EP0899814A1 - Structure rayonnante - Google Patents

Structure rayonnante Download PDF

Info

Publication number
EP0899814A1
EP0899814A1 EP98402148A EP98402148A EP0899814A1 EP 0899814 A1 EP0899814 A1 EP 0899814A1 EP 98402148 A EP98402148 A EP 98402148A EP 98402148 A EP98402148 A EP 98402148A EP 0899814 A1 EP0899814 A1 EP 0899814A1
Authority
EP
European Patent Office
Prior art keywords
pads
pellets
center
structure according
pad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98402148A
Other languages
German (de)
English (en)
Other versions
EP0899814B1 (fr
Inventor
Hervé Legay
Frédéric Croq
Michel Pauchet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent SAS
Original Assignee
Alcatel CIT SA
Alcatel SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel CIT SA, Alcatel SA filed Critical Alcatel CIT SA
Publication of EP0899814A1 publication Critical patent/EP0899814A1/fr
Application granted granted Critical
Publication of EP0899814B1 publication Critical patent/EP0899814B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • H01Q19/185Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces wherein the surfaces are plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/22Reflecting surfaces; Equivalent structures functioning also as polarisation filter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration

Definitions

  • the invention relates to an antenna, or structure radiant, comprising an excitation patch associated with a set of radiating secondary pads.
  • the antennas printed with tablets are of use common because their cost of realization is low and they present reduced mass and volume, which is particularly useful for space applications. They are generally made by engraving or lithography of pastilles, or paving stones conductors, on dielectric substrates.
  • This antenna is well suited to radiate in a directivity range from 9 to 13 dbi, range that would be difficult to obtain by networking elementary radiators.
  • antennas of this type allow to obtain a good quality circular polarization, i.e. a very low ellipticity rate in the axis of the antenna, perpendicular to the planes of the pellets.
  • rate ellipticity increases significantly for directions inclined to the axis of the antenna.
  • the invention provides a radiating structure allowing to maintain the purity of circular polarization over a wide angular sector.
  • a surface is provided reflective surrounding the excitation patch and the pellets secondary constitute semi-reflective surfaces for the excitation wave, the relative position of the pellets secondary to each other and to the reflecting surface being such that the transmitted waves are in phase.
  • the secondary pellets are not excited by an electromagnetic coupling but are excited in dichroic fashion.
  • this excitation mode makes it possible to maintain good circular polarization quality over a wide angular sector, with inclinations up to 50 ° from to the axis, or more.
  • the quality of the radiated signal depends on the signal applied to the excitation pad.
  • the emitting pad is found in (or in the vicinity of) a foreground constituting the reflective surface, or ground plane, and secondary patches lie at a distance of approximately half the length ( ⁇ ) of the wave to be transmitted.
  • a wave emitted by the excitation patch towards a secondary patch travels a distance of half a wavelength.
  • the beam correspondent is partially transmitted, and therefore radiated outward, and is partially reflected by the patch secondary.
  • the reflected beam is directed towards the surface reflective from where it is returned to the same secondary patch or another secondary patch, from which it is transmitted and therefore radiated.
  • the beam reflected on a secondary patch and which returns to another secondary patch thus traverses a wavelength. In this way, the two rays transmitted are well in phase.
  • the total opening of the radiated beam depends on the coefficient of reflection of the secondary pellets.
  • the opening could be all the more important as the coefficient of reflection is bigger. Indeed the part of the beam which is furthest from the central part, where the patch is located is the one who undergoes the greatest number of reflections and which is therefore the most weakened by these reflections.
  • the primary pastilles (s) and secondary are arranged in a conductive cavity so orient the radiation emitted and / or limit the coupling with other neighboring elements.
  • the reflection of excitation waves on the walls of the cavity causes an alteration in the quality of polarization. That is why, in this embodiment, provision is made to give the minus the peripheral secondary pads a shape and a orientation to restore circular polarization.
  • the peripheral secondary pads all have substantially the same shapes and dimensions and are elongated along a determined axis, of distinct orientation or not of the radial orientation, and the angle between the axes of two pads successive corresponds to the angle of which the vertex is made up by the center around which the pellets are arranged secondary and whose sides are the straight lines joining this vertex at the centers of the pastilles concerned.
  • peripheral secondary pads increase the directivity of the antenna because the illumination secondary pastilles is standardized.
  • the invention provides means to compensate for the phase shift.
  • a first embodiment of this compensation consists in making the resonant frequency depend on each secondary dot of its distance from the center around of which are placed the secondary pellets, this frequency of resonance being all the more important as the distance to center is great.
  • a second embodiment of phase shift compensation consists in modulating the distance between the reflecting surface of the surface of the secondary pellets, for example in providing a distance between the secondary pads and the surface reflective which is all the weaker the larger the distance of the secondary pads to the center.
  • the antenna shown in these figures is intended for emit waves in the microwave domain, around with a central frequency of 8 GHz.
  • the pad 20 is deposited on one face 24 1 of a dielectric substrate 24 while the pads 22 1 to 22 7 are arranged on the opposite face 24 2 of the dielectric 24. All the pads constitute metallic deposits and have a shape of a circle of the same diameter in the example.
  • the pad 22 1 is in line with the pad 20, that is to say that the centers of the pads 20 and 22 1 are on the same normal to the plane of the parallel faces 24 1 and 24 2 .
  • the other secondary pads 22 2 to 22 7 are distributed regularly around the central pad 22 1 .
  • the distance separating the faces 24 1 and 24 2 is substantially equal to a half wavelength ⁇ / 2.
  • the face 24 1 is a short distance from a conductive face 26 forming a ground plane.
  • the characteristics of the secondary pads 22 1 to 22 7 are chosen so that these pads are semi-reflecting, that is to say that a beam 28 received by a secondary pad is partially reflected, according to a beam 30, by this secondary patch and is partially transmitted in a beam 32.
  • This characteristic makes it possible to maintain a circular or linear polarization purity over a wide angular sector going up to an inclination of approximately 50 ° relative to the normal on the faces 24 1 and 24 2 .
