EP0913652B1 - Verfahren zum Kühlen und Gefrieren wasserhaltiger Produkte - Google Patents

Verfahren zum Kühlen und Gefrieren wasserhaltiger Produkte Download PDF

Info

Publication number
EP0913652B1
EP0913652B1 EP98120341A EP98120341A EP0913652B1 EP 0913652 B1 EP0913652 B1 EP 0913652B1 EP 98120341 A EP98120341 A EP 98120341A EP 98120341 A EP98120341 A EP 98120341A EP 0913652 B1 EP0913652 B1 EP 0913652B1
Authority
EP
European Patent Office
Prior art keywords
product
vacuum pump
evacuation
zeolite bed
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98120341A
Other languages
English (en)
French (fr)
Other versions
EP0913652A2 (de
EP0913652A3 (de
Inventor
Alfons Hiebinger
Dr. Peter Maier-Laxhuber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeo Tech Zeolith Technologie GmbH
Original Assignee
Zeo Tech Zeolith Technologie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeo Tech Zeolith Technologie GmbH filed Critical Zeo Tech Zeolith Technologie GmbH
Publication of EP0913652A2 publication Critical patent/EP0913652A2/de
Publication of EP0913652A3 publication Critical patent/EP0913652A3/de
Application granted granted Critical
Publication of EP0913652B1 publication Critical patent/EP0913652B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B17/00Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
    • F25B17/08Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type the absorbent or adsorbent being a solid, e.g. salt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus

