermetallischer Phasen des Eisen mit dem Aluminium verringert. Das bei tiefen Eisengehalten auftretende Kleben des Gussteils an der Formwand wird mit einem höheren Gehalt an Mangan, das eine ähnliche Wirkung wie Eisen zeigt, kompensiert. Mit der Zugabe von Mangan wird allerdings der Anteil intermetallischer Phasen des Typ AlMn(Fe) wiederum vergrössert. Da die Verteilung und Grösse der manganhaltigen intermetallischen Partikel im Vergleich zu den eisenhaltigen Phasen aber weitaus günstiger ist, ergibt sich bei etwa gleichem Festigkeitsniveau eine erhöhte Duktilität. Derartige Werkstoffe mit niedrigem Eisengehalt, d.h. Legierung, bei denen Eisen durch Mangan substituiert ist, sind in letzter Zeit mit Erfolg in der Produktion eingeführt worden. To achieve today's safety components in the vehicle and in particular Requirements regarding strength and ductility in automotive engineering is a major advance through the introduction of low-cost materials Successful iron content. With this measure, the volume fraction brittle intermetallic phases of iron with aluminum are reduced. The if the iron content is low, the casting will stick to the mold wall is having a higher manganese content, which has a similar effect as Iron shows, compensates. With the addition of manganese, however, the proportion Intermetallic phases of the type AlMn (Fe) again increased. Because the distribution and size of the manganese-containing intermetallic particles in comparison to the iron-containing phases, however, is much cheaper results in about same ductility level increased ductility. Such materials with low iron content, i.e. Alloy in which iron is substituted by manganese have been successfully introduced in production recently.

Aus der JP-A-56 087 646 ist eine Druckgusslegierung aus Aluminium mit 1,7 bis 4,0 % Mangan, 0,05 bis 0,6% Vanadium und weniger als 0,5% Verunreinigungen wie Eisen und Silizium bekannt. Durch den Zusatz von Mangan und Vanadium soll die Giessbarkeit verbessert werden. Zudem sollen die Gussteile eine hohe Festigkeit aufweisen und die Bildung einer gleichmässigen anodischen Oxidschicht ermöglichen. JP-A-56 087 646 is a die-cast aluminum alloy with 1.7 up to 4.0% manganese, 0.05 to 0.6% vanadium and less than 0.5% Impurities known as iron and silicon. By adding Manganese and vanadium are said to improve the castability. In addition, should the castings have high strength and the formation of a enable uniform anodic oxide layer.

Der Erfindung liegt die Aufgabe zugrunde, für im Druckguss hergestellte Strukturbauteile der eingangs genannten Art geeignete Werkstoffe mit weiter verbesserten mechanischen Eigenschaften bereitzustellen. Insbesondere sollen die für das Druckgiessen bekannten naturharten Legierungen bezüglich ihrer Eigenschaftskombination von Festigkeit und Bruchdehnung weiter verbessert werden. Für Sicherheitsteile im Automobilbau sollten die folgenden Minimalwerte im Gusszustand bzw. nach einer Wärmebehandlung ohne Lösungsglühung erreicht werden: Dehngrenze (Rp0.2) 120 MPa Zugfestigkeit (Rm) 180 MPa Dehnung (A5) 10%. The invention has for its object to provide suitable materials with further improved mechanical properties for structural components of the type mentioned manufactured in die casting. In particular, the natural hard alloys known for die casting are to be further improved with regard to their combination of properties of strength and elongation at break. For safety parts in automotive engineering, the following minimum values should be achieved in the as-cast state or after heat treatment without solution treatment: Yield strength (Rp0.2) 120 MPa Tensile strength (Rm) 180 MPa Stretch (A5) 10%.

Zur erfindungsgemässen Lösung der Aufgabe führt ein Verfahren mit den Merkmalen von Anspruch 1.A method with the features of claim 1 leads to the achievement of the object according to the invention.