  • the excitation signal applied to patch 20 can be applied to a single access of the latter, provided that this pellet is given a shape that deviates from the circular shape, with an inclined axis for example about 45 ° from the direction of the current incident.
  • the secondary pads 22 1 to 22 7 have a semi-reflecting character.
  • "Semi" reflective does not necessarily mean properties such that 50% of the energy is reflected and 50% of the energy is transmitted.
  • the reflection coefficient can be adjusted as required, in particular the desired opening for the antenna. In particular, the reflection coefficient will be higher the greater the number of secondary pads which follow one another in the radial direction. Indeed, with each reflection on a secondary patch, the energy of the beam decreases in proportion to the reflection coefficient. A high coefficient of reflection will therefore be required for sufficient energy to remain for the beams reflected several times on the secondary pads. It can be noted here that the reflection coefficient on the ground plane is practically 100%.
  • the excitation patch and the secondary pellets can be deposited on substrates different separated by vacuum or air.
  • the antenna is housed in a metal cavity 40.
  • This cavity makes it possible to orient the beam transmitted and limit the coupling with other neighboring antennas, for example identical or similar antennas forming a network in which the antenna represented is located.
  • the first exciting pad 42 in a lower position (that is to say the one furthest from the surface of the secondary pads), receives the excitation signal while the second exciter pad 44 is coupled, by proximity effect, or electromagnetic coupling, with the pitch; lower tille.
  • the secondary pads 46 1 to 46 7 are in a plane 48 distant from the plane 45 of the pad 44 by about half a wavelength.
  • the patch 42 constitutes a metallic deposit on a substrate 47 and this pellet has the shape of a semi-curved rectangle with two sides parallel rectilinear 50 and 52 and two curvilinear sides 54 and 56 forming arcs of the same circle.
  • the vertex 58 common to the sides 50 and 54 is connected to a conductor 60 also constituted by a metallic deposit on the substrate 47.
  • Conductor 60 shows the direction of the diagonal of the curved rectangle which ends at the vertex 58.
  • the angle between this diagonal and the sides 50 and 52 is approximately 30 °.
  • a deposit is also provided conductor indented, on the one hand, by a circle 62 surrounding the patch 42 and, on the other hand, by two channels 64 and 66 having the diagonal direction, channel 64 being provided to leave pass the driver 60.
  • the pad 44 ( Figure 5) has a shape similar to that of the patch 42. Its dimensions are slightly less than those of this patch 42. Its center is at the right of the center of the lower pad.
  • the orientation of the straight sides 70 and 72 of the pad 44 differs from the orientation of the straight sides of the patch 42: the inclination of the sides 70 and 72 by relative to the direction of the driver 60 is about 45 °.
  • the elongated or chamfered shape of the pellets 42 and 44 makes it possible to excite the pellets using a wave with circular polarization with a single access (vertex 58, FIG. 4) without altering the quality of this circular polarization after excitation secondary pads 46 1 to 46 7 .
  • the central secondary pad 46 1 in line with the pad 44, has a circular shape while the peripheral secondary pads 46 2 to 46 7 have an elongated shape, similar to that of the pads 42 and 44, that is to say in the shape of a semi-curved rectangle ( Figure 6).
  • the rectilinear sides of the peripheral pads which are diametrically opposite have the same orientation.
  • Two successive peripheral pads have rectilinear sides with different orientations.
  • the angle formed between the rectilinear sides of these successive peripheral pads is practically equal to the angle at the center a (60 ° in the example) formed by the lines 73 and 74 connecting the centers of the corresponding pads 46 2 and 46 3 to the center of central patch 46 1 .
  • peripheral pads have the same inclination with respect to their radial direction (the direction joining the center of the patch to the center of the patch central).
  • the double resonator formed by the pads 42 and 44 allows, compared to a single pellet, to increase the strip bandwidth of the antenna.
  • the shape and relative orientation of the pellets 42 and 44 allows excitation by a wave polarized circularly by a single access 58 (FIG. 4).
  • FIG. 7 to 9 relates to a large aperture antenna, that is to say comprising a large number of secondary pads and whose radial extension, from the central pad 80 1 , is significant .
  • 19 secondary pads 80 1 to 80 19 are provided with a central pad 80 1 , surrounded by 6 intermediate pads 80 2 to 80 7 , which are surrounded by 12 peripheral pads 80 8 to 80 19 .
  • a beam emitted from the excitation pad (not shown) towards the central secondary pad 80 1 is reflected by this central pad 80 1 from which it is returned to the ground plane and, from the ground plane, the beam is reflected towards a intermediate patch.
  • the beam undergoes a reflection again towards the ground plane and finally towards a peripheral patch.
  • the reflected beams are not strictly perpendicular in terms of the pellets it follows that the path electric traversed by the beam between two secondary pads adjacent is greater than one wavelength.
  • the phase shift which results is not very sensitive since a secondary pellet towards an adjacent patch but it becomes sensitive when the phase shifts add up. This results in side lobes troublesome.
  • a first category of means of recovery phase we give a lower resonance frequency in the center than on the outskirts. In other words we adapt the wavelength to the electrical paths traveled so that the waves emitted by all the secondary pads are in phase.
  • the variation in resonant frequencies is favorable broad bandwidth.
  • all the pellets have substantially the same outside diameter and have an annular shape, but the diameter of the central opening depends on the position of the patch.
  • the diameter of the opening of the patch 80 1 is greater than the diameter of the opening of the peripheral pads 80 2 to 80 7 and the diameter of the opening of the peripheral pads 80 8 to 80 19 is the smallest.
  • the frequency is varied resonance by varying the outside diameter of the tablets, the central tablet having the largest diameter.
  • phase shifts vary the distance between the reflecting surface and semi-reflective pads from the center towards the periphery.
  • the secondary pads lie in a plane 90 and the reflecting surface 92 has circular steps, around the axis 94. These steps are all the closer to plane 90 the further they are from axis 94.
  • the surface reflective 96 is flat while the secondary pads are on circular bleachers 98.
  • the central tablet is furthest from plane 96 and the peripheral pads are closest to plan 96.
  • surfaces are provided inclined. It is also possible to provide surfaces inclined or bleachers for both the reflective surface and for secondary tablets.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aerials With Secondary Devices (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

