EP0902164B1 - Refroidissement de la platte-forme dans les turbines à gas - Google Patents

Refroidissement de la platte-forme dans les turbines à gas Download PDF

Info

Publication number
EP0902164B1
EP0902164B1 EP97810660A EP97810660A EP0902164B1 EP 0902164 B1 EP0902164 B1 EP 0902164B1 EP 97810660 A EP97810660 A EP 97810660A EP 97810660 A EP97810660 A EP 97810660A EP 0902164 B1 EP0902164 B1 EP 0902164B1
Authority
EP
European Patent Office
Prior art keywords
platform
cooling
segment
bores
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97810660A
Other languages
German (de)
English (en)
Other versions
EP0902164A1 (fr
Inventor
Gordon Anderson
Keneth Hall
Michael Hock
Fathi Dr. Tarada
Bernhard Dr. Weigand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Switzerland GmbH
Original Assignee
Alstom Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Schweiz AG filed Critical Alstom Schweiz AG
Priority to DE59709701T priority Critical patent/DE59709701D1/de
Priority to EP97810660A priority patent/EP0902164B1/fr
Priority to US09/152,516 priority patent/US6082961A/en
Publication of EP0902164A1 publication Critical patent/EP0902164A1/fr
Application granted granted Critical
Publication of EP0902164B1 publication Critical patent/EP0902164B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/80Platforms for stationary or moving blades
    • F05B2240/801Platforms for stationary or moving blades cooled platforms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/80Platforms for stationary or moving blades
    • F05D2240/81Cooled platforms