Es wird vermutet, dass die beobachtete positive Wirkung von Vanadium hinsichtlich der Duktilität des Gussteils auf eine Komfeinung im Gussgefüge zurückzuführen ist. Zudem konnte festgestellt werden, dass durch den Vanadiumzusatz auch die Klebeneigung des Gussteils in der Form verringert wird, was erlaubt, den Mangangehalt etwas abzusenken. Darüber hinaus verbessert Vanadium durch Verminderung der Rissneigung die Giessbarkeit und das Gefüge, so dass ingesamt die Duktilität weiter verbessert wird.It is believed that the observed positive effect of vanadium in terms of the ductility of the casting due to a refinement in the cast structure is. It was also found that the addition of vanadium also the tendency of the casting to stick in the mold is reduced, which allows the manganese content to be reduced somewhat. It also improved Vanadium by reducing the tendency to crack, the castability and the structure, so that overall the ductility is further improved.

Aufgrund der vermuteten Wirkungsweise von Vanadium darf angenommen werden, dass sich der positive Effekt auf die Duktilität bei allen naturharten Aluminium-Druckgusslegierungen auswirkt. Due to the presumed mode of action of vanadium may be accepted be that the positive effect on the ductility with all natural hard Aluminum die-casting alloys.

Zur Herstellung des Strukturbauteiles geeignete Druckgusslegierungen bestehen aus max. 1,4 Gew.-% Silizium max. 0,8 Gew.-% Eisen 0,1 bis 1,6 Gew.-% Mangan max. 5,0 Gew.-% Magnesium max. 0,2 Gew.-% Titan max. 0,1 Gew.-% Zink 0,05 bis 0,3 Gew.-% Vanadium sowie Aluminium als Rest mit weiteren Verunreinigungen einzeln max. 0,02 Gew.-%, insgesamt max. 0,2 Gew.-%.Die-cast alloys suitable for the production of the structural component consist of Max. 1.4 % By weight silicon Max. 0.8 Wt% iron 0.1 to 1.6 Wt% manganese Max. 5.0 % By weight magnesium Max. 0.2 % By weight titanium Max. 0.1 % By weight zinc 0.05 to 0.3 % By weight vanadium as well as aluminum as the rest with further impurities individually max. 0.02% by weight, max. 0.2% by weight.

Innerhalb der vorstehend angegebenen Bereichsgrenzen für die Legierungselemente haben sich zwei Legierungssysteme als besonders vorteilhaft herausgestellt.Within the above range limits for the alloying elements two alloy systems have proven to be particularly advantageous.

Bei einem ersten Legierungssystem (AlMnFe) besteht die Legierung bevorzugt aus 0,1 bis 0,8, vorzugsweise 0,15 bis 0,25 Gew.-% Silizium 0,2 bis 0,8, vorzugsweise 0,3 bis 0,6 Gew.-% Eisen 0,5 bis 1,6, vorzugsweise 0,7 bis 0,9 Gew.-% Mangan max. 1,5 Gew.-% Magnesium max. 0,2 Gew.-% Titan max. 0,1 Gew.-% Zink 0,05 bis 0,3, vorzugsweise 0,1 bis 0,2 Gew.-% Vanadium sowie Aluminium als Rest mit weiteren Verunreinigungen einzeln max. 0,02 Gew.-%, insgesamt max. 0,2 Gew.-%. In a first alloy system (AlMnFe), the alloy preferably consists of 0.1 to 0.8, preferably 0.15 to 0.25 % By weight silicon 0.2 to 0.8, preferably 0.3 to 0.6 Wt% iron 0.5 to 1.6, preferably 0.7 to 0.9 Wt% manganese Max. 1.5 % By weight magnesium Max. 0.2 % By weight titanium Max. 0.1 % By weight zinc 0.05 to 0.3, preferably 0.1 to 0.2 % By weight vanadium as well as aluminum as the rest with further impurities individually max. 0.02% by weight, max. 0.2% by weight.

