RU2543101C2 - Осевая газовая турбина - Google Patents

Осевая газовая турбина Download PDF

Info

Publication number
RU2543101C2
RU2543101C2 RU2010148725/06A RU2010148725A RU2543101C2 RU 2543101 C2 RU2543101 C2 RU 2543101C2 RU 2010148725/06 A RU2010148725/06 A RU 2010148725/06A RU 2010148725 A RU2010148725 A RU 2010148725A RU 2543101 C2 RU2543101 C2 RU 2543101C2
Authority
RU
Russia
Prior art keywords
stator
guide vanes
cooling air
heat shields
turbine stage
Prior art date
Application number
RU2010148725/06A
Other languages
English (en)
Other versions
RU2010148725A (ru
Inventor
Александр Ханин
Валерий Костеге
Original Assignee
Альстом Текнолоджи Лтд
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Альстом Текнолоджи Лтд filed Critical Альстом Текнолоджи Лтд
Priority to RU2010148725/06A priority Critical patent/RU2543101C2/ru
Priority to AU2011250789A priority patent/AU2011250789B2/en
Priority to MYPI2011005634A priority patent/MY156143A/en
Priority to EP11190895.0A priority patent/EP2458155B1/en
Priority to CN201110407943.2A priority patent/CN102477872B/zh
Priority to JP2011260784A priority patent/JP5738159B2/ja
Priority to US13/306,042 priority patent/US8974174B2/en
Publication of RU2010148725A publication Critical patent/RU2010148725A/ru
Application granted granted Critical
Publication of RU2543101C2 publication Critical patent/RU2543101C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/11Shroud seal segments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/205Cooling fluid recirculation, i.e. after cooling one or more components is the cooling fluid recovered and used elsewhere for other purposes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Газовая турбина осевого типа содержит ротор с чередующимися рядами воздухоохлаждаемых рабочих лопаток и теплозащитных экранов ротора и статор с чередующимися рядами воздухоохлаждаемых направляющих лопаток и теплозащитных экранов статора, установленных в держателе направляющих лопаток. Статор коаксиально охватывает снаружи ротор с образованием между ними тракта течения горячего газа так, что ряды рабочих лопаток и теплозащитные экраны статора и ряды направляющих лопаток и теплозащитные экраны ротора расположены напротив друг друга соответственно. Ряд направляющих лопаток и следующий ряд рабочих лопаток в направлении вниз по ходу течения потока образуют ступень турбины. Рабочие лопатки ступени турбины снабжены каждая на их концах венцом. Направляющие лопатки ступени турбины обеспечены каждая внешней платформой направляющей лопатки. Внешние платформы направляющих лопаток в ступени турбины и соседние теплозащитные экраны статора приспособлены друг к другу за счет выполнения каждой из внешних платформ направляющих лопаток с расположенным ниже по потоку выступом на ее задней стенке. Выступ проходит вниз по потоку к передней кромке венцов рабочей лопатки и в соответствующую выемку, выполненную в прилегающем теплозащитном экране статора. Теплозащитные экраны статора в ступени турбины охлаждаются посредством ввода охлаждающего воздуха в полость, находящуюся с задней стороны каждого теплозащитного экрана статора. Охлаждающий воздух выходит в тракт течения горячего газа через отверстия, имеющиеся в проходящей ниже и выше по потоку боковой поверхности теплозащитного экрана статора. Полость для введения охлаждающего воздуха через отверстие расположена с задней стороны внешней платформы каждой направляющей лопатки в ступени турбины. Струи охлаждающего воздуха направляются на венцы рабочих лопаток из полости с помощью отверстий, проходящих ниже по потоку через указанный выступ. Предусмотрены пазы, проходящие в направлении вниз по потоку через выступы для направления потока охлаждающего воздуха точно в промежуток между соседними, размещенными в окружном направлении теплозащитными экранами статора. Изобретение направлено на повышение эффективности охлаждения, снижение массового расхода охлаждающего воздуха. 2 з.п. ф-лы, 7 ил.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к технологии газовых турбин. В частности, изобретение относится к проектированию ступени осевой турбины для газотурбинного агрегата. Обычно статор турбины содержит держатель направляющих лопаток с пазами, в которых устанавливают один за другим ряд направляющих лопаток, и ряд теплозащитных экранов статора. Та же ступень содержит ротор, содержащий вращающийся вал с пазами, в которых один за другим установлен ряд теплозащитных экранов и ряд рабочих лопаток.