L'invention est relative à une structure rayonnante, ou antenne, comportant une pastille excitatrice destinée à recevoir un signal d'excitation et une pluralité de pastilles secondaires destinées à rayonner les ondes reçues de la pastille excitatrice.
Cette structure est caractérisée en ce qu'elle comporte une surface réfléchissante (26) au voisinage de la pastille excitatrice (20) et en ce que les pastilles secondaires (221, 224, 227) constituent des surfaces semi réfléchissantes. L'ensemble est tel que les ondes rayonnées (32, 36) par les pastilles secondaires sont sensiblement en phase.
La distance entre la surface réfléchissante (26) et les pastilles secondaires est sensiblement égale à une demie longueur d'onde à transmettre.
Cette structure permet de maintenir la pureté de polarisation circulaire sur un large secteur angulaire.

Description

L'invention est relative à une antenne, ou structure rayonnante, comprenant une pastille excitatrice associée à un ensemble de pastilles secondaires rayonnantes.
Les antennes imprimées à pastilles sont d'utilisation courante car leur coût de réalisation est faible et elles présentent une masse et un volume réduits, ce qui est utile particulièrement pour les applications spatiales. Elles sont généralement réalisées par gravures ou lithographies de pastilles, ou pavés conducteurs, sur des substrats diélectriques.
Une antenne de ce genre est décrite notamment dans la demande de brevet européen n° 627 783 ayant pour titre "Structure rayonnante multicouches à directivité variable". Dans cette demande de brevet est décrite une antenne dans laquelle les pastilles secondaires sont disposées dans un (ou plusieurs) plan(s) parallèle(s) au plan de la pastille excitatrice.
Cette antenne est bien adaptée pour rayonner dans une gamme de directivités de 9 à 13 dbi, gamme qu'il serait difficile d'obtenir par mise en réseau de radiateurs élémentaires.
On a constaté que les antennes de ce type permettent d'obtenir une polarisation circulaire de bonne qualité, c'est-à-dire un taux d'ellipticité très faible dans l'axe de l'antenne, perpendiculairement aux plans des pastilles. Par contre le taux d'ellipticité augmente de façon sensible pour les directions inclinées par rapport à l'axe de l'antenne.
L'invention fournit une structure rayonnante permettant de maintenir la pureté de polarisation circulaire sur un large secteur angulaire.
Elle résulte de la constatation que dans les antennes connues la dégradation de la qualité de polarisation pour des directions inclinées provient de la nature du couplage entre la pastille excitatrice et les pastilles rayonnantes, ce couplage étant de type électromagnétique ou de proximité.
Dans l'antenne selon l'invention, on prévoit une surface réfléchissante entourant la pastille excitatrice et les pastilles secondaires constituent des surfaces semi-réfléchissantes pour l'onde excitatrice, la position relative des pastilles secondaires entre elles et par rapport à la surface réfléchissante étant telle que les ondes transmises sont en phase.
Autrement dit les pastilles secondaires ne sont pas excitées par un couplage électromagnétique mais sont excitées en mode dichroïque.
On a constaté que ce mode d'excitation permet de maintenir une bonne qualité de polarisation circulaire sur un large secteur angulaire, avec des inclinaisons atteignant 50° par rapport à l'axe, ou davantage.
Bien entendu la qualité du signal rayonné dépend du signal appliqué sur la pastille excitatrice.
Dans un mode de réalisation la pastille émettrice se trouve dans (ou au voisinage d') un premier plan constituant la surface réfléchissante, ou plan de masse, et les pastilles secondaires se trouvent à une distance égale à environ la moitié de la longueur (λ) de l'onde à transmettre. Dans ces conditions une onde émise par la pastille excitatrice vers une pastille secondaire parcourt une distance d'une demi-longueur d'onde. Le faisceau correspondant est partiellement transmis, et donc rayonné vers l'extérieur, et est partiellement réfléchi par la pastille secondaire. Le faisceau réfléchi est dirigé vers la surface réfléchissante d'où il est renvoyé vers la même pastille secondaire ou une autre pastille secondaire, d'où il est transmis et donc rayonné. Le faisceau réfléchi sur une pastille secondaire et qui retourne vers une autre pastille secondaire, parcourt ainsi une longueur d'onde. De cette manière, les deux rayons transmis sont bien en phase.
L'ouverture totale du faisceau rayonné dépend du coefficient de réflexion des pastilles secondaires. L'ouverture pourra être d'autant plus importante que le coefficient de réflexion est plus grand. En effet la partie du faisceau qui est la plus éloignée de la partie centrale, là où se trouve la pastille excitatrice, est celle qui subit le plus grand nombre de réflexions et qui est donc la plus affaiblie par ces réflexions.
Par ailleurs, on a constaté qu'il était possible d'exciter un signal de polarisation circulaire avec un seul accès sur la pastille excitatrice à condition de conférer à cette pastille une forme qui s'éloigne de la forme circulaire.