Bei einem zweiten bevorzugten Legierungssystem (AlMgMn) besteht die Legierung bevorzugt aus 0,05 bis 1,0, vorzugsweise 0,15 bis 0,25 Gew.-% Silizium 0,05 bis 0,2, vorzugsweise 0,05 bis 0,1 Gew.-% Eisen 0,5 bis 1,6, vorzugsweise 0,7 bis 0,9 Gew.-% Mangan 2,0 bis 4,5, vorzugsweise 2,5 bis 3,0 Gew.-% Magnesium max. 0,2 Gew.-% Titan max. 0,1 Gew.-% Zink 0,05 bis 0,3, vorzugsweise 0,1 bis 0,2 Gew.-% Vanadium sowie Aluminium als Rest mit weiteren Verunreinigungen einzeln max. 0,02 Gew.-%, insgesamt max. 0,2 Gew.-%.In a second preferred alloy system (AlMgMn), the alloy preferably consists of 0.05 to 1.0, preferably 0.15 to 0.25 % By weight silicon 0.05 to 0.2, preferably 0.05 to 0.1 Wt% iron 0.5 to 1.6, preferably 0.7 to 0.9 Wt% manganese 2.0 to 4.5, preferably 2.5 to 3.0 % By weight magnesium Max. 0.2 % By weight titanium Max. 0.1 % By weight zinc 0.05 to 0.3, preferably 0.1 to 0.2 % By weight vanadium as well as aluminum as the rest with further impurities individually max. 0.02% by weight, max. 0.2% by weight.

Die positive Wirkung des Vanadiumzusatzes stellt sich bereits während des eigentlichen Druckgiessvorganges ein. Eine weitere Erhöhung der Bruchdehnung bei schwachem Festigkeitsrückgang kann durch eine nachfolgende Wärmebehandlung in einem Temperaturbereich von 200 bis 400°C erreicht werden. Durch entsprechende Wahl von Temperatur und Zeitdauer der Wärmebehandlung kann ein gewünschtes Optimum zwischen hoher Duktilität und Festigkeit eingestellt werden. Dadurch wird die Einstellung massgeschneiderter mechanischer Eigenschaften an einem Strukturbauteil möglich.The positive effect of the vanadium addition is already evident during the actual die casting process. Another increase in elongation at break in the case of a weak decrease in strength, a subsequent Heat treatment in a temperature range of 200 to 400 ° C reached become. By choosing the appropriate temperature and duration of the heat treatment can be a desired optimum between high ductility and Strength can be adjusted. This makes the setting more tailored mechanical properties possible on a structural component.

Mit dem erfindungsgemässen Zusatz von Vanadium lassen sich die bekannten naturharten Aluminium-Druckgusslegierungen bezüglich ihrer Duktilität entscheidend verbessern. Die Legierungen sind daher besonders geeignet zur Herstellung von Strukturbauteilen, die als Sicherheitsbauteile im Fahrzeugbau und insbesondere im Automobilbau, beispielsweise als Space Frame Knoten oder als Crashelemente, eingesetzt werden. Die Strukturbauteile eignen sich insbesondere für Anwendungen, bei welchen eine Temperaturbelastung bis etwa 180°C auftritt. With the addition of vanadium according to the invention, the known ones Naturally hard aluminum die casting alloys are decisive with regard to their ductility improve. The alloys are therefore particularly suitable for Manufacture of structural components used as safety components in vehicle construction and especially in automotive engineering, for example as a space frame node or as crash elements. The structural components are suitable especially for applications in which a temperature load up to about 180 ° C occurs.

Die vorteilhafte Wirkung eines Zusatzes von Vanadium zu naturharten Aluminium-Druckgusslegierungen ergibt sich aus den nachfolgend zusammengestellten Versuchsergebnissen beispielhafter Legierungen.The beneficial effect of adding vanadium to naturally hard die-cast aluminum alloys results from the following Test results of exemplary alloys.