Уровень техники
Настоящее изобретение относится к осевой газовой турбине, пример которой иллюстрируется на фиг.1. Газовая турбина 10 на фиг.1 работает по принципу последовательного сжигания топлива. Она содержит компрессор 11, первую камеру 14 сгорания с некоторым количеством форсунок 13 и первым средством 12 подачи топлива, турбину 15 высокого давления, вторую камеру 17 сгорания со вторым средством 16 подачи топлива и турбину 18 низкого давления с чередующимися рядами рабочих лопаток 20 и направляющих лопаток 21, которые установлены с образованием ряда ступеней турбины, размещенных вдоль оси OA агрегата.
Газовая турбина 10 согласно фиг.1 содержит статор и ротор. Статор содержит держатель 19 направляющих лопаток с установленными в нем направляющими лопатками 21. Эти направляющие лопатки 21 необходимы для формирования профилированных каналов, через которые протекает горячий газ, полученный в камере 17 сгорания. Газ, протекающий через тракт 22 прохождения горячего газа в заданном направлении, ударяет в лопатки 20, установленные в пазах вала ротора, и тем самым приводит ротор турбины во вращение. Для защиты корпуса статора от действия горячего газа, протекающего над рабочими лопатками 20, используют теплозащитные экраны, установленные между соседними рядами направляющих лопаток. Для высокотемпературных ступеней турбины необходима подача охлаждающего воздуха внутрь направляющих лопаток, теплозащитных экранов статора и в рабочие лопатки.
Чтобы обеспечить работу высокотемпературной ступени турбины с длительным сроком эксплуатации, все элементы тракта 22 горячего газа должны эффективно охлаждаться. Элементы известной конструкции, представленной на фиг.2(а) и (b), охлаждаются следующим образом: сжатый охлаждающий воздух 24, подведенный из компрессора через камеру 23, поступает в полости 31 и 29. Для полости 31 подачу осуществляют посредством отверстия 25. Затем этот охлаждающий воздух вытекает из профильной части направляющей лопатки 21 и из отверстий 30 и 28 теплозащитного экрана 27 статора, который прикреплен к внутреннему кольцевому элементу 26, напротив рабочей лопатки 20, в тракт 22 течения газа турбины. Тонкостенный венец 32 (фиг.2 (b)) периферийной зоны рабочей лопатки (кромка лопатки) является весьма чувствительным к высокой температуре газа. Охлаждающий газ, истекающий из отверстий 30, расположенных в передней части теплозащитного экрана 27 статора в конструкции, показанной на фиг.2, способствует снижению температуры венца 32 рабочей лопатки (в дополнение к снижению за счет системы охлаждения рабочей лопатки, которая на этой фигуре в целях упрощения не показана).
Однако описанная выше конструкция имеет следующие недостатки. Вследствие значительного расстояния от выходов отверстий 30 до передней кромки рабочих лопаток 20 струи охлаждающего воздуха быстро теряют свою кинетическую энергию и вытесняются потоком горячего газа из тракта 22 течения горячего газа.
Воздух, вытекающий из отверстий 30, имеет достаточно высокую температуру, поскольку он уже охладил существенную площадь поверхности теплозащитного экрана 27 статора, и для зазора между соседними теплозащитными экранами 27 статора (фиг.2(b)) охлаждающий воздух не обеспечивает никакого эффективного обдувания, что увеличивает опасность перегрева уплотнительных пластин 33 и боковых поверхностей теплозащитных экранов 27 статора.
Раскрытие изобретения
Задача настоящего изобретения заключается в обеспечении газовой турбины схемой охлаждения ступени турбины, которая позволяет устранить недостатки, присущие известным охлаждающим конструкциям, и сочетает в себе снижение массового расхода охлаждающего воздуха с улучшенным охлаждением и эффективной защитой важных элементов ступеней турбины от теплового воздействия.
Указанная выше и другие задачи решаются с помощью газовой турбины согласно п.1 формулы изобретения.