Dans un mode de réalisation les pastilles primaire(s) et secondaires sont disposées dans une cavité conductrice afin d'orienter le rayonnement émis et/ou de limiter le couplage avec d'autres éléments voisins. Dans ce cas on a constaté que la réflexion des ondes excitatrices sur les parois de la cavité provoque une altération de la qualité de polarisation. C'est pourquoi, dans ce mode de réalisation, on prévoit de conférer au moins aux pastilles secondaires périphériques une forme et une orientation permettant de rétablir la polarisation circulaire. Par exemple, les pastilles secondaires périphériques ont toutes sensiblement les mêmes formes et les mêmes dimensions et sont allongées selon un axe déterminé, d'orientation distincte ou non de l'orientation radiale, et l'angle entre les axes de deux pastilles successives correspond à l'angle dont le sommet est constitué par le centre autour duquel sont disposées les pastilles secondaires et dont les côtés sont les droites joignant ce sommet aux centres des pastilles concernées.
Ces orientations des pastilles secondaires périphériques augmentent la directivité de l'antenne car l'illumination des pastilles secondaires est uniformisée.
Quel que soit son mode de réalisation on a constaté que l'invention permettait d'émettre des ondes sur une large bande de fréquences.
Toutefois pour pouvoir bénéficier à la fois de la bonne qualité de polarisation circulaire et de la large bande, il est préférable de prendre des précautions particulières. En effet, si les pastilles secondaires se trouvent dans un plan parallèle au plan de la surface réfléchissante et distante de λ / 2 de cette surface, on comprend que, les faisceaux réfléchis étant inclinés par rapport à la normale à ces plans, le chemin électrique parcouru par le faisceau entre deux pastilles secondaires est supérieur à la longueur d'onde λ. Ce déphasage est négligeable pour une réflexion, mais pour des réflexions multiples il peut en résulter des déphasages gênants. Ce défaut intervient notamment pour des antennes à large ouverture, c'est-à-dire des antennes pour lesquelles des pastilles secondaires périphériques reçoivent un signal résultant de plusieurs réflexions.
Pour remédier à ce défaut, l'invention prévoit des moyens pour compenser le déphasage.
Un premier mode de réalisation de cette compensation consiste à faire dépendre la fréquence de résonance de chaque pastille secondaire de sa distance par rapport au centre autour duquel sont disposées les pastilles secondaires, cette fréquence de résonance étant d'autant plus importante que la distance au centre est grande.
Quand on prévoit des pastilles circulaires cette variation est obtenue, par exemple, soit en conférant aux pastilles secondaires les plus éloignées du centre un diamètre plus faible que celui des pastilles centrales, soit en conférant une forme annulaire aux pastilles, le diamètre interne des pastilles centrales étant plus important que le diamètre interne des pastilles secondaires périphériques.
Un second mode de réalisation de compensation du déphasage consiste à moduler la distance séparant la surface réfléchissante de la surface des pastilles secondaires, par exemple en prévoyant une distance entre les pastilles secondaires et la surface réfléchissante qui est d'autant plus faible qu'est grande la distance des pastilles secondaires au centre.
D'autres caractéristiques et avantages de l'invention apparaítront avec la description de certains de ses modes de réalisation, celle-ci étant effectuée en se référant aux dessins ci-annexés sur lesquels :
  • la figure 1 est un schéma en coupe d'une antenne selon l'invention,
  • la figure 2 est une vue de dessus de l'antenne de la figure 1,
  • la figure 3 est une vue en coupe pour un autre mode de réalisation de l'antenne de l'invention,
  • les figures 4, 5 et 6 sont des schémas de pastilles de l'antenne de la figure 3,
  • la figure 7 montre des pastilles secondaires pour un autre mode de réalisation de l'invention,
  • la figure 8 est un schéma d'une variante d'antenne selon l'invention, et
  • la figure 9 est un schéma analogue à celui de la figure 8, mais encore pour une autre variante.
  • On se réfère tout d'abord aux figures 1 et 2.
    L'antenne représentée sur ces figures est destinée à émettre des ondes dans le domaine des hyperfréquences, autour d'une fréquence centrale de 8 GHz.
    Elle comporte, d'une part, une pastille excitatrice 20 et, d'autre part, des pastilles secondaires 221 à 227.
    La pastille 20 est déposée sur une face 241 d'un substrat diélectrique 24 tandis que les pastilles 221 à 227 sont disposées sur la face opposée 242 du diélectrique 24. Toutes les pastilles constituent des dépôts métalliques et ont une forme de cercle de même diamètre dans l'exemple.
    La pastille 221 est au droit de la pastille 20, c'est-à-dire que les centres des pastilles 20 et 221 se trouvent sur la même normale au plan des faces parallèles 241 et 242.
    Les autres pastilles secondaires 222 à 227 sont réparties régulièrement autour de la pastille centrale 221.
    Selon un aspect important de l'invention la distance séparant les faces 241 et 242 est sensiblement égale à une demi-longueur d'onde λ / 2.
    La face 241est à faible distance d'une face conductrice 26 formant plan de masse.