BeispieleExamples

Die untersuchten Legierungen sind in Tabelle 1 zusammengestellt. Die Legierungen 4 und 8 sind erfindungsgemäss, die übrigen Legierungen stellen handelsübliche Vergleichslegierungen dar. Leg. Zusammensetzung Si Fe Cu Mn Mg Zn V Tl Sb Zr Giessverhalten 1 2 0.063 <0.003 0.67 6.26 0.005 <0.01 0.14 Einfallstellen 2 0.81 0.088 0.30 0.65 0.92 0.83 <0.01 0.15 Risse 3 1.26 0.065 <0.003 0.87 4.31 <0.005 0.01 0.15 Risse 4 1.25 0.074 <0.003 0.86 4.43 <0.005 0.078 0.15 ohne Risse 5 1.25 0.068 <0.003 0.86 4.48 <0.005 <0.01 0.14 0.015 wenig Risse 6 1.26 0.072 0.17 0.86 4.51 <0.005 <0.01 0.15 Risse 7 0.101 0.066 <0.01 1.20 3.14 <0.01 <0.01 0.01 0.144 Risse 8 0.104 0.063 <0.01 1.21 3.20 <0.01 0.14 0.008 ohne Risse The alloys examined are listed in Table 1. Alloys 4 and 8 are according to the invention, the other alloys are commercially available comparative alloys. Leg. composition Si Fe Cu Mn mg Zn V tl sb Zr casting behavior 1 2 0063 <0003 0.67 6.26 0005 <12:01 00:14 sink marks 2 0.81 0088 00:30 0.65 0.92 0.83 <12:01 00:15 cracks 3 1.26 0065 <0003 0.87 4.31 <0005 00:01 00:15 cracks 4 1.25 0074 <0003 0.86 4:43 <0005 0078 00:15 without cracks 5 1.25 0068 <0003 0.86 4:48 <0005 <12:01 00:14 0015 little cracks 6 1.26 0072 00:17 0.86 4:51 <0005 <12:01 00:15 cracks 7 0101 0066 <12:01 1.20 3.14 <12:01 <12:01 00:01 0144 cracks 8th 0104 0063 <12:01 1.21 3.20 <12:01 00:14 0008 without cracks

Die Legierungen wurden zur Simulation der Abkühlung beim Druckgiessen im Kokillengiessverfahren zu Platten von 4 mm Dicke vergossen. Aus den Gussteilen wurden Probestäbe für Zugversuche herausgearbeitet und an diesen die mechanischen Eigenschaften im Gusszustand gemessen. Die Ergebnisse sind in Tabelle 2 zusammengefasst. Hierbei bedeuten Rp 0.2 die Dehngrenze, Rm die Zugfestigkeit und A5 die Bruchdehnung. Legierung mechanische Eigenschaften Rm(MPa) Rp0.2(MPa) A5(%) 1 254 153 3.7 2 197 110 10.0 3 244 136 6.5 4 262 139 9.9 5 243 135 6.5 6 237 136 5.6 7 246 137 12.5 8 252 140 15.4 The alloys were cast into plates with a thickness of 4 mm to simulate the cooling during die casting using the die casting process. Test rods for tensile tests were worked out from the cast parts and the mechanical properties in the cast state were measured on them. The results are summarized in Table 2. Rp 0.2 means the yield strength, Rm the tensile strength and A5 the elongation at break. alloy mechanical properties Rm (MPa) Rp0.2 (MPa) A5 (%) 1 254 153 3.7 2 197 110 10.0 3 244 136 6.5 4 262 139 9.9 5 243 135 6.5 6 237 136 5.6 7 246 137 12.5 8th 252 140 15.4

Die Versuche zeigen deutlich die positive Wirkung von Vanadium auf das Giessverhalten und die Duktilität der erfindungsgemässen Legierungen 4 und 8 im Gusszustand. Unter Inkaufnahme eines kleinen Festigkeitsverlustes lässt sich die Duktilität der erfindungsgemässen Legierungen durch eine Wärmebehandlung in einem Temperaturbereich von 200 bis 400°C weiter erhöhen.The experiments clearly show the positive effect of vanadium on the Casting behavior and the ductility of alloys 4 and 8 according to the invention in the as-cast state. At the expense of a small loss of strength the ductility of the alloys according to the invention by heat treatment increase further within a temperature range of 200 to 400 ° C.