Definitions

  • the present invention relates to gas turbines in general.
  • it concerns a platform cooling with a guide vane platform exposed to a hot gas stream, which is arranged through a gap of one upstream Combustion segment is separated.
  • the invention is based on the object for which exposed to a hot gas stream Vane platforms to create a cooler which uses the thermal Loading these platforms, especially at the acted upon by the hot gas flow Front, effectively reduced with the simplest possible means.
  • the platform cooling system provides a remedy.
  • the vane platforms, which are exposed to the hot gas flow are through a gap of the separated last segments of the combustion chamber.
  • one or more segment cooling holes are provided in each combustion chamber segment appropriate. These segment cooling holes connect one preferably in the region of the combustion chamber segment located with cooling air chamber the gap and thus lead cooling air in the space between the combustion chamber segment and vane platform.
  • the surface of the vane platform is now according to the invention on the downstream side in the region of the gap so designed such that the axes of the segment cooling holes approximately tangentially to said Surface run.
  • the emerging from the segment cooling holes Cooling air flow is not limited to the region of the gap, but flows because of the shallow angle with little resistance almost tangentially over said Surface of the vane platform on the hot gas exposed surface of the Platform.
  • the cooling air thus flows against the hot gas entering the gap, thus reduces burglary and dilutes the hot gas with cooler gas.
  • the cooling air exits the gap at a shallow angle and supplies the outside of the platform exposed to the hot gas with a cooling film. By the shallow angle becomes turbulence and therefore aerodynamic losses kept as low as possible.
  • the platform cooling according to the invention is on outer and inner vane platforms equally applicable.
  • the platform cooling according to the invention is on outer and inner vane platforms equally applicable.
  • angles between the parts of the platform cooling introduced which are measured relative to the horizontal. It becomes a description the platform in side view oriented so that the viewing direction, the Surface normal to the platform and the direction of the hot gas flow Form legal system.
  • the horizontal plane is defined by the line of sight and the Hot gas flow direction clamped.
  • the angles are, as usual, against the Clockwise positive, negative in clockwise direction.
  • the axes of the segment cooling holes form of the combustion chamber segment with the horizontal an angle ⁇
  • the The surface of the vane platform described above is preferably designed in that it encloses an angle ⁇ in the region of the gap with the horizontal.
  • the segment cooling holes now become and the surface is coordinated so that ⁇ between about ⁇ + 10 ° and about ⁇ - 40 °, preferably between about ⁇ and about ⁇ - 30 °.
  • the segment cooling hole So it is usually tilted slightly farther to the horizontal than the vane platform surface in the region of the gap, and remains within 40 °, preferred within 30 ° of the angle of the surface. This ensures that the escaping cooling air flow at a flat angle along the surface.
  • Both the platform cooling holes and the segment cooling holes can as cylindrical bores, or as hopper bores, so as cylindrical bores with a funnel-shaped opening, be formed.
  • funnel bores can be covered by the exiting cooling air Width greatly increase and thus the risk of a local hot gas burglary significantly reduce.
  • the training leads as funnel bores to a small exit velocity of the cooling jet and thus to very low aerodynamic Losses.
  • in addition to the vane platform one or several platform cooling holes mounted, their axes with the horizontal include an angle ⁇ .
  • These platform cooling holes combine one preferred in the area of the vane platform located cooling air chamber with the Gap. It is preferred that the angle ⁇ is less than or about the same size as ⁇ is. It is even possible that ⁇ has a sign opposite to ⁇ , thus ⁇ is positive and ⁇ is negative.
  • a lip on the combustion chamber segment attached extending across the gap in the direction of the vane platform extends.
  • This lip reduces the effective cross section of the gap and thus reduces the hot gas burglary.
  • the lip covers about 5% in the invention to about 70%, preferably from about 10% to about 60% of the gap width.
  • the lip is is thermally heavily loaded by the hot gas flow and is therefore advantageous by cooled the cooling air flow of the segment cooling holes.
  • the lip is as far as possibly extended over the gap, as long as the cooling is sufficient to burn off to prevent the lip.
  • the acted upon by the cooling air flow of the platform cooling holes areas of the combustion chamber segment are advantageous in a further embodiment a concave recess or a concave curvature. It can be on the one hand to act a recess in an otherwise flat surface, on the other hand can also the inner surface of the combustion chamber segment itself concavely curved his. This is advantageously done in one embodiment with a lip such, that the concave curvature passes into the lip.
  • platform cooling holes and segment cooling holes are arranged so that their cooling air streams do not intersect, so that as little turbulence arise. This is due to different radial position of the bore holes achieved and / or by an alternating arrangement of platform and Segment cooling holes in a direction perpendicular to their axes, ie along the scope of an annular combustion chamber.
  • a different radial position the holes is advantageously designed so that the of the cooling air flow of the Platform cooling holes acted upon areas of the combustion chamber segment are further away from the surface exposed to the hot gas flow than the Openings of the segment cooling holes.
  • the vane platform may have both the outer and inner platforms of one Be a vane.
  • machine templates are used in the production of the parts, which allow a precise fit about the lip and the suspension hooks.
  • FIG. 1 shows a schematic view of a plurality of vane platforms 10 the state of the art.
  • a blade element 12 which coming from the combustion chamber Hot gas flow 20 deflects.
  • an area 14 is formed maximum pressure directly in front of the leading edge of the blade.