    Les caractéristiques des pastilles secondaires 221 à 227 sont choisies de façon telle que ces pastilles soient semi-réfléchissantes, c'est-à-dire qu'un faisceau 28 reçu par une pastille secondaire est partiellement réfléchi, selon un faisceau 30, par cette pastille secondaire et est partiellement transmis selon un faisceau 32.
    L'antenne fonctionne ainsi de la façon suivante :
  • Le faisceau 30 réfléchi par la pastille secondaire centrale 221 est de nouveau réfléchi sur le plan de masse 26 pour être renvoyé, selon le faisceau 34, vers une pastille secondaire périphérique 224. La pastille 224 transmet partiellement le faisceau en 36. Le faisceau 32 transmis par la pastille centrale 221 est parallèle au faisceau 36 transmis par la pastille 224 et les faisceaux 32 et 36 sont pratiquement en phase car le chemin parcouru par les faisceaux 30 et 34 est sensiblement égal à λ.
  • Cette caractéristique permet conserver une pureté de polarisation circulaire ou linéaire sur un large secteur angulaire allant jusqu'à une inclinaison de 50° environ par rapport à la normale aux faces 241 et 242.
    Comme on le verra plus loin le signal d'excitation appliqué sur la pastille 20 peut être appliqué sur un seul accès de cette dernière, à condition de conférer à cette pastille une forme qui s'écarte de la forme circulaire, avec un axe incliné par exemple d'environ 45° par rapport à la direction du courant incident.
    On a indiqué ci-dessus que les pastilles secondaires 221 à 227 présentent un caractère semi réfléchissant. "Semi" réfléchissant ne signifie pas obligatoirement des propriétés telles que 50% de l'énergie soit réfléchie et 50% de l'énergie soit transmise. Le coefficient de réflexion peut être modulé en fonction des besoins, notamment de l'ouverture désirée pour l'antenne. En particulier le coefficient de réflexion sera d'autant plus élevé que sera grand le nombre de pastilles secondaires qui se succèdent en direction radiale. En effet, à chaque réflexion sur une pastille secondaire, l'énergie du faisceau diminue en proportion du coefficient de réflexion. Il faudra donc un coefficient de réflexion élevé pour qu'il reste une énergie suffisante pour les faisceaux réfléchis plusieurs fois sur les pastilles secondaires. On peut noter ici que le coefficient de réflexion sur le plan de masse est pratiquement de 100%.
    Bien entendu l'extension radiale (figure 2) du faisceau rayonné est d'autant plus grande que le nombre de pastilles se succédant en direction radiale est grand.
    Dans l'exemple décrit ci-dessus on fait appel à un substrat diélectrique 24. En variante la pastille excitatrice et les pastilles secondaires peuvent être déposées sur des substrats différents séparés par du vide ou de l'air.
    On se réfère maintenant aux figures 3 à 6.
    Dans cette réalisation, l'antenne est logée dans une cavité métallique 40. Cette cavité permet d'orienter le faisceau émis et de limiter le couplage avec d'autres antennes voisines, par exemple des antennes identiques ou similaires formant un réseau dans lequel se trouve l'antenne représentée.
    Dans cet exemple on prévoit deux pastilles excitatrices, respectivement 42 et 44. La première pastille excitatrice 42, de position inférieure (c'est-à-dire la plus éloignée de la surface des pastilles secondaires), reçoit le signal d'excitation tandis que la seconde pastille excitatrice 44 est couplée, par effet de proximité, ou couplage électromagnétique, avec la pas; tille inférieure. Les pastilles secondaires 461 à 467 sont dans un plan 48 distant du plan 45 de la pastille 44 d'environ une demie longueur d'onde.
    Comme représenté sur la figure 4, la pastille 42 constitue un dépôt métallique sur un substrat 47 et cette pastille présente la forme d'un rectangle semi curviligne avec deux côtés rectilignes parallèles 50 et 52 et deux côtés curvilignes 54 et 56 formant des arcs d'un même cercle.
    Le sommet 58 commun aux côtés 50 et 54 est raccordé à un conducteur 60 constitué également par un dépôt métallique sur le substrat 47.
    Le conducteur 60 présente la direction de la diagonale du rectangle curviligne qui aboutit au sommet 58. L'angle entre cette diagonale et les côtés 50 et 52 est d'environ 30°.
    Sur le substrat 47 on prévoit également un dépôt conducteur échancré, d'une part, par un cercle 62 entourant la pastille 42 et, d'autre part, par deux canaux 64 et 66 ayant la direction de la diagonale, le canal 64 étant prévu pour laisser passer le conducteur 60.
    La pastille 44 (figure 5) a une forme analogue à celle de la pastille 42. Ses dimensions sont légèrement inférieures à celles de cette pastille 42. Son centre est au droit du centre de la pastille inférieure. L'orientation des côtés rectilignes 70 et 72 de la pastille 44 diffère de l'orientation des côtés rectilignes de la pastille 42 : l'inclinaison des côtés 70 et 72 par rapport à la direction du conducteur 60 est d'environ 45°.
    La forme allongée, ou chanfreinée, des pastilles 42 et 44 permet d'exciter les pastilles à l'aide d'une onde à polarisation circulaire avec un seul accès (sommet 58, figure 4) sans altérer la qualité de cette polarisation circulaire après excitation des pastilles secondaires 461 à 467.