Definitions

  • the invention relates to methods for cooling and / or freezing water-containing Products by direct evaporation under vacuum.
  • a method is known from DE 40 031 07, water by direct evaporation convert to ice. The one flowing off a water surface Water vapor is adsorbed in a zeolite bed. A vacuum pump sucks air and non-condensable gases out of the zeolite bed.
  • Zeolites are crystalline aluminosilicates, with a branched cavity structure, reversibly stores (adsorbs) the water molecules.
  • the adsorption of Water vapor is a highly exothermic process.
  • the stored water can by heating (regeneration) the zeolite crystals to above approx. 200 ° C again are evaporated from the crystal structure.
  • Another way to protect the pumps is to fill the zeolite in its geometric extension the flow path of the water vapor adapt.
  • the flow path of the steam within the The filling becomes longer and the pressure drop correspondingly higher.
  • the suction pressure of the pump be lowered.
  • it decreases with lower adsorption pressure the adsorption load. This also leads to an additional expenditure of desorption heat.
  • adsorption zones With long flow paths of water vapor through the zeolite bed so-called adsorption zones, in which the adsorption reaction takes place.
  • the zeolite filling has already reached the saturation load in front of this zone, no water vapor flow can be measured behind the zone.
  • the pressure is here the final pressure of the pump.
  • the vacuum pump is continuous is in operation, its final pressure has no influence on the evaporation temperature in the product. The vacuum pump runs for a long time and with high operating costs.
  • the adsorption zone becomes reach the end of the filling after a certain time and the Water vapor can be sucked in by the vacuum pump.
  • the water vapor absorption capacity of a zeolite bed depends on it Dimensions from the driving steam pressure. This is, especially in terms of time Course, depending on the temperature, the amount and the structure of the to cooling product.
  • the object of the invention is to provide methods with which an optimal Loading the zeolite bed and at the same time protecting the vacuum pump from the damaging effects of high water vapor pressures is possible.
  • the term product stands for all water-containing substances, indifferent whether it is organic or inorganic substances.
  • the water content can vary widely. However, the minimum percentage must be as large be that the desired cooling temperature is achieved by direct evaporation can be. It is also advantageous to dry the surface only damp goods, such as B. plastic granules. It can make sense here be used to heat or pre-heat the product during the evaporation process to bring the drying to a higher temperature.
  • the common goal of all processes is, besides an optimal loading of the Zeolite bed and the protection of the vacuum pump, its running time on one Limit minimum.
  • Especially with mobile and / or solar powered Devices is a low energy expenditure for the operation of the vacuum pump he wishes.
  • the vacuum pump is only in operation until the water vapor flow from the product to the zeolite bed exceeds a given value. With appropriate devices flow monitors are used for this purpose, the pressure drop of the flowing water vapor.
  • Water vapor-sensitive sensors are also used, which are before or also are arranged after the pump. You can use the pump turn off as soon as they register water vapor in the flow. Sensors on Output of the pumps have the advantage that they are not suitable for vacuum have to. They can also be less sensitive because of the water vapor the pump is highly concentrated. A burst of water vapor the zeolite bed is always a signal that the zeolite filling is closed renew or regenerate.
  • Another very inexpensive way to protect the pump is the temperature rise of the zeolite bed during adsorption to be used as an output signal for switching off the pump. This regulation is particularly suitable if it is within the zeolite bed can form an adsorption zone. The temperature sensor is then to be placed at the end of the zeolite bed.
  • the droplet separators are cooled. If the product temperature is above the liquefaction temperature of these cooled surfaces, the outflowing steam can condense on the cold surfaces and, if so desired, can drip back into the product to be cooled as condensate.
  • the evacuation of the system is controlled so that no water vapor flows to the zeolite bed during this phase. According to the invention, the further flow of the water vapor is prevented by an air cushion in the zeolite bed.
  • the evacuation is controlled according to the invention so that the pressure in the vacuum chamber decreases continuously, but the expansion of the gas cushion in the zeolite bed is retained. A boundary layer a few centimeters wide forms between the flowing water vapor and the blocking gas cushion.
  • Dough is often treated with cold today. On the one hand, this is done around to stop or delay the fermentation process, on the other hand to keep the dough in the Store and transport refrigerated / frozen state for a long time.
  • the dough is loosened by carbon dioxide the addition of leavening agents (yeast, baking powder, etc.) arises.
  • leavening agents yeast, baking powder, etc.
  • the fermentation process can be delayed and stopped or without the addition of blowing agents, because the Loosening (pore) in the direct evaporation by the expanding Water vapor takes place. Do the evaporation until completely freezing of the dough, the inflated structure of the dough remains the flooding of the vacuum chamber.
  • a number of other foods must be refrigerated / frozen at higher ones Temperatures are treated (cooking, baking, steaming, steaming, pasteurizing, Blanching, broth ect.). It is particularly advantageous if this Heat treatment already inside the still open vacuum chamber is possible. For the subsequent cooling process, only the Vacuum chamber are closed and the evacuation process started become.
  • the vacuum chamber advantageously has the shape of, for example Cooking kettles, steamers or autoclaves with airtight closures Vacuum chamber are expandable.
  • the suction line to the zeolite bed exists then, for example, from a flexible connection that is flanged to the lid becomes.
  • z. B. also upgrade an oven to the vacuum chamber.
  • Half-baked products can be baked in the oven by direct evaporation be frozen.
  • the walls of the oven stay hot because of them no water can evaporate.
  • vacuum packaging machines expand with a zeolite bed and pre-pack the food to cool or freeze.
  • the products are sealed airtight here immediately after the direct evaporation according to the known Process in the same vacuum chamber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)