Claims (7)

  1. Process for producing a structural component from an aluminium alloy by die casting, characterised in that the alloy consists of maximum 1.4 wt.% silicon maximum 0.8 wt.% iron 0.1 to 1.6 wt.% manganese maximum 5.0 wt.% magnesium maximum 0.2 wt.% titanium maximum 0.1 wt.% zinc 0.05 to 0.3 wt.% vanadium
    as well as aluminium as remainder with further impurities individually maximum 0.02 wt.%, in total maximum 0.2 wt.%, and the die-cast structural component is used in the cast state or is subjected to a heat treatment in a temperature range from 200 to 400°C to increase the expansion without high-temperature annealing.
  2. Process according to claim 1, characterised in that the alloy consists of 0.1 to 0.8 wt.% silicon 0.2 to 0.8 wt.% iron 0.5 to 1.6 wt.% manganese maximum 1.5 wt.% magnesium maximum 0.2 wt.% titanium maximum 0.1 wt.% zinc 0.05 to 0.3 wt.% vanadium
    as well as aluminium as remainder with further impurities individually maximum 0.02 wt.%, in total maximum 0.2 wt.%.
  3. Process according to claim 2, characterised in that the alloy consists of 0.15 to 0.25 wt.% silicon 0.3 to 0.6 wt.% iron 0.7 to 0.9 wt.% manganese maximum 1.5 wt.% magnesium maximum 0.2 wt.% titanium maximum 0.1 wt.% zinc 0.1 to 0.2 wt.% vanadium
    as well as aluminium as remainder with further impurities individually maximum 0.02 wt.%, in total maximum 0.2 wt.%.
  4. Process according to claim 1, characterised in that the alloy consists of 0.05 to 1.0 wt.% silicon 0.05 to 0.2 wt.% iron 0.5 to 1.6 wt.% manganese 2.0 to 4.5 wt.% magnesium maximum 0.2 wt.% titanium maximum 0.1 wt.% zinc 0.05 to 0.3 wt.% vanadium
    as well as aluminium as remainder with further impurities individually maximum 0.02 wt.%, in total maximum 0.2 wt.%.
  5. Process according to claim 4, characterised in that the alloy consists of 0.15 to 0.25 wt.% silicon 0.05 to 0.1 wt.% iron 0.7 to 0.9 wt.% manganese 2.5 to 3.0 wt.% magnesium maximum 0.2 wt.% titanium maximum 0.1 wt.% zinc 0.1 to 0.2 wt.% vanadium
    as well as aluminium as remainder with further impurities individually maximum 0.02 wt.%, in total maximum 0.2 wt.%.
  6. Process according to one of claims 1 to 5, wherein the structural component is used as a safety component in vehicle construction.
  7. Process according to one of claims 1 to 6, wherein the structural component is used for applications with heat stress up to about 180°C.
EP97810885A 1997-11-20 1997-11-20 Process of manufacturing a structural element made of a die-cast aluminium alloy Expired - Lifetime EP0918096B1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE59709639T DE59709639D1 (en) 1997-11-20 1997-11-20 Process for the production of a structural component from an aluminum die-casting alloy
ES97810885T ES2192258T3 (en) 1997-11-20 1997-11-20 PROCEDURE FOR THE MANUFACTURE OF A COMPONENT OF STRUCTURES OF A PRESSURE MOLDING ALUMINUM ALLOY.
PT97810885T PT918096E (en) 1997-11-20 1997-11-20 METHOD FOR OBTAINING A STRUCTURAL COMPONENT OF ALUMINUM ALLOY ALLOY IN PRESSURE MOLDING
EP97810885A EP0918096B1 (en) 1997-11-20 1997-11-20 Process of manufacturing a structural element made of a die-cast aluminium alloy
HU9802625A HU220129B (en) 1997-11-20 1998-11-12 Aluminium alloy for a structural unit made by pressure die casting
PL98329758A PL329758A1 (en) 1997-11-20 1998-11-18 Structural component made of aluminium alloy by die casting
CZ983762A CZ376298A3 (en) 1997-11-20 1998-11-19 Structural part of aluminium alloy for pressure die casting
BR9804708-6A BR9804708A (en) 1997-11-20 1998-11-19 Structural component of a die-cast aluminum alloy.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP97810885A EP0918096B1 (en) 1997-11-20 1997-11-20 Process of manufacturing a structural element made of a die-cast aluminium alloy