Газовая турбина согласно изобретению содержит ротор с чередующимися рядами воздухоохлаждаемых рабочих лопаток и теплозащитных экранов ротора и статор с чередующимися рядами воздухоохлаждаемых направляющих лопаток и теплозащитных экранов статора, установленных на внутренних кольцевых элементах, при этом статор коаксиально охватывает ротор снаружи с образованием между ними тракта горячего газа так, что ряды рабочих лопаток и теплозащитных экранов статора и ряды направляющих лопаток и теплозащитных экранов ротора расположены оппозитно друг другу соответственно, при этом ряд направляющих лопаток и следующий за ним ряд рабочих лопаток, находящийся ниже по ходу течения потока, образуют ступень турбины, причем каждая из рабочих лопаток ступени турбины выполнена на конце с венцом, а направляющие лопатки ступени турбины содержат каждая внешнюю платформу. Согласно изобретению теплозащитные экраны статора и внешние платформы направляющих лопаток в ступени турбины приспособлены друг к другу таким образом, что воздух, протекающий между внешними платформами направляющих лопаток и соседними с ними теплозащитными экранами статора в тракте горячего газа, направлен на венцы лопаток.
В соответствии с одним воплощением изобретения внешние платформы направляющих лопаток и соседние теплозащитные экраны статора приспособлены друг к другу за счет выполнения каждой из внешних платформ направляющих лопаток с расположенным ниже по потоку выступом на ее задней стенке, при этом указанный выступ проходит вниз по потоку к передней кромке венцов рабочей лопатки и в соответствующую выемку, выполненную в прилегающем теплозащитном экране статора.
В соответствии с другим воплощением изобретения теплозащитные экраны статора в пределах ступени турбины охлаждаются посредством ввода охлаждающего воздуха в полость, находящуюся с задней (обратной) стороны каждого теплозащитного экрана статора, при этом охлаждающий воздух выходит в тракт горячего газа через отверстия, имеющиеся в проходящей ниже и выше по потоку боковой поверхности теплозащитного экрана статора.
Согласно еще одному воплощению изобретения направляющие лопатки в пределах ступени турбины охлаждаются за счет ввода охлаждающего воздуха через отверстие в полость, находящуюся с задней (обратной) стороны внешней платформы каждой направляющей лопатки, а струи охлаждающего воздуха направляют на венцы рабочих лопаток из указанной полости с помощью отверстий, проходящих ниже по потоку через указанный выступ.
Согласно следующему воплощению изобретения внешняя платформа направляющих лопаток сконфигурирована так, что охлаждающий воздух, протекающий через указанные отверстия в указанном выступе, ранее уже был использован для охлаждения соответствующей направляющей лопатки.
Согласно другому воплощению изобретения через указанные выступы в направлении вниз по потоку проходят пазы, которые направляют поток охлаждающего воздуха точно в промежуток между соседними, размещенными в окружном направлении теплозащитными экранами статора.
В соответствии с еще одним воплощением изобретения на внешних платформах направляющих лопаток выполнены дополнительные отверстия с тем, чтобы направить охлаждающий воздух из полости, находящейся с задней (обратной) стороны внешней платформы направляющей лопатки, вниз по потоку на венцы рабочих лопаток, расположенные ниже указанного выступа.
Краткое описание чертежей
Настоящее изобретение далее более подробно будет пояснено посредством различных воплощений и со ссылками на приложенные чертежи.
Фиг. 1 - хорошо известная базовая конструкция газовой турбины с последовательным сжиганием топлива, которая может быть использована для осуществления изобретения.
Фиг. 2 - детальное раскрытие охлаждения ступени турбины в соответствии с известным аналогом (фиг. 2(a)) вместе с фиг. 2(b), иллюстрирующей детали конструкции венца рабочей лопатки).
Фиг. 3 - детальное раскрытие охлаждения ступени турбины в соответствии с воплощением изобретения (фиг. 3(a)) вместе с фиг. 3(b), иллюстрирующей показанную в увеличенном масштабе зону B на фиг. 3(a).
Фиг. 4 - модификация схемы охлаждения, соответствующей изобретению, с улучшенным охлаждением уплотнительной пластины.
Осуществление изобретения
На фиг. 3 представлена предложенная конструкция высокотемпературной ступени турбины, в которой в результате исключены недостатки, присущие конструкции, иллюстрируемой на фиг. 2.