    La pastille secondaire centrale 461, au droit de la pastille 44, a une forme circulaire tandis que les pastilles secondaires périphériques 462 à 467 ont une forme allongée, analogue à celle des pastilles 42 et 44, c'est-à-dire en forme de rectangle semi curviligne (figure 6).
    Les côtés rectilignes des pastilles périphériques qui sont diamétralement opposées ont la même orientation. Deux pastilles périphériques qui se succèdent présentent des côtés rectilignes d'orientations différentes. L'angle formé entre les côtés rectilignes de ces pastilles périphériques successives est pratiquement égal à l'angle au centre a (60° dans l'exemple) formé par les droites 73 et 74 reliant les centres des pastilles correspondantes 462 et 463 au centre de la pastille centrale 461.
    Ainsi toutes les pastilles périphériques présentent la même inclinaison par rapport à leur direction radiale (la direction joignant le centre de la pastille au centre de la pastille centrale).
    Le double résonateur formé par les pastilles 42 et 44 permet, par rapport à une pastille unique, d'augmenter la bande passante de l'antenne.
    La forme et l'orientation relative des pastilles 42 et 44 permet l'excitation par une onde polarisée circulairement par un seul accès 58 (figure 4).
    Enfin la forme, la disposition et l'orientation des pastilles secondaires 462 à 467 permet de compenser la dépolarisation induite par la cavité conductrice 40.
    Il en résulte un accroissement de la directivité provoquée par l'uniformisation de l'illumination.
    Le mode de réalisation représenté sur les figures 7 à 9 concerne une antenne de grande ouverture, c'est-à-dire comportant un nombre important de pastilles secondaires et dont l'extension radiale, à partir de la pastille centrale 801, est importante.
    Dans l'exemple représenté on prévoit 19 pastilles secondaires 801 à 8019 avec une pastille centrale 801, entourée par 6 pastilles intermédiaires 802 à 807, lesquelles sont entourées par 12 pastilles périphériques 808 à 8019.
    Un faisceau émis depuis la pastille excitatrice (non représentée) vers la pastille secondaire centrale 801 est réfléchi par cette pastille centrale 801 d'où elle est renvoyée sur le plan de masse et, du plan de masse, le faisceau est réfléchi vers une pastille intermédiaire. Sur la pastille intermédiaire le faisceau subit une réflexion de nouveau vers le plan de masse et enfin vers une pastille périphérique. On rappelle que ces réflexions multiples nécessitent un coefficient de réflexion relativement élevé sur les pastilles secondaires afin que le faisceau parvenant aux pastilles secondaires périphériques ait une intensité qui ne soit pas trop faible par rapport au faisceau transmis par la pastille centrale.
    Les faisceaux réfléchis n'étant pas strictement perpendiculaires au plan des pastilles il en résulte que le chemin électrique parcouru par le faisceau entre deux pastilles secondaires adjacentes est supérieur à une longueur d'onde. Le déphasage qui en résulte est peu sensible depuis une pastille secondaire vers une pastille adjacente mais il devient sensible quand les déphasages s'additionnent. Il en résulte des lobes secondaires gênants.
    Pour remédier à cet inconvénient on prévoit des moyens permettant la remise en phase.
    Dans une première catégorie de moyens de remise en phase, on confère une fréquence de résonance plus basse au centre qu'à la périphérie. Autrement dit on adapte la longueur d'onde aux chemins électriques parcourus de façon que les ondes émises par toutes les pastilles secondaires soient en phase.
    La variation des fréquences de résonance est favorable à une large bande passante.
    Dans l'exemple représenté sur la figure 7, toutes les pastilles ont sensiblement le même diamètre extérieur et ont une forme annulaire, mais le diamètre de l'ouverture centrale dépend de la position de la pastille. Le diamètre de l'ouverture de la pastille 801 est supérieur au diamètre de l'ouverture des pastilles périphériques 802 à 807 et le diamètre de l'ouverture des pastilles périphériques 808 à 8019 est le plus petit.
    En variante (non représentée) on fait varier la fréquence de résonance en faisant varier le diamètre extérieur des pastilles, la pastille centrale ayant le plus grand diamètre.
    Dans une seconde catégorie de moyens de compensation des déphasages on fait varier la distance entre la surface réfléchissante et les pastilles semi réfléchissantes depuis le centre vers la périphérie.
    Dans l'exemple de la figure 8, les pastilles secondaires se trouvent dans un plan 90 et la surface réfléchissante 92 présente des gradins circulaires, autour de l'axe 94. Ces gradins sont d'autant plus proches du plan 90 qu'ils sont éloignés de l'axe 94.
    Dans l'exemple représenté sur la figure 9, la surface réfléchissante 96 est plane tandis que les pastilles secondaires se trouvent sur des gradins circulaires 98. La pastille centrale est la plus éloignée du plan 96 et les pastilles périphériques sont les plus rapprochées du plan 96.
    En variante, au lieu de gradins on prévoit des surfaces inclinées. Il est également possible de prévoir des surfaces inclinées ou des gradins à la fois pour la surface réfléchissante et pour les pastilles secondaires.