Publications (2)

Publication Number Publication Date
EP0918096A1 EP0918096A1 (en) 1999-05-26
EP0918096B1 true EP0918096B1 (en) 2003-03-26

Family

ID=8230478

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97810885A Expired - Lifetime EP0918096B1 (en) 1997-11-20 1997-11-20 Process of manufacturing a structural element made of a die-cast aluminium alloy

Country Status (8)

Country Link
EP (1) EP0918096B1 (en)
BR (1) BR9804708A (en)
CZ (1) CZ376298A3 (en)
DE (1) DE59709639D1 (en)
ES (1) ES2192258T3 (en)
HU (1) HU220129B (en)
PL (1) PL329758A1 (en)
PT (1) PT918096E (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1111077A1 (en) * 1999-12-24 2001-06-27 ALUMINIUM RHEINFELDEN GmbH Aluminium alloy produced from scrap metal and casting alloy so produced
DE60141789D1 (en) 2000-06-27 2010-05-27 Corus Aluminium Voerde Gmbh Cast aluminum alloy
DE10310453A1 (en) * 2003-03-07 2004-09-23 Drm Druckguss Gmbh Die-cast component and process for its manufacture
DE102009032588A1 (en) * 2009-07-10 2011-02-17 Bayerische Motoren Werke Aktiengesellschaft Method for producing a cast component from an aluminum casting alloy, comprises subjecting the cast component after the casting without solution annealing to a heat treatment for two to five hours
CN103421992B (en) * 2013-07-16 2015-07-22 沈军 Manufacturing technique of timing sprocket device for ultralight aluminium alloy valve camshaft
GB201402323D0 (en) 2014-02-11 2014-03-26 Univ Brunel A high strength cast aluminium alloy for high pressure die casting
CN105215314A (en) * 2015-09-18 2016-01-06 霍山县龙鑫金属制品有限公司 A kind of auto parts machinery pressure casting method
CN113088774B (en) * 2021-03-08 2022-04-26 上海交通大学 High-resistance Al-Mg-Mn-Ti aluminum alloy and preparation process thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3938991A (en) * 1974-07-15 1976-02-17 Swiss Aluminium Limited Refining recrystallized grain size in aluminum alloys
JPS5147510A (en) * 1974-10-23 1976-04-23 Sumitomo Light Metal Ind SEIKEIYO ARUMINIUM UGOKIN
US4169728A (en) * 1978-02-09 1979-10-02 Mitsubishi Kinzoku Kabushiki Kaisha Corrosion resistant bright aluminum alloy for die-casting
JPS5810456B2 (en) * 1979-12-18 1983-02-25 三菱軽金属工業株式会社 Aluminum alloy for die casting
US5120372A (en) * 1990-11-08 1992-06-09 Ford Motor Company Aluminum casting alloy for high strength/high temperature applications
JPH0790457A (en) * 1993-09-20 1995-04-04 Mitsubishi Alum Co Ltd Al alloy clad material having excellent pitting corrosion resistance even after brazing heating treatment
US5573606A (en) * 1995-02-16 1996-11-12 Gibbs Die Casting Aluminum Corporation Aluminum alloy and method for making die cast products