В соответствии с новой и предпочтительной предложенной конструкцией, показанной на фиг. 3, газовая турбина 35 содержит ступень 60 турбины (СТ) с направляющими лопатками 41, прикрепленными к держателю 39 направляющих лопаток, и рабочими лопатками, приводимыми во вращение горячим газом, протекающим через тракт 42 течения горячего газа. Напротив кромок рабочих лопаток 40 на внутреннем кольцевом элементе 46 установлены теплозащитные экраны 47 статора. Направляющие лопатки 41, каждая из которых выполнена с внешней платформой 38, охлаждаются с помощью охлаждающего воздуха 44, протекающего из камеры 43 через отверстие 45 в полость 51. В соответствии с изобретением внешняя платформа 38 направляющей лопатки и теплозащитный экран 47 статора выполнены и приспособлены друг к другу таким образом, что воздух 37, протекающий через сочленения между внешними платформами 38 направляющих лопаток и соседними теплозащитными экранами 47 статора и поступающий в тракт 42 горячего газа, направлен на венец 32 рабочих лопаток 40 (фиг.3(b)). Это означает, что охлаждающий воздух подводится к щели, образованной между соседними теплозащитными экранами 47, и к венцам рабочих лопаток 40 с прохождением минимально возможного расстояния.
Это непосредственное охлаждение венцов рабочих лопаток и щелей между теплозащитными экранами статора осуществляется с помощью выступа 36, выполненного на задней стенке внешней платформы 38 направляющих лопаток. Чтобы конец выступа 36 подходил как можно ближе к рабочим лопаткам 40, в теплозащитных экранах 47 статора выполнены специальные выемки 58. Теплозащитный экран 47 статора охлаждают таким же образом, как это показано на фиг.2, т.е. охлаждающий воздух поступает в полость 49, проходит через отверстия 52 в теплозащитный экран 47 статора и выходит через отверстия 48 и 50.
Следует отметить, что направляющая лопатка 41 охлаждается подобно направляющей лопатке на фиг.2. Однако венец рабочей лопатки из рабочих лопаток 40 охлаждается более эффективно, поскольку воздушные струи, истекающие из отверстий 53, проходящих сквозь выступ 36, подводят охлаждающий воздух в максимальной степени близко к рабочей лопатке, и поэтому в течение короткого времени они не успевают терять свою кинетическую энергию и не могут быть вытеснены горячим газом из тракта 42 течения горячего воздуха.
Другое преимущество предложенной конструкции заключается в том, что охлаждающий воздух, который поступает к отверстиям 53, уже прошел через отверстия 54 перфорированного листа и охладил часть внешней платформы 38 направляющей лопатки. Таким образом, благодаря тому, что венец рабочей лопатки охлаждается воздухом, который ранее уже был использован для охлаждения другого элемента конструкции, эффективность работы турбины повышается.
Выступ 36 на внешней платформе направляющей лопатки обеспечивает еще одно преимущество предложенной конструкции (см. фиг.4). Он создает возможность продувки промежутка 59 между соседними теплозащитными экранами 47 - статора (фиг.4(b)) сильными воздушными струями, истекающими из пазов 57 точно в середине между соседними теплозащитными экранами, установленными в окружном направлении. Эти струи защищают боковые поверхности теплозащитных экранов 47 статора и уплотнительные пластины 55, находящиеся между этими теплозащитными экранами 47 статора, от негативных последствий воздействия горячего газа. В дополнение к подаче с помощью отверстий 53 использованного ранее воздуха к венцам рабочих лопаток и через пазы 57 в промежуток 59 между соседними теплозащитными экранами 47 статора, может быть обеспечена дополнительная подача от источника использованного воздуха через отверстия 56.
Таким образом, предложенная конструкция имеет следующие преимущества:
1. Предложенные формы выполнения теплозащитных экранов 47 статора и выступа 36, выполненного на внешней платформе 38 направляющей лопатки, позволяют подводить струи охлаждающего воздуха очень близко к венцам рабочих лопаток 40. Это в значительной степени повышает эффективность охлаждения указанных элементов.
2. Для охлаждения теплозащитных экранов 47 статора и венцов рабочих лопаток используется воздух, который уже был использован для охлаждения направляющих лопаток 41. Такое двойное использование охлаждающего воздуха повышает эффективность турбины.
3. Эффективно продувается зазор между соседними теплозащитными экранами 47 статора.
4. Воздух 37, протекающий из полостей 49 и 51 через зоны сочленения внутренних кольцевых элементов 46 с держателем 39 направляющих лопаток (см. фиг.3), успешно используется в целях охлаждения благодаря его истечению ближе к венцам рабочих лопаток.
Таким образом, сочетание приспособленных друг к другу выгодных форм теплозащитных экранов 47 статора и выступа 36 (см. фиг.3) наряду с использованием охлаждающего воздуха, отведенного из внешней платформы 38 направляющей лопатки, позволяет создать новую современную турбину с хорошими рабочими характеристиками и продолжительным сроком службы рабочих лопаток.