Description

Die Erfindung betrifft Verfahren zum Kühlen und/oder Gefrieren von wasserhaltigen Produkten durch Direktverdampfung unter Vakuum.
Aus der DE 40 031 07 ist ein Verfahren bekannt, Wasser durch Direktverdampfung in Eis umzuwandeln. Der von einer Wasseroberfläche abströmende Wasserdampf wird dabei in einem Zeolithbett adsorbiert. Eine Vakuumpumpe saugt dabei Luft und nichtkondensierbare Gase aus dem Zeolithbett ab.
Zeolithe sind kristalline Alumosilikate, mit einer verzweigten Hohlraumstruktur, die Wassermolekühle reversibel einlagert (adsorbiert). Die Adsorption von Wasserdampf ist ein stark exothermer Vorgang. Das eingelagerte Wasser kann durch Erhitzen (Regeneration) der Zeolithkristalle auf über ca. 200 °C wieder aus dem Kristallgefüge ausgedampft werden.
In der Praxis zeigt sich bei o.g. Vorrichtungen, daß Wasserdampf vom Zeolithbett nicht oder nicht schnell genug adsorbiert wird und deshalb bis zur Vakuumpumpe strömt. Vakuumpumpen können jedoch Wassserdampf nur in sehr begrenzten Mengen abpumpen. Zu große Wasserdampfmengen begrenzen das Endvakuum der Pumpen oder führen alsbald zu Pumpendefekten.
Um die Vakuumpumpe vor schädlichen Wasserdampfmengen zu schützen, kann man die Zeolithmenge vergrößern. In aller Regel führt dies jedoch dazu, daß nur Teile der Zeolithmenge adsorbieren. Beim anschließenden Regenerationsprozeß muß jedoch die gesamte Füllung erhitzt werden. Wegen der größeren Zeolithmenge muß mehr Wärme eingetragen werden und im folgenden Abkühlprozeß auch mehr Wärme abgeführt werden. Der Wirkungsgrad wird deutlich schlechter.
Eine weitere Möglichkeit, die Pumpen zu schützen besteht darin, die Zeolithfüllung in ihrer geometrischen Ausdehnung dem Strömungsweg des Wasserdampfes anzupassen. Der Strömungsweg des Dampfes innerhalb der Schüttung wird dadurch länger und der Druckabfall entsprechend höher. Um den gleichen Verdampfungsdruck zu erreichen, muß der Saugdruck der Pumpe abgesenkt werden. Gleichzeitig sinkt aber bei niedrigerem Adsorptionsdruck die Adsorptionsbeladung. Auch dies führt zu einem Mehraufwand an Desorptionswärme.
Bei langen Strömungswegen des Wasserdampfes durch das Zeolithbett bilden sich sogenannte Adsorptionszonen, in denen die Adsorptionsreaktion abläuft. Vor dieser Zone hat die Zeolithfüllung bereits die Sättigungsbeladung erreicht, hinter der Zone ist keine Wasserdampfströmung meßbar. Der Druck ist hier gleich dem Enddruck der Pumpe. Obwohl die Vakuumpumpe kontinuierlich in Betrieb ist, hat deren Endruck keinerlei Einfluß auf die Verdampfungstemperatur im Produkt. Die Vakuumpumpe läuft lange und mit hohen Betriebskosten.
Auch bei sehr langen Strömungswegen durch das Zeolithbett wird die Adsorptionszone nach einer gewissen Zeit das Ende der Schüttung erreichen und der Wasserdampf von der Vakuumpumpe angesaugt werden.
Im Handel sind heute zahlreiche Zeolithtypen mit unterschiedlichen Adsorptionscharakteristika. Granulate vom gleichen Zeolith-Typ und identischem Granulatdurchmesser, die nach unterschiedlichen Granulierverfahren hergestellt sind, verhalten sich bei der Wasserdampfadsorption unter Vakuum höchst unterschiedlich. Eine optimale geometrische Auslegung eines Zeolithbettes für variierende Produkte ist deshalb nahezu unmöglich.
Die Wasserdampfaufnahmefähigkeit einer Zeolithschüttung hängt in hohem Maße vom treibenden Dampfdruck ab. Dieser ist, insbesondere im zeitlichen Verlauf, abhängig von der Temperatur, der Menge und der Struktur des zu kühlenden Produktes.
Aufgabe der Erfindung ist es, Verfahren anzugeben, mit denen eine optimale Beladung des Zeolithbettes und zugleich ein Schutz der Vakuumpumpe vor den schädigenden Wirkungen zu hoher Wasserdampfdrücke möglich ist.
Gelöst wird die Aufgabe durch die kennzeichnenden Merkmale des Anspruchs 1. In den Unteransprüchen sind weitere erfindungsgemäße Verfahrensvarianten aufgezeigt.