Also Published As

Publication number Publication date
HU220129B (en) 2001-11-28
BR9804708A (en) 1999-11-09
PT918096E (en) 2003-06-30
HUP9802625A1 (en) 1999-09-28
PL329758A1 (en) 1999-05-24
CZ376298A3 (en) 1999-11-17
HU9802625D0 (en) 1999-01-28
DE59709639D1 (en) 2003-04-30
EP0918096A1 (en) 1999-05-26
ES2192258T3 (en) 2003-10-01

Similar Documents

Publication Publication Date Title
EP0918095B1 (en) Process of manufacturing a structural element made of a die-cast aluminium alloy
AT502310B1 (en) AN AL-ZN-MG-CU ALLOY
DE112004000995B4 (en) Highly damage tolerant aluminum alloy product, especially for aerospace applications
EP1718778B1 (en) Material based on an aluminum alloy, method for the production thereof and its use
EP1682688B1 (en) Al-Mg-Si cast aluminium alloy containing scandium
DE60120987T2 (en) HIGH-ALUMINUM BASE ALLOY AND A PRODUCT MANUFACTURED THEREOF
DE102013012259B3 (en) Aluminum material with improved precipitation hardening, process for its production and use of the aluminum material
DE60017868T2 (en) Structural element of an aircraft made of Al-Cu-Mg alloy
DE69912850T2 (en) METHOD OF PRODUCING AN ALUMINUM-MAGNESIUM-LITHIUM ALLOY PRODUCT
DE4103934A1 (en) SUITABLE ALUMINUM ALLOY FOR PISTON
DE2921222C2 (en)
DE69825414T3 (en) Aluminum alloy and process for its preparation
EP1118685A1 (en) Aluminium cast alloy
EP0997550B1 (en) Method for fabricating a component from an aluminium alloy by pressure die-casting
DE2500084C3 (en) Process for the production of aluminum semi-finished products
DE60114281T2 (en) Cast and forged product using a copper-based alloy
DE2235168C2 (en) Process for the production of aluminum alloys and their use
EP0918096B1 (en) Process of manufacturing a structural element made of a die-cast aluminium alloy
DE102013002632B4 (en) Aluminum-silicon diecasting alloy and method of making a die cast component
EP0989195B1 (en) Heat resisting aluminium alloy of the type AlCuMg
DE102017109614A1 (en) Aluminum alloy casting and manufacturing process
DE2421680A1 (en) NICKEL-COBALT-IRON CAST ALLOY WITH LOW COEFFICIENT OF EXTENSION AND HIGH YIELD LIMIT
DE1483228B2 (en) ALUMINUM ALLOY WITH HIGH PERFORMANCE
EP0394818A1 (en) Rolled aluminium product and process for its production
EP1234893B1 (en) Cast alloy of the type AlMgSi

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19991126

AKX Designation fees paid

Free format text: AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCAN TECHNOLOGY & MANAGEMENT AG

17Q First examination report despatched

Effective date: 20011102

RTI1 Title (correction)

Free format text: PROCESS OF MANUFACTURING A STRUCTURAL ELEMENT MADE OF A DIE-CAST ALUMINIUM ALLOY

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RTI1 Title (correction)

Free format text: PROCESS OF MANUFACTURING A STRUCTURAL ELEMENT MADE OF A DIE-CAST ALUMINIUM ALLOY

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RBV Designated contracting states (corrected)

Designated state(s): CH DE ES FR GB IT LI PT

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE ES FR GB IT LI PT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59709639

Country of ref document: DE

Date of ref document: 20030430

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030507

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20030509

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2192258

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031121

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 0918096E

Country of ref document: IE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031130

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040602

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031120

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040730

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20040531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20031121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051120