Claims (3)

1. Газовая турбина (35) осевого типа, содержащая ротор с чередующимися рядами воздухоохлаждаемых рабочих лопаток (40) и теплозащитных экранов ротора и статор с чередующимися рядами воздухоохлаждаемых направляющих лопаток (41) и теплозащитных экранов (47) статора, установленных в держателе (39) направляющих лопаток, при этом статор коаксиально охватывает снаружи ротор с образованием между ними тракта (42) течения горячего газа так, что ряды рабочих лопаток (40) и теплозащитные экраны (47) статора и ряды направляющих лопаток (41) и теплозащитные экраны ротора расположены напротив друг друга соответственно, и ряд направляющих лопаток (41) и следующий ряд рабочих лопаток (40) в направлении вниз по ходу течения потока образуют ступень (60) турбины, причем рабочие лопатки (40) ступени турбины снабжены каждая на их концах венцом (32), а направляющие лопатки (41) ступени (60) турбины обеспечены каждая внешней платформой (38) направляющей лопатки, причем внешние платформы (38) направляющих лопаток в ступени (60) турбины и соседние теплозащитные экраны (47) статора приспособлены друг к другу за счет выполнения каждой из внешних платформ (38) направляющих лопаток с расположенным ниже по потоку выступом (36) на ее задней стенке, при этом указанный выступ (36) проходит вниз по потоку к передней кромке венцов (32) рабочей лопатки и в соответствующую выемку (58), выполненную в прилегающем теплозащитном экране (47) статора, при этом теплозащитные экраны (47) статора в ступени (60) турбины охлаждаются посредством ввода охлаждающего воздуха в полость (49), находящуюся с задней стороны каждого теплозащитного экрана (47) статора, при этом охлаждающий воздух выходит в тракт (42) течения горячего газа через отверстия (48, 50), имеющиеся в проходящей ниже и выше по потоку боковой поверхности теплозащитного экрана (47) статора, отличающаяся тем, что
полость (51) для введения охлаждающего воздуха (44) через отверстие (45) расположена с задней стороны внешней платформы (38) каждой направляющей лопатки (41) в ступени (60) турбины, а струи охлаждающего воздуха направляются на венцы (32) рабочих лопаток из указанной полости (51) с помощью отверстий (53), проходящих ниже по потоку через указанный выступ (36), и предусмотрены пазы (57), проходящие в направлении вниз по потоку через указанные выступы (36) для направления потока охлаждающего воздуха точно в промежуток (59) между соседними, размещенными в окружном направлении теплозащитными экранами (47) статора.
2. Газовая турбина по п.1, отличающаяся тем, что внешняя платформа (38) направляющих лопаток (41) сконфигурирована так, что охлаждающий воздух, проходящий через указанные отверстия (53) в указанном выступе (36), ранее был использован для охлаждения соответствующей направляющей лопатки (41).
3. Газовая турбина по п.2, отличающаяся тем, что на внешних платформах (38) направляющих лопаток выполнены дополнительные отверстия (56) с тем, чтобы направить охлаждающий воздух из полости (51), находящейся с задней стороны внешней платформы направляющей лопатки, вниз по потоку на венцы (32) рабочих лопаток, расположенные ниже указанного выступа (36).
RU2010148725/06A 2010-11-29 2010-11-29 Осевая газовая турбина RU2543101C2 (ru)