    Claims (14)

    1. Structure rayonnante, ou antenne, comportant une pastille excitatrice (20 ; 44) destinée à recevoir un signal d'excitation et une pluralité de pastilles secondaires (22 ; 46 ; 80) destinées à rayonner les ondes reçues de la pastille excitatrice, caractérisée en ce qu'elle comporte une surface réfléchissante (26) au voisinage de la pastille excitatrice et en ce que les pastilles secondaires constituent des surfaces semi réfléchissantes, l'ensemble étant tel que les ondes rayonnées (32, 36) par les pastilles secondaires sont sensiblement en phase.
    2. Structure selon la revendication 1, caractérisée en ce que la distance entre, d'une part, la pastille excitatrice et la surface réfléchissante et, d'autre part, les pastilles secondaires, est sensiblement égale à une demie longueur d'onde à transmettre.
    3. Structure selon la revendication 2, caractérisée en ce que les pastilles secondaires sont disposées concentriquement et en ce qu'elles présentent un coefficient de réflexion qui est d'autant plus élevé qu'est plus élevé le nombre de pastilles secondaires s'étendant en direction radiale.
    4. Structure selon l'une quelconque des revendications 1 à 3, caractérisée en ce que la pluralité de pastilles secondaires comporte, d'une part, une pastille centrale (22 ; 46 ; 80) et, d'autre part, au moins une multiplicité de pastilles périphériques autour de la pastille centrale.
    5. Structure selon l'une quelconque des revendications précédentes, caractérisée en ce que la pastille excitatrice (42) présente une forme allongée selon une direction et en ce que cette pastille excitatrice est alimentée, par un accès unique (58), par une onde à polarisation circulaire.
    6. Structure selon l'une quelconque des revendications précédentes, caractérisée en ce que la pastille excitatrice (44) reçoit l'énergie d'excitation par l'intermédiaire d'une autre pastille (42) séparée de la pastille excitatrice d'une distance faible par rapport à la distance entre la pastille excitatrice et les pastilles secondaires.
    7. Structure selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle comporte une cavité conductrice (40) logeant la pastille excitatrice et les pastilles secondaires.
    8. Structure selon la revendication 7, caractérisée en ce que les pastilles secondaires présentent une multiplicité de pastilles périphériques (462 à 467) de formes et d'orientations telles qu'elles compensent la dépolarisation induite par la cavité conductrice (40).
    9. Structure selon la revendication 8, caractérisée en ce que les pastilles périphériques sont allongées selon une direction inclinée par rapport à la direction radiale reliant le centre de ces pastilles au centre de l'ensemble de pastilles secondaires, l'inclinaison de toutes les pastilles périphériques par rapport à leur direction radiale étant la même.
    10. Structure selon l'une quelconque des revendications précédentes, caractérisée en ce que les pastilles secondaires sont disposées autour d'un centre avec au moins un ensemble de pastille(s) à une première distance du centre et au moins une multiplicité de pastilles périphériques plus éloignées du centre, la fréquence de résonance de la (des) pastille(s) la (les) plus proche(s) du centre étant plus faible que la fréquence de résonance des pastilles plus éloignées du centre.
    11. Structure selon la revendication 10, caractérisée en ce que les pastilles ont une forme circulaire et en ce que les pastilles les plus proches du centre ont un diamètre extérieur plus élevé que les pastilles plus éloignées du centre.
    12. Structure selon la revendication 10, caractérisée en ce que les pastilles sont en forme d'anneaux et ont toutes sensiblement le même diamètre extérieur, le diamètre intérieur des pastilles les plus proches du centre étant plus élevé que le diamètre intérieur des pastilles les plus éloignées du centre.
    13. Structure selon l'une quelconque des revendications précédentes, caractérisée en ce que les pastilles secondaires sont disposées autour d'un centre et en ce que la distance des pastilles secondaires à la surface réfléchissante diminue depuis le centre vers la périphérie.
    14. Structure selon la revendication 13, caractérisée en ce que la surface réfléchissante et/ou la surface sur laquelle sont disposées les pastilles secondaires présentent des gradins (92 ; 98).
    EP98402148A 1997-09-01 1998-08-31 Structure rayonnante Expired - Lifetime EP0899814B1 (fr)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR9710842A FR2767970B1 (fr) 1997-09-01 1997-09-01 Structure rayonnante
    FR9710842 1997-09-01

    Publications (2)

    Publication Number Publication Date
    EP0899814A1 true EP0899814A1 (fr) 1999-03-03
    EP0899814B1 EP0899814B1 (fr) 2012-11-14

    Family

    ID=9510634

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP98402148A Expired - Lifetime EP0899814B1 (fr) 1997-09-01 1998-08-31 Structure rayonnante

    Country Status (5)