  • the dynamic pressure before the Leading edge is higher than the mean pressure 16 in the space between the last combustor segment and the vane platform 10.
  • the hot gas flows at the lower platforms radially in the gap inwards (reference numeral 18) and along the circumference of the combustion chamber of the blade path. On the upper platforms, the hot gas flows according to radially outside in the gap.
  • the adjacent vane carrier In a region between the blades is the Pressure 16 in the gap greater than on the platform, so that the hot gas there flows out of the space.
  • This hot gas burglary 18 leads to a high thermal load of the surfaces adjacent to the gap. That is how it is For example, the adjacent vane carrier often made of low alloy Steel and is much less heat resistant than the direct hot gas stream exposed components.
  • Figure 2 shows a side view of an embodiment of an inventive Platform cooling for an upper platform 30.
  • the viewing direction and orientation The platform for the correct definition of the occurring angles is shown in FIG. 1 shown on the left.
  • the viewing direction (“view (Fig. 2)") forms the surface normal on the platform ("N") and the hot gas flow direction ("HG") as in FIG. 1 shown a legal system.
  • Figure 2 shows an upper platform 30, a combustion chamber segment 40, a vane support 52 and a blade element 12.
  • Die Upper platform 30 is separated from the combustor segment 40 by a gap 36. Both the combustion chamber segment 40 and the platform 30 are with Hooks 46 and 38 hooked into the same vane carrier 52.
  • the gap 36 facing side of the combustion chamber segment 40 forms with the Horizontal angle ⁇ , so that the axis of the gap 36 an angle ⁇ with the horizontal.
  • a series of segment cooling holes 42 the cooling chamber 44 with the gap 36 each of the axes an angle ⁇ with the horizontal includes.
  • the gap on the opposite surface of the Platform 30 is designed to form an angle ⁇ with the horizontal (Reference numeral 34).
  • the angles ⁇ and ⁇ are chosen so that the segment cooling holes slightly more inclined to the horizontal than the surface 34, but that the cooling air flow of the segment cooling holes 42 approximately tangentially the surface 34 flows along.
  • is about 25 °
  • is selected to about 30 °.
  • the cooling air flow of the segment cooling holes 42 thus flows at a shallow angle along the surface 34 and reaches the the hot gas stream 20 exposed surface of the platform 30th
  • a number of platform cooling holes 32 are mounted, which connect the cooling chamber 39 with the gap 36, each of the axes the platform cooling holes encloses an angle ⁇ with the horizontal.
  • a concave recess 48 is attached, which redirects the cooling air flow, and toward the hot gas flow Exposed volume conducts.
  • the angles ⁇ , ⁇ , ⁇ are chosen such that ⁇ lies between ⁇ and ⁇ .
  • is about 45 °
  • is about 30 °
  • is about 20 °.
  • Fig. 3 The location of the axes of the segment cooling holes 42 and the platform cooling holes 32 along the circumference of the annular combustion chamber is in the lower view of Fig. 3 shown.
  • the holes are alternating along the circumference and against each other staggered. Moreover, as shown in Fig. 2, they are also radially offset from one another. These measures cause the cooling air streams segment cooling holes 42 and platform cooling holes 32 do not cut, causing turbulence and thus aerodynamic losses avoided as far as possible.
  • Both the platform cooling holes 32 and the segment cooling holes 42 may be formed as cylindrical holes, or funnel bores.
  • An advantage of using hopper bores is the wider coverage of the cooling film and in the smaller exit velocity of the cooling jet from the holes. The small exit velocity results in a lot low aerodynamic losses.
  • Figure 4 shows a side view of an embodiment of an inventive Platform cooling for a lower platform 60.
  • the viewing direction and orientation The platform for the correct definition of the occurring angles is shown in FIG. 1 shown on the right.
  • the viewing direction (“view (Fig. 4)") forms the surface normal ("N") and the hot gas flow direction ("HG”) as shown in Fig. 1, a legal system.
  • view (Fig. 4) forms the surface normal ("N") and the hot gas flow direction (“HG”) as shown in Fig. 1, a legal system.
  • anti-clockwise angles become positive, Angle measured clockwise negative.
  • the lower platform 60 is defined by a gap 66 of a combustor segment 70 separated. Platform 60 and combustion chamber segment 70 are on a common Carrier 82 attached.
  • a series of segment cooling holes 72 connects at an angle ⁇ the cooling chamber 74 with the gap 66, and a row Platform cooling holes 62 connect the cooling chamber 69 to the gap 66 at an angle ⁇ .
  • the surface of the platform 60 closes in the area of Angles ⁇ with the horizontal (reference numeral 64). In the present Embodiment ⁇ is selected to about 30 ° and ⁇ to about 25 °. Thereby the cooling air flow of the segment cooling holes 72 flows at a shallow angle at the Surface 64 along and reaches the exposed to the hot gas flow 20 surface the platform 60.
  • the angle ⁇ is in this embodiment to about -15 ° selected.
  • the platform cooling holes 62 thus also blow cooling air in the direction on the open end of the gap 66.
  • the lip 79 of this cooling air flow deflected and leaves the gap substantially parallel to the hot gas flow 20.
  • the lip 79 spans the opening of the gap 66 and decreases thus its effective width. This leads to a further reduction of the hot gas intrusion into the gap 66.
  • the lip 79 is as far as possible over the gap 66 pulled, and is to avoid burning, by the cooling air flow of the Segment cooling bore 72 cooled.
  • FIG. 5 An advantageous arrangement of the holes and the lip of another embodiment is shown in detail in Fig. 5.
  • the gap 66 facing the inside the combustion chamber segment 70 is configured together with the lip 79, that a concave curvature 78 of the inside arises. This will be the Cooling air flow 92 of the platform cooling hole 62 is deflected so that it the gap 66 leaves approximately parallel to the hot gas flow 20.
  • the distance H from segment cooling hole 72 and platform cooling hole 62 is selected so that the cooling air flows 90 and 92 do not cut. This is the case when H is chosen so that at a gap width S, the angle ⁇ is smaller in magnitude than arctan (H / S).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Claims (13)