Priority Applications (7)

Application Number Priority Date Filing Date Title
RU2010148725/06A RU2543101C2 (ru) 2010-11-29 2010-11-29 Осевая газовая турбина
AU2011250789A AU2011250789B2 (en) 2010-11-29 2011-11-15 Gas turbine of the axial flow type
MYPI2011005634A MY156143A (en) 2010-11-29 2011-11-22 Gas turbine of the axial flow type
EP11190895.0A EP2458155B1 (en) 2010-11-29 2011-11-28 Gas turbine of the axial flow type
CN201110407943.2A CN102477872B (zh) 2010-11-29 2011-11-29 轴向流类型的燃气轮机
JP2011260784A JP5738159B2 (ja) 2010-11-29 2011-11-29 軸流タイプのガスタービン
US13/306,042 US8974174B2 (en) 2010-11-29 2011-11-29 Axial flow gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010148725/06A RU2543101C2 (ru) 2010-11-29 2010-11-29 Осевая газовая турбина

Publications (2)

Publication Number Publication Date
RU2010148725A RU2010148725A (ru) 2012-06-10
RU2543101C2 true RU2543101C2 (ru) 2015-02-27

Family

ID=45033877

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010148725/06A RU2543101C2 (ru) 2010-11-29 2010-11-29 Осевая газовая турбина

Country Status (7)

Country Link
US (1) US8974174B2 (ru)
EP (1) EP2458155B1 (ru)
JP (1) JP5738159B2 (ru)
CN (1) CN102477872B (ru)
AU (1) AU2011250789B2 (ru)
MY (1) MY156143A (ru)
RU (1) RU2543101C2 (ru)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9103225B2 (en) * 2012-06-04 2015-08-11 United Technologies Corporation Blade outer air seal with cored passages
EP3049640B1 (en) 2013-09-18 2022-11-09 Raytheon Technologies Corporation Boas thermal protection
US10094228B2 (en) 2015-05-01 2018-10-09 General Electric Company Turbine dovetail slot heat shield
EP3093432B1 (en) * 2015-05-15 2021-04-21 Ansaldo Energia Switzerland AG Method for cooling a gas turbine and gas turbine for conducting said method
EP3342979B1 (en) * 2016-12-30 2020-06-17 Ansaldo Energia Switzerland AG Gas turbine comprising cooled rotor disks
US10641174B2 (en) 2017-01-18 2020-05-05 General Electric Company Rotor shaft cooling
US10968764B2 (en) * 2019-05-31 2021-04-06 Rolls-Royce Corporation Ceramic matrix composite hanger heat shield

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1322801A (en) * 1969-12-01 1973-07-11 Gen Electric Vane assembly
SU754094A1 (ru) * 1978-03-23 1980-08-07 Предприятие П/Я М-5671 Способ изготовлени охлаждаемой лопатки
US4282792A (en) * 1979-07-23 1981-08-11 Peter Voorthuyzen Counter pressure system for stringed instruments