Bei der Kühlung von Produkten durch direkte Verdampfung von Wasser im Vakuum können sehr hohe Kühlleistungen erzielt werden. Ein Gefrieren von Lebensmitteln kann innerhalb weniger Minuten erfolgen. Der Gefriervorgang erfolgt dabei nicht wie bei konventionellen Verfahren von der Produktoberfläche aus langsam fortschreitend nach innen, sondern gleichzeitig und homogen im ganzen Produkt. Die Endtemperatur des Produktes kann durch den einstellbaren Kammerdruck genau geregelt werden. Der Gesamtdruck in der Vakuumkammer wird dabei durch die Adsorptionscharakteristik des Zeolithbettes, die Betriebszeiten und den erreichbaren Enddruck der Vakuumpumpe bestimmt.
Die Bezeichnung Produkt steht für alle wasserhaltigen Substanzen, gleichgültig ob es sich um organische oder anorganische Stoffe handelt. Der Wassergehalt kann sehr stark variieren. Der Mindestanteil muß jedoch so groß sein, daß die gewünschte Kühl-Temperatur durch direkte Verdampfung erreicht werden kann. Vorteilhaft ist auch die Trocknung von nur oberflächlich feuchten Gütern, wie z. B. Kunststoffgranulaten. Hierbei kann es sinnvoll sein, während des Verdampfungsvorgangs das Produkt zu beheizen oder vor dem Trocknen auf höhere Temperatur zu bringen.
Gemeinsames Ziel aller Verfahren ist es, neben einer optimalen Beladung des Zeolithbettes und dem Schutz der Vakuumpumpe, deren Laufzeit auf ein Minimum zu begrenzen. Insbesondere bei mobilen und/oder solar betriebenen Vorrichtungen ist ein geringer Energieaufwand für den Betrieb der Vakuumpumpe erwünscht. Hier ist es von entscheidendem Vorteil, wenn die Vakuumpumpe nur so lange in Betrieb ist, bis die Wasserdampfströmung vom Produkt zum Zeolithbett einen gegebenen Wert überschreitet. Bei entsprechenden Vorrichtungen werden hierfür Strömungswächter eingesetzt, die den Druckabfall des strömenden Wasserdampfes erkennen.
Zum Einsatz kommen auch wasserdampfsensitive Sensoren, die vor oder auch nach der Pumpe angeordnet sind. Sie können dazu genutzt werden die Pumpe abzustellen sobald sie in der Stömung Wasserdampf registrieren. Sensoren am Ausgang der Pumpen haben den Vorteil, daß sie nicht vakuumtauglich sein müssen. Sie können auch unempfindlicher sein, da der Wasserdampf durch die Pumpe stark aufkonzentriert wird. Ein Durchschlagen von Wasserdampf durch das Zeolithbett ist immer auch ein Signal dafür, die Zeolithfüllung zu erneuern oder zu regenerieren.
Eine weitere, sehr kostengünstige Möglichkeit, die Pumpe zu schützen, besteht darin, den Temperaturanstieg der Zeolithschüttung während der Adsorption als Ausgangssignal für die Abschaltung der Pumpe zu verwenden. Diese Regelung ist dann besonders geeignet, wenn sich innerhalb des Zeolithbettes eine Adsorptionszone ausbilden kann. Der Temperaturfühler ist dann am Ende des Zeolithbettes anzuordnen.
Anstelle des Temperaturanstiegs kann auch ein Anstieg der Wasserkonzentration innerhalb der Hohlraumstruktur am Ende des Zeolithbettes detektiert werden.
Bei flüssigen Produkten mit hohem Füllstand oder hohen Ausgangstemperaturen kann es vorkommen, daß es innerhalb der Flüssigkeit zu Dampferuptionen kommt in deren Folge Flüssigkeitpartikel mit dem abströmenden Wasserdampf mitgerissen werden. In diesen Fällen kann die Evakuierung durch die Vakuumpumpe unterbrochen werden und nach einer kurzen Beruhigungsphase weiterevakuiert werden. Die Flüssigkeitspartikel können durch bekannte Techniken detektiert werden.
Vorteilhaft ist es aber auch, in die Strömungsleitung zwischen Produkt und Zeolithbett geeignete Tropfenabscheider einzubauen, die ein Mitreißen von nicht gasförmigen Teilchen verhindern.
Besonders vorteilhaft ist es, wenn die Tropfenabscheider gekühlt werden. Sofern die Produkttemperatur über der Verflüssigungstemperatur dieser gekühlten Flächen liegt, kann der abströmende Dampf an den kalten Flächen kondensieren und falls dies gewünscht ist, als Kondensat in das zu kühlende Produkt zurücktropfen.