  1. Refroidissement de plate-forme avec une plate-forme d'aube de guidage (30; 60) exposée à un écoulement (20) de gaz chaud et séparée par un interstice (36; 66) d'un segment (40; 70) de chambre de combustion disposé en amont, caractérisé en ce qu'un ou plusieurs alésages de refroidissement de segment (42; 72) sont ménagés dans le segment (40; 70) de chambre de combustion et relient à l'interstice (36; 66) une chambre (44; 74) d'air de refroidissement, et en ce que la plate-forme (30; 60) d'aube de guidage présente sur le côté aval, dans la zone de l'interstice (36; 66), une surface (34; 64) configurée de telle sorte que les axes du ou des alésages (42; 72) de refroidissement de segment s'étendent sensiblement tangentiellement par rapport à ladite surface (34; 64).
  2. Refroidissement de plate-forme selon la revendication 1, dans lequel les axes du ou des alésages (42; 72) de refroidissement de segment forment un angle δ avec l'horizontale, ladite surface (34; 64) forme un angle β avec l'horizontale dans la région de l'interstice (36; 66), l'angle δ étant compris entre environ β et environ (β - 30°).
  3. Refroidissement de plate-forme selon l'une des revendications 1 ou 2, dans lequel les alésages (42; 72) de refroidissement de segment sont configurés comme alésages cylindriques ou comme alésages en entonnoir.
  4. Refroidissement de plate-forme selon l'une des revendications 2 ou 3, dans lequel un ou plusieurs alésages (32; 62) de refroidissement de plate-forme sont ménagés dans la plate-forme (30; 60) d'aube de guidage et relient à l'interstice une chambre (39; 69) d'air de refroidissement, les axes du ou des alésages (32; 62) de refroidissement de plate-forme formant un angle α avec l'horizontale, l'angle α étant inférieur ou sensiblement égal à l'angle β.
  5. Refroidissement de plate-forme selon la revendication 4, dans lequel les alésages (32; 62) de refroidissement de plate-forme sont configurés comme alésages cylindriques ou comme alésages en entonnoir.
  6. Refroidissement de plate-forme selon l'une des revendications 4 ou 5, dans lequel les alésages (42; 72) de refroidissement de segment et les alésages (32; 62) de refroidissement de plate-forme sont disposés en alternance et en décalage mutuel dans le sens de la périphérie.
  7. Refroidissement de plate-forme selon l'une des revendications 1 à 6, dans lequel une lèvre (79) qui s'étend en direction de la plate-forme d'aube de guidage est installée sur le segment (70) de chambre de combustion.
  8. Refroidissement de plate-forme selon la revendication 7, dans lequel la lèvre (79) recouvre d'environ 10 % à environ 60 % de la largeur de l'interstice.
  9. Refroidissement de plate-forme selon l'une des revendications 4 à 8, dans lequel le côté du segment (40; 70) de chambre de combustion qui est tourné vers l'interstice (36; 66) présente une découpe concave (48) ou une courbure concave (78) dans les zones balayées par l'écoulement (92) d'air de refroidissement des alésages (32; 62) de refroidissement de plate-forme.
  10. Refroidissement de plate-forme selon la revendication 9, dans lequel les alésages (32; 62) de refroidissement de plate-forme et les alésages (42; 72) de refroidissement de segment sont disposés de telle sorte que les zones balayées par l'écoulement (92) d'air de refroidissement des alésages (32; 62) de refroidissement de plate-forme du segment de chambre de combustion (40; 70) sont situées plus loin de la surface exposée à l'écoulement (20) de gaz chaud que les ouvertures des alésages (42; 72) de refroidissement de segment.
  11. Refroidissement de plate-forme selon l'une des revendications précédentes, dans lequel la plate-forme (30; 60) d'aube de guidage et le segment (40; 70) de chambre de combustion sont fixés sur un support (52; 82) commun.
  12. Refroidissement de plate-forme selon l'une des revendications 2 à 11, dans lequel le côté du segment (40) de chambre de combustion qui est tourné vers l'interstice (36) forme avec l'horizontale un angle γ, l'angle γ étant supérieur ou sensiblement égal à l'angle β.
  13. Refroidissement de plate-forme selon l'une des revendications précédentes, dans lequel la plate-forme (30; 60) d'aube de guidage constitue la plate-forme extérieure d'une aube de guidage, la largeur de l'interstice (36; 66) étant inférieure à 5 mm, de préférence inférieure à 2 mm, ou dans lequel la plate-forme (30; 60) d'aube de guidage est la plate-forme intérieure d'une aube de guidage et la largeur d'un interstice (36; 66) est inférieure à 5 mm, de préférence inférieure à 2 mm.
EP97810660A 1997-09-15 1997-09-15 Refroidissement de la platte-forme dans les turbines à gas Expired - Lifetime EP0902164B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE59709701T DE59709701D1 (de) 1997-09-15 1997-09-15 Plattformkühlung für Gasturbinen
EP97810660A EP0902164B1 (fr) 1997-09-15 1997-09-15 Refroidissement de la platte-forme dans les turbines à gas
US09/152,516 US6082961A (en) 1997-09-15 1998-09-14 Platform cooling for gas turbines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP97810660A EP0902164B1 (fr) 1997-09-15 1997-09-15 Refroidissement de la platte-forme dans les turbines à gas