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3034298A (en) * 1958-06-12 1962-05-15 Gen Motors Corp Turbine cooling system
BE756582A (fr) * 1969-10-02 1971-03-01 Gen Electric Ecran circulaire et support d'ecran avec dispositif de reglage de la temperature pour turbomachine
FR2280791A1 (fr) * 1974-07-31 1976-02-27 Snecma Perfectionnements au reglage du jeu entre les aubes et le stator d'une turbine
US4292008A (en) * 1977-09-09 1981-09-29 International Harvester Company Gas turbine cooling systems
US4311431A (en) * 1978-11-08 1982-01-19 Teledyne Industries, Inc. Turbine engine with shroud cooling means
US4280792A (en) * 1979-02-09 1981-07-28 Avco Corporation Air-cooled turbine rotor shroud with restraints
US4329114A (en) * 1979-07-25 1982-05-11 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Active clearance control system for a turbomachine
US4693667A (en) * 1980-04-29 1987-09-15 Teledyne Industries, Inc. Turbine inlet nozzle with cooling means
FR2519374B1 (fr) * 1982-01-07 1986-01-24 Snecma Dispositif de refroidissement des talons d'aubes mobiles d'une turbine
US4551064A (en) * 1982-03-05 1985-11-05 Rolls-Royce Limited Turbine shroud and turbine shroud assembly
GB2125111B (en) * 1982-03-23 1985-06-05 Rolls Royce Shroud assembly for a gas turbine engine
US4668164A (en) 1984-12-21 1987-05-26 United Technologies Corporation Coolable stator assembly for a gas turbine engine
GB2170867B (en) * 1985-02-12 1988-12-07 Rolls Royce Improvements in or relating to gas turbine engines
JP2862536B2 (ja) * 1987-09-25 1999-03-03 株式会社東芝 ガスタービンの翼
US5165847A (en) * 1991-05-20 1992-11-24 General Electric Company Tapered enlargement metering inlet channel for a shroud cooling assembly of gas turbine engines
GB9305012D0 (en) * 1993-03-11 1993-04-28 Rolls Royce Plc Sealing structures for gas turbine engines
US5374161A (en) * 1993-12-13 1994-12-20 United Technologies Corporation Blade outer air seal cooling enhanced with inter-segment film slot
US5562408A (en) * 1995-06-06 1996-10-08 General Electric Company Isolated turbine shroud
GB2313414B (en) * 1996-05-24 2000-05-17 Rolls Royce Plc Gas turbine engine blade tip clearance control
JPH10231704A (ja) * 1997-02-18 1998-09-02 Ishikawajima Harima Heavy Ind Co Ltd しみ出し冷却タービンシュラウド
EP0902167B1 (de) * 1997-09-15 2003-10-29 ALSTOM (Switzerland) Ltd Kühlvorrichtung für Gasturbinenkomponenten
EP0902164B1 (de) * 1997-09-15 2003-04-02 ALSTOM (Switzerland) Ltd Plattformkühlung für Gasturbinen
GB9725623D0 (en) * 1997-12-03 2006-09-20 Rolls Royce Plc Improvements in or relating to a blade tip clearance system
DE19756734A1 (de) * 1997-12-19 1999-06-24 Bmw Rolls Royce Gmbh Passives Spalthaltungssystem einer Gasturbine
US6126389A (en) * 1998-09-02 2000-10-03 General Electric Co. Impingement cooling for the shroud of a gas turbine
DE19914227B4 (de) * 1999-03-29 2007-05-10 Alstom Wärmeschutzvorrichtung in Gasturbinen
DE19919654A1 (de) * 1999-04-29 2000-11-02 Abb Alstom Power Ch Ag Hitzeschild für eine Gasturbine
DE19963371A1 (de) * 1999-12-28 2001-07-12 Alstom Power Schweiz Ag Baden Gekühltes Hitzeschild
GB0029337D0 (en) * 2000-12-01 2001-01-17 Rolls Royce Plc A seal segment for a turbine
US6431820B1 (en) * 2001-02-28 2002-08-13 General Electric Company Methods and apparatus for cooling gas turbine engine blade tips
JP3825279B2 (ja) 2001-06-04 2006-09-27 三菱重工業株式会社 ガスタービン
EP1283338B1 (de) * 2001-08-09 2005-03-30 Siemens Aktiengesellschaft Gasturbine und Verfahren zum Betreiben einer Gasturbine
WO2003054360A1 (de) * 2001-12-13 2003-07-03 Alstom Technology Ltd Heissgaspfad-baugruppe einer gasturbine
DE10336432A1 (de) * 2003-08-08 2005-03-10 Alstom Technology Ltd Baden Gasturbine und zugehöriges Kühlverfahren
US6942450B2 (en) * 2003-08-22 2005-09-13 Siemens Westinghouse Power Corporation Differential pressure sensing system for airfoils usable in turbine engines
US6942445B2 (en) 2003-12-04 2005-09-13 Honeywell International Inc. Gas turbine cooled shroud assembly with hot gas ingestion suppression
DE10359730A1 (de) * 2003-12-19 2005-07-14 Mtu Aero Engines Gmbh Turbomaschine, insbesondere Gasturbine
JP2006105084A (ja) * 2004-10-08 2006-04-20 Mitsubishi Heavy Ind Ltd ガスタービン動翼
US7246989B2 (en) * 2004-12-10 2007-07-24 Pratt & Whitney Canada Corp. Shroud leading edge cooling
DE102007000516A1 (de) 2006-11-08 2008-05-15 Alstom Technology Ltd. Hitzeschutzschild für eine Turbomaschine
US7695241B2 (en) 2006-11-30 2010-04-13 General Electric Company Downstream plasma shielded film cooling
US7690885B2 (en) * 2006-11-30 2010-04-06 General Electric Company Methods and system for shielding cooling air to facilitate cooling integral turbine nozzle and shroud assemblies
US7775769B1 (en) * 2007-05-24 2010-08-17 Florida Turbine Technologies, Inc. Turbine airfoil fillet region cooling
ATE472046T1 (de) 2007-09-24 2010-07-15 Alstom Technology Ltd Dichtung in gasturbine
US20110044803A1 (en) * 2009-08-18 2011-02-24 Pratt & Whitney Canada Corp. Blade outer air seal anti-rotation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1322801A (en) * 1969-12-01 1973-07-11 Gen Electric Vane assembly
SU754094A1 (ru) * 1978-03-23 1980-08-07 Предприятие П/Я М-5671 Способ изготовлени охлаждаемой лопатки
US4282792A (en) * 1979-07-23 1981-08-11 Peter Voorthuyzen Counter pressure system for stringed instruments