Die Evakuierung des Systems wird dabei so gesteuert, daß während dieser Phase kein Wasserdampf zum Zeolithbett strömt. Erfindungsgemäß wird die Weiterströmung des Wasserdampfes durch ein Luftpolster im Zeolithbett verhindert. Die Evakuierung wird dabei erfindungsgemäß so gesteuert, daß der Druck in der Vakuumkammer zwar kontinuierlich abnimmt, die Ausdehnung des Gaspolsters im Zeolithbett jedoch erhalten bleibt. Zwischen strömendem Wasserdampf und blockierendem Gaspolster bildet sich eine wenige Zentimeter breite Grenzschicht aus. Auf der einen Seite befindet sich reiner, mit hoher Geschwindigkeit strömender Wasserdampf und auf der anderen Seite ein relativ ruhendes, wasserdampffreies Gaspolster.
Erst wenn die Produkttemperatur nahezu die Verflüssigungstempertatur erreicht hat und demzufolge die Kühlleistung abnimmt, kann durch gesteuertes Abpumpen des Gaspolsters aus dem Zeolithbett Wasserdampf in dieses einströmen und adsorbiert werden. Durch das erfindungsgemäße Evakuieren können die sonst notwendigen Stömungsklappen und Saugventile zwischen Produkt und Zeolithfüllung vermieden werden.
Zahlreiche Produkte, insbesondere Lebensmittel neigen beim Evakuieren aufzuschäumen oder sich aufzublähen. In vielen Fällen ist dies ein gewünschter Vorgang, der das Endprodukt z. B. großvolumiger oder schmackhafter erscheinen läßt. Softeis wird konventionell beispielsweise durch Einleiten komprimierter Luft während des Kühlvorganges aufgeschäumt. Erfindungsgemäß kann das Aufschäumen nunmehr beim Kühl- bzw. Gefriervorgang unter Vakuum lediglich durch die Steuerung des Evakuiervorganges erfolgen.
Teige werden heute vielfach mit Kälte behandelt. Einerseits erfolgt dies um den Gärprozeß zu stoppen oder zu verzögern, andererseits um den Teig im gekühlten/gefrorenen Zustand für längere Zeit zu lagern und zu transportieren. Beim Gärprozeß wird die Teigmasse durch Kohlendioxid gelockert, das durch die Zugabe von Treibmitteln (Hefe, Backpulver, ect.) entsteht. Mit den erfindungsgemäßen Verfahren kann der Gärprozeß verzögert und gestoppt werden oder aber ganz ohne den Zusatz von Treibmitteln erfolgen, da die Lockerung (Porung) bei der direkten Verdampfung durch den expandierenden Wasserdampf erfolgt. Führt man die Verdampfung bis zum vollständigen Gefrieren des Teiges fort, bleibt die aufgeblähte Struktur des Teiges auch nach dem Fluten der Vakuumkammer erhalten.
Eine Reihe weiterer Lebensmittel muß vor dem Kühlen/Gefrieren bei höheren Temperaturen behandelt werden (Kochen, Backen, Dünsten, Dämpfen, Pasteurisieren, Blanchieren, Brühen ect.). Besonders vorteilhaft ist es, wenn diese Wärmebehandlung bereits innerhalb der noch offenen Vakuumkammer möglich ist. Für den anschließenden Kühprozeß muß dann nur noch die Vakuumkammer geschlossen werden und mit dem Evakuiervorgang begonnen werden. Vorteilhaft hat die Vakuumkammer beispielsweise die Gestalt eines Kochkessels, Steamers oder Autoklaven, die mit luftdichten Verschlüssen zur Vakuumkammer erweiterbar sind. Die Saugleitung zum Zeolithbett besteht dann beispielsweise aus einer flexiblen Verbindung, die an den Deckel angeflanscht wird.
Erfindungsgemäß läßt sich z. B. auch ein Backofen zur Vakuumkammer aufrüsten. Halbgebackenes kann somit gleich im Ofen durch Direktverdampfung tiefgefroren werden. Die Wände des Ofens bleiben dabei heiß, da von ihnen kein Wasser abdampfen kann.
Besonders vorteilhaft ist es auch, sogenannte Vakuumverpackungsmaschinen mit einem Zeolithbett zu erweitern und vor dem Verpacken die Lebensmittel zu kühlen oder zu gefrieren. Die luftdichte Verpackung der Produkte erfolgt hierbei gleich im Anschluß an die Direktverdampfung nach den bekannten Verfahren in derselben Vakuumkammer.