Publications (2)

Publication Number Publication Date
EP0902164A1 EP0902164A1 (fr) 1999-03-17
EP0902164B1 true EP0902164B1 (fr) 2003-04-02

Family

ID=8230378

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97810660A Expired - Lifetime EP0902164B1 (fr) 1997-09-15 1997-09-15 Refroidissement de la platte-forme dans les turbines à gas

Country Status (3)

Country Link
US (1) US6082961A (fr)
EP (1) EP0902164B1 (fr)
DE (1) DE59709701D1 (fr)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59808481D1 (de) * 1998-11-09 2003-06-26 Alstom Switzerland Ltd Gekühlte Komponenten mit konischen Kühlungskanälen
EP1207268B1 (fr) * 2000-11-16 2005-02-09 Siemens Aktiengesellschaft Aube de turbine à gaz et procédé de fabrication d'une aube de turbine à gaz
US6896483B2 (en) 2001-07-02 2005-05-24 Allison Advanced Development Company Blade track assembly
US6945749B2 (en) * 2003-09-12 2005-09-20 Siemens Westinghouse Power Corporation Turbine blade platform cooling system
US7004720B2 (en) * 2003-12-17 2006-02-28 Pratt & Whitney Canada Corp. Cooled turbine vane platform
US7097417B2 (en) * 2004-02-09 2006-08-29 Siemens Westinghouse Power Corporation Cooling system for an airfoil vane
DE102004029696A1 (de) 2004-06-15 2006-01-05 Rolls-Royce Deutschland Ltd & Co Kg Plattformkühlanordnung für den Leitschaufelkranz einer Gasturbine
US7097418B2 (en) * 2004-06-18 2006-08-29 Pratt & Whitney Canada Corp. Double impingement vane platform cooling
US7186089B2 (en) * 2004-11-04 2007-03-06 Siemens Power Generation, Inc. Cooling system for a platform of a turbine blade
US7179049B2 (en) * 2004-12-10 2007-02-20 Pratt & Whitney Canada Corp. Gas turbine gas path contour
US7452184B2 (en) * 2004-12-13 2008-11-18 Pratt & Whitney Canada Corp. Airfoil platform impingement cooling
EP1741877A1 (fr) * 2005-07-04 2007-01-10 Siemens Aktiengesellschaft Écran thermique et aube de distributeur pour une turbine à gaz
GB0515868D0 (en) * 2005-08-02 2005-09-07 Rolls Royce Plc Cooling arrangement
US20070134087A1 (en) * 2005-12-08 2007-06-14 General Electric Company Methods and apparatus for assembling turbine engines
US7857580B1 (en) 2006-09-15 2010-12-28 Florida Turbine Technologies, Inc. Turbine vane with end-wall leading edge cooling
GB2442967B (en) * 2006-10-21 2011-02-16 Rolls Royce Plc An engine arrangement
US7785067B2 (en) * 2006-11-30 2010-08-31 General Electric Company Method and system to facilitate cooling turbine engines
US7690885B2 (en) * 2006-11-30 2010-04-06 General Electric Company Methods and system for shielding cooling air to facilitate cooling integral turbine nozzle and shroud assemblies
US7862291B2 (en) * 2007-02-08 2011-01-04 United Technologies Corporation Gas turbine engine component cooling scheme
EP1985806A1 (fr) * 2007-04-27 2008-10-29 Siemens Aktiengesellschaft Refroidissement d'anneau de renforcement d'une aube fixe de turbine
ATE497087T1 (de) 2007-08-06 2011-02-15 Alstom Technology Ltd Spaltkühlung zwischen brennkammerwand und turbinenwand einer gasturbinenanlage