Also Published As

Publication number Publication date
EP2458155B1 (en) 2015-06-24
AU2011250789B2 (en) 2015-08-06
CN102477872A (zh) 2012-05-30
JP5738159B2 (ja) 2015-06-17
EP2458155A2 (en) 2012-05-30
AU2011250789A1 (en) 2012-06-14
MY156143A (en) 2016-01-15
JP2012117539A (ja) 2012-06-21
US20120134785A1 (en) 2012-05-31
RU2010148725A (ru) 2012-06-10
EP2458155A3 (en) 2013-07-10
CN102477872B (zh) 2016-06-08
US8974174B2 (en) 2015-03-10

Similar Documents

Publication Publication Date Title
RU2543101C2 (ru) Осевая газовая турбина
JP6161897B2 (ja) タービンノズルコンパートメント式冷却システム
JP5080159B2 (ja) シュラウドハンガ組立体及びガスタービンエンジン
AU2011250786B2 (en) Gas turbine of the axial flow type
US20120177479A1 (en) Inner shroud cooling arrangement in a gas turbine engine
JP5738158B2 (ja) 軸流式のガスタービン
JP6431690B2 (ja) ガスタービンのタービン部用のタービンロータブレード
US9938835B2 (en) Method and systems for providing cooling for a turbine assembly
GB2408780A (en) Cooling sidewalls of turbine nozzle segments
US10508563B2 (en) Stator heat shield segment for a gas turbine power plant
JP2016125486A (ja) ガスタービンシール
JP2014009937A (ja) ガスタービン用移行ダクト
JP2018031370A (ja) インピンジメント冷却のための外壁凹部を有する部品
AU2011250790B2 (en) Gas turbine of the axial flow type
JP2002317602A (ja) ガスタービン
RU2686430C1 (ru) Тракт воздушного охлаждения лопатки соплового аппарата турбины высокого давления газотурбинного двигателя (варианты)

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
MM4A The patent is invalid due to non-payment of fees

Effective date: 20181130