Claims (13)

  1. Verfahren zum Kühlen und Gefrieren wasserhaltiger Produkte durch Direktverdampfung, bei welchem Verfahren
    das wasserhaltige Produkt in eine Vakuumkammer eingebracht wird und durch eine Vakuumpumpe der Kammerdruck soweit abgesenkt wird, dass Wasserdampf aus dem Produkt entweicht und das Produkt durch die direkte Verdampfungskälte abkühlt,
    der vom Produkt abströmende Wasserdampf in einem der Vakuumpumpe vorgelagerten Zeolithbett adsorbiert wird,
    die Evakuierung der Vakuumkammer durch die Vakuumpumpe so auf die Adsorptionscharakteristik des Zeolithbettes abgestimmt wird, dass das Produkt die gewünschte Temperatur und/oder den gewünschten Wassergehalt annimmt,
    kein Wasserdampf durch das Zeolithbett hindurch zur Vakuumpumpe strömt und
    die Evakuierung durch die Vakuumpumpe beendet wird, sobald die Wasserbeladung im Zeolithbett im Bereich der Schüttung unmittelbar vor der Vakuumpumpe einen gegebenen Wert übersteigt.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, daß
    nach Beginn der direkten Verdampfung die Evakuierung unterbrochen wird und erst dann wieder fortgesetzt wird, wenn die Wasserdampfströmung zum Zeolithbett nachläßt.
  3. Verfahren nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet, daß
    die Evakuierung beendet wird, sobald Wasserdampf die Vakuumpumpe erreicht.
  4. Verfahren nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet, daß
    die Evakuierung beendet wird, sobald die Temperatur des Zeolithbettes im Bereich vor der Vakuumpumpe durch die freiwerdende Adsorptionswärme ansteigt.
  5. Verfahren nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet, daß
    die Evakuierung unterbrochen wird, sobald durch die Wasserdampfströmung flüssige Bestandteile vom Produkt abgetrennt und in das Zeolithbett eingetragen werden.
  6. Verfahren nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet, daß
    die Evakuierung des Produktes erst dann unterbrochen wird, wenn das Produkt aufgeschäumt, aufgebläht oder aufgelockert ist.
  7. Verfahren nach Anspruchs 6,
    dadurch gekennzeichnet, daß
    die Vakuumkammer erst dann wieder geflutet wird, wenn das aufgeschäumte oder aufgelockerte Produkt gefroren ist.
  8. Verfahren nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet, daß
    das gekühlte oder gefrorene Produkt noch unter Vakuum in luftdichte Behältnisse eingeschlossen wird.
  9. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß
    der vom Produkt abströmende Wasserdampf bevor er das Zeolithbett erreichen kann, an einer kalten Fläche rückverflüssigt wird und erst wenn die Verdampfungstemperatur im Produkt die Verflüssigungstemperatur nahezu erreicht hat, durch weitere Evakuierung in das Zeolithbett einströmen kann.
  10. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß
    das Produkt vor dem Kühlprozeß auf höhere Temperaturen erhitzt wird.
  11. Verfahren nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet, daß
    das Produkt in die bereits vorevakuierte Vakuumkammer eingeleitet wird.
  12. Verfahren nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet, daß
    dem Produkt vor dem Kühlprozeß das während der Direktverdampfung entzogene Wasser zugesetzt wird.
  13. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß
    das Prokukt in der Vakuumkammer nach der Direktverdampfung für einen längeren Zeitraum kalt gelagert wird.
EP98120341A 1997-11-03 1998-10-28 Verfahren zum Kühlen und Gefrieren wasserhaltiger Produkte Expired - Lifetime EP0913652B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19748362 1997-11-03
DE19748362A DE19748362A1 (de) 1997-11-03 1997-11-03 Verfahren zum Kühlen und/oder Gefrieren wasserhaltiger Produkte