WO2009083456A2 (fr) * 2007-12-29 2009-07-09 Alstom Technology Ltd Turbine à gaz
US20090169361A1 (en) * 2007-12-29 2009-07-02 Michael Scott Cole Cooled turbine nozzle segment
US20090165275A1 (en) * 2007-12-29 2009-07-02 Michael Scott Cole Method for repairing a cooled turbine nozzle segment
US8057178B2 (en) * 2008-09-04 2011-11-15 General Electric Company Turbine bucket for a turbomachine and method of reducing bow wave effects at a turbine bucket
US8070422B1 (en) * 2008-12-16 2011-12-06 Florida Turbine Technologies, Inc. Turbine stator vane and rotor blade arrangement
GB0905548D0 (en) * 2009-04-01 2009-05-13 Rolls Royce Plc A rotor arrangement
CH703105A1 (de) 2010-05-05 2011-11-15 Alstom Technology Ltd Gasturbine mit einer sekundärbrennkammer.
EP2423435A1 (fr) * 2010-08-30 2012-02-29 Siemens Aktiengesellschaft Aube de turbomachine
RU2543101C2 (ru) * 2010-11-29 2015-02-27 Альстом Текнолоджи Лтд Осевая газовая турбина
US8979481B2 (en) * 2011-10-26 2015-03-17 General Electric Company Turbine bucket angel wing features for forward cavity flow control and related method
US8840370B2 (en) 2011-11-04 2014-09-23 General Electric Company Bucket assembly for turbine system
US8845289B2 (en) 2011-11-04 2014-09-30 General Electric Company Bucket assembly for turbine system
US8870525B2 (en) 2011-11-04 2014-10-28 General Electric Company Bucket assembly for turbine system
EP2634373A1 (fr) * 2012-02-28 2013-09-04 Siemens Aktiengesellschaft Agencement pour turbomachine
US20140116660A1 (en) * 2012-10-31 2014-05-01 General Electric Company Components with asymmetric cooling channels and methods of manufacture
EP2754858B1 (fr) 2013-01-14 2015-09-16 Alstom Technology Ltd Dispositif pour étanchéifier une cavité ouverte contre un entraînement gazeux chaud
JP6263365B2 (ja) 2013-11-06 2018-01-17 三菱日立パワーシステムズ株式会社 ガスタービン翼
US9752447B2 (en) * 2014-04-04 2017-09-05 United Technologies Corporation Angled rail holes
DE102014221783A1 (de) * 2014-10-27 2016-04-28 Siemens Aktiengesellschaft Heißgaskanal
EP3115556B1 (fr) * 2015-07-10 2020-09-23 Ansaldo Energia Switzerland AG Turbine à gaz
US10458266B2 (en) * 2017-04-18 2019-10-29 United Technologies Corporation Forward facing tangential onboard injectors for gas turbine engines
US11118474B2 (en) 2017-10-09 2021-09-14 Raytheon Technologies Corporation Vane cooling structures
DE102019211418A1 (de) * 2019-07-31 2021-02-04 Siemens Aktiengesellschaft Verfahren zur Modernisierung einer Gasturbinenanlage sowie Gasturbinenanlage
JP7451108B2 (ja) 2019-08-16 2024-03-18 三菱重工業株式会社 静翼、及びこれを備えているガスタービン
WO2021246999A1 (fr) * 2020-06-01 2021-12-09 Siemens Aktiengesellschaft Segment de bague pour turbine à gaz
EP4019742A1 (fr) * 2020-12-23 2022-06-29 ANSALDO ENERGIA S.p.A. Ensemble d'étanchéité pour un jeu d'aubes d'un moteur à turbine à gaz et moteur à turbine à gaz comprenant un tel ensemble d'étanchéité
CN118414474A (zh) * 2022-01-06 2024-07-30 三菱重工业株式会社 涡轮静叶片及嵌合结构以及燃气涡轮