Publications (3)

Publication Number Publication Date
EP0913652A2 EP0913652A2 (de) 1999-05-06
EP0913652A3 EP0913652A3 (de) 2000-12-13
EP0913652B1 true EP0913652B1 (de) 2004-11-03

Family

ID=7847349

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98120341A Expired - Lifetime EP0913652B1 (de) 1997-11-03 1998-10-28 Verfahren zum Kühlen und Gefrieren wasserhaltiger Produkte

Country Status (3)

Country Link
EP (1) EP0913652B1 (de)
AT (1) ATE281638T1 (de)
DE (2) DE19748362A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10347497B4 (de) * 2003-10-13 2006-03-30 MIWE-ÖKOKÄLTE GmbH Vorrichtung zum Kühlen von Gegenständen und Räumen und Verfahren zu deren Betrieb
WO2006102939A1 (de) * 2005-03-30 2006-10-05 Miwe Ökokälte Gmbh Vorrichtung zum kühlen von gegenständen und räumen und verfahren zu deren betrieb
DE102008020605B4 (de) 2008-04-24 2021-02-18 Schwörer Haus KG Heiz- und Kühlanordnung

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1559223A (en) * 1922-08-17 1925-10-27 Fernan O Conill Domestic refrigerating apparatus
NL18247C (de) * 1923-11-20
JPH0788996B2 (ja) * 1986-09-24 1995-09-27 品川燃料株式会社 冷却方法
DE4003107A1 (de) 1990-02-02 1991-08-08 Zeolith Tech Eiserzeuger nach dem sorptionsprinzip
SE470329B (sv) * 1991-11-04 1994-01-24 Gustav Kyrk Filteranordning för uppfångning av fukt ur ett gasflöde till en sugpump
DE4138114A1 (de) * 1991-11-19 1993-05-27 Zeolith Tech Kuehlvorrichtung und kuehlverfahren zur kuehlung eines mediums innerhalb eines gefaesses
SE9201620L (sv) * 1992-05-22 1993-10-11 Naa Eriksson Ab Anordning för att förpacka produkter i gastäta påsar, med ett specialutformat rörligt munstycke
DE59207855D1 (de) * 1992-07-06 1997-02-20 Zeolith Tech Kühlsystem mit einer vakuumdichten Arbeitsmitteldampf-Sammelleitung
DE4410290A1 (de) * 1994-03-25 1995-10-26 Hartwig Wollert Vorrichtung zum Schutz der Vakuumpumpe vor Evakuierflüssigkeiten
DE4426053A1 (de) * 1994-07-24 1996-01-25 Rennebeck Klaus Verfahren zur Kühlung, Kälte- und Eiserzeugung mit Kapillarrohr und Integralfestbettreaktor mit Wasserversprühung, mit und ohne Antriebsleistung beim Eisbilden
BR9612566A (pt) * 1995-11-01 1999-09-14 John J Bauer Jr Refrigerador absorvente balanceado

Also Published As

Publication number Publication date
DE59812213D1 (de) 2004-12-09
DE19748362A1 (de) 1999-05-06
ATE281638T1 (de) 2004-11-15
EP0913652A2 (de) 1999-05-06
EP0913652A3 (de) 2000-12-13

Similar Documents

Publication Publication Date Title
EP0017250B1 (de) Vakuumtrocknungsverfahren und -vorrichtung für empfindliche Güter und danach erhältliche Trockenprodukte
US2528476A (en) Method and apparatus for dehydration
DE2301807A1 (de) Verfahren und vorrichtung zum kuehlen und/oder trocknen von nahrungsmitteln
DE19719398A1 (de) Verfahren zur Steuerung eines Gefriertrocknungsprozesses
US8794013B2 (en) Method and system for nucleation control in a controlled rate freezer (CRF)
US5837193A (en) Method of decontaminating freeze dryers
EP1502063A1 (de) Gefriertrockenvorrichtung
WO2012148372A1 (en) Controlled nucleation during freezing step of freeze drying cycle using pressure differential ice fog distribution
US2374232A (en) Desiccating apparatus
EP0913652B1 (de) Verfahren zum Kühlen und Gefrieren wasserhaltiger Produkte
Ratti Freeze and vacuum drying of foods
US2696775A (en) Cooking and refrigerating apparatus
US3304617A (en) Method and apparatus for freeze-drying foods
DE102009057411B4 (de) Verfahren und Vorrichtungen zur Trocknung und Gefriertrocknung von stückigem, pulverförmigem oder granulatförmigem Gut
US8820097B2 (en) Method and system for regulating the mixture of cryogen liquid and warm gas for a controlled rate cryogenic chiller or freezing system
DE19654134A1 (de) Verfahren und Einrichtung zum Gefriertrocknen
DE102014214832A1 (de) Haushaltsgerät und Verfahren zum Betreiben eines Haushaltsgeräts
US3222796A (en) Method of freeze-drying foods by direct gas injection
JPH05316944A (ja) 植物性産物の完全又は部分的脱水方法及びその脱水装置並びに得られた脱水製品
US2414940A (en) Process and apparatus for the drying of liquid-containing biological materials by freezing and sublimating under low pressure in the presence of a chemical desiccant
DE102006009614A1 (de) Verfahren und Vorrichtung zum Trocknen oder Konzentrieren von Stoffen
RU2119622C1 (ru) Вакуумная сублимационная установка для сушки биологических материалов
Lombraña Fundamentals and tendencies in freeze-drying of foods
KR200270522Y1 (ko) 동결건조기용 선반
US3271873A (en) Method and apparatus for drying materials

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH DE FR GB IT LI SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010523

AKX Designation fees paid

Free format text: AT CH DE FR GB IT LI SE

17Q First examination report despatched

Effective date: 20030901

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ZEO-TECHZEOLITH TECHNOLOGIE GMBH

RTI1 Title (correction)

Free format text: REFRIGERATING AND FREEZING METHOD FOR WATER CONTAINING PRODUCTS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: REFRIGERATING AND FREEZING METHOD FOR WATER CONTAINING PRODUCTS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041103

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: WERNER BRUDERER PATENTANWALT

REF Corresponds to:

Ref document number: 59812213

Country of ref document: DE

Date of ref document: 20041209

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050203

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050804

EN Fr: translation not filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20090115

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20091019

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20091029

Year of fee payment: 12

Ref country code: GB

Payment date: 20091009

Year of fee payment: 12

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091031

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101028

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101028

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20111228

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130501

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59812213

Country of ref document: DE

Effective date: 20130501