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4126405A (en) * 1976-12-16 1978-11-21 General Electric Company Turbine nozzle
DE3014279A1 (de) * 1980-04-15 1981-10-22 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 4200 Oberhausen Einrichtung zur kuehlung des inneren einer gasturbine
GB2119027A (en) * 1982-04-24 1983-11-09 Rolls Royce Turbine assembly for a gas turbine engine
CS231077B1 (en) * 1982-07-01 1984-09-17 Miroslav Stastny Withdrawing slot
US4821522A (en) * 1987-07-02 1989-04-18 United Technologies Corporation Sealing and cooling arrangement for combustor vane interface
GB9305012D0 (en) * 1993-03-11 1993-04-28 Rolls Royce Plc Sealing structures for gas turbine engines
GB9305010D0 (en) * 1993-03-11 1993-04-28 Rolls Royce Plc A cooled turbine nozzle assembly and a method of calculating the diameters of cooling holes for use in such an assembly

Also Published As

Publication number Publication date
US6082961A (en) 2000-07-04
DE59709701D1 (de) 2003-05-08
EP0902164A1 (fr) 1999-03-17

Similar Documents

Publication Publication Date Title
EP0902164B1 (fr) Refroidissement de la platte-forme dans les turbines à gas
DE69926574T2 (de) Turbinenleitgitter mit einem Kühlluftleitsystem
DE60016058T2 (de) Gekühlter Turbinen-Mantelring
DE60224339T2 (de) Kühleinsatz mit tangentialer Ausströmung
DE69516423T2 (de) Dichtsteifenanordnung für gasturbinenstahltriebwerke
DE69718229T2 (de) Spitzendichtung für Turbinenlaufschaufeln
EP2179143B1 (fr) Refroidissement de fente entre une paroi de chambre de combustion et une paroi de turbine d'une installation de turbine à gaz
EP0313826B1 (fr) Turbine à gaz avec flux axial
DE19809008C2 (de) Gasturbinenschaufel
DE60017396T2 (de) Vorrichtung zur reduzierung der kühlung für einen turbineneinlasskanal
DE3711024A1 (de) Gekuehlte schaufel fuer ein gasturbinentriebwerk
DE3779460T2 (de) Abgasturbine.
DE10344843B4 (de) Integrierte Rotations-Messerkanten-Injektionsanordnung
DE1601557A1 (de) Stroemungsmittelgekuehlte Statoranordnung
DE2943464A1 (de) Dichtungsvorrichtung fuer ein gasturbinentriebwerk
CH702101B1 (de) Turbinenschaufel mit Winglet.
EP0799973A1 (fr) Contour de paroi pour une turbomachine axiale
EP3336313A1 (fr) Ensemble d'aube mobile pour turbines d'une turbine turbine à gaz et procédé de fourniture d'air sceau dans un ensemble d'aube mobile pour turbines
EP1456505A1 (fr) Piece a sollicitation thermique
EP2084368A1 (fr) Aube de turbine
EP0491966A1 (fr) Dispositif de support d'une turbomachine thermique
DE102015112835A1 (de) Turbinenschaufel-Spannweitenmittendeckband
DE3428206C2 (de) Statoranordnung in einer Gasturbine
EP1206627A1 (fr) Turbine et procede pour evacuer du fluide de fuite
DE60201325T2 (de) Hochdruck-Turbinenschaufel mit gekühlter Abströmkante

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE

AX Request for extension of the european patent

Free format text: AL;LT;LV;RO;SI

17P Request for examination filed

Effective date: 19990903

AKX Designation fees paid

Free format text: DE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

17Q First examination report despatched

Effective date: 20011221

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE

REF Corresponds to:

Ref document number: 59709701

Country of ref document: DE

Date of ref document: 20030508

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040105

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59709701

Country of ref document: DE

Representative=s name: UWE ROESLER, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59709701

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Effective date: 20120713

Ref country code: DE

Ref legal event code: R081

Ref document number: 59709701

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH

Effective date: 20120713

Ref country code: DE

Ref legal event code: R081

Ref document number: 59709701

Country of ref document: DE

Owner name: ALSTOM TECHNOLOGY LTD., CH

Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH

Effective date: 20120713

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59709701

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59709701

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160921

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59709701

Country of ref document: DE