    Country Link
    US (1) US6061027A (fr)
    EP (1) EP0899814B1 (fr)
    CA (1) CA2243603C (fr)
    FR (1) FR2767970B1 (fr)
    NO (1) NO984006L (fr)

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2010029125A1 (fr) * 2008-09-12 2010-03-18 Advanced Automotive Antennas, S.L. Antenne surbaissée encastrée à renfoncement résonnant
    EP2194602A1 (fr) 2008-12-05 2010-06-09 Thales Antenne à partage de sources et procède d'élaboration d'une antenne à partage de sources pour l'élaboration de multi-faisceaux

    Families Citing this family (28)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    KR20040049305A (ko) * 2001-08-31 2004-06-11 더 트러스티스 오브 콜롬비아 유니버시티 인 더 시티 오브 뉴욕 상호 커플된 패치를 위해 최적화된 패치 안테나 여기를제공하는 시스템 및 방법
    US6624787B2 (en) * 2001-10-01 2003-09-23 Raytheon Company Slot coupled, polarized, egg-crate radiator
    DE10334979B4 (de) * 2003-07-29 2009-10-29 Wengler, Peter, Dipl.-Phys. Dr.-Ing. Richtantenne
    EP1508940A1 (fr) * 2003-08-19 2005-02-23 Era Patents Limited Contrôleur de rayonnement comprenant des réactances sur une surface dielectrique
    JP4192212B2 (ja) * 2004-01-28 2008-12-10 日本電波工業株式会社 マイクロストリップライン型の平面アレーアンテナ
    US7671696B1 (en) 2006-09-21 2010-03-02 Raytheon Company Radio frequency interconnect circuits and techniques
    US9172145B2 (en) 2006-09-21 2015-10-27 Raytheon Company Transmit/receive daughter card with integral circulator
    US8279131B2 (en) * 2006-09-21 2012-10-02 Raytheon Company Panel array
    US9019166B2 (en) 2009-06-15 2015-04-28 Raytheon Company Active electronically scanned array (AESA) card
    EP2198479B1 (fr) * 2007-10-11 2016-11-30 Raytheon Company Antenne de correction
    US8159409B2 (en) * 2009-01-20 2012-04-17 Raytheon Company Integrated patch antenna
    US7859835B2 (en) * 2009-03-24 2010-12-28 Allegro Microsystems, Inc. Method and apparatus for thermal management of a radio frequency system
    US8686914B2 (en) * 2009-06-25 2014-04-01 National Taiwan University Antenna module and design method thereof
    TWI420740B (zh) * 2009-06-25 2013-12-21 Univ Nat Taiwan 天線模組
    US8537552B2 (en) * 2009-09-25 2013-09-17 Raytheon Company Heat sink interface having three-dimensional tolerance compensation
    US8508943B2 (en) 2009-10-16 2013-08-13 Raytheon Company Cooling active circuits
    CN101752671B (zh) * 2010-01-13 2012-11-28 东南大学 可实现极化变换的高增益谐振天线
    US8427371B2 (en) 2010-04-09 2013-04-23 Raytheon Company RF feed network for modular active aperture electronically steered arrays
    FR2959611B1 (fr) 2010-04-30 2012-06-08 Thales Sa Element rayonnant compact a cavites resonantes.
    US8363413B2 (en) 2010-09-13 2013-01-29 Raytheon Company Assembly to provide thermal cooling
    US8810448B1 (en) 2010-11-18 2014-08-19 Raytheon Company Modular architecture for scalable phased array radars
    US8355255B2 (en) 2010-12-22 2013-01-15 Raytheon Company Cooling of coplanar active circuits
    US9124361B2 (en) 2011-10-06 2015-09-01 Raytheon Company Scalable, analog monopulse network
    US9130278B2 (en) 2012-11-26 2015-09-08 Raytheon Company Dual linear and circularly polarized patch radiator
    TWI514680B (zh) * 2014-03-17 2015-12-21 Wistron Neweb Corp 多頻天線及多頻天線配置方法
    EP3465819A4 (fr) * 2016-05-26 2020-01-08 The Chinese University Of Hong Kong Appareil et procédés pour réduire les couplages mutuels dans un réseau d'antennes
    US10367259B2 (en) * 2017-01-12 2019-07-30 Arris Enterprises Llc Antenna with enhanced azimuth gain
    KR102346283B1 (ko) * 2018-02-02 2022-01-04 삼성전자 주식회사 반사체를 포함하는 안테나 모듈 및 이를 포함하는 전자장치

    Citations (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP0627783A1 (fr) * 1993-06-03 1994-12-07 Alcatel N.V. Structure rayonnante multicouches à directivité variable
    WO1996039728A1 (fr) * 1995-06-05 1996-12-12 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Industry Through The Communications Research Centre Antenne a cavite a plaques en microruban a gain moderement eleve

    Family Cites Families (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4623893A (en) * 1983-12-06 1986-11-18 State Of Israel, Ministry Of Defense, Rafael Armament & Development Authority Microstrip antenna and antenna array
    US5005019A (en) * 1986-11-13 1991-04-02 Communications Satellite Corporation Electromagnetically coupled printed-circuit antennas having patches or slots capacitively coupled to feedlines
    US4847626A (en) * 1987-07-01 1989-07-11 Motorola, Inc. Microstrip balun-antenna
    JPH01103006A (ja) * 1987-10-15 1989-04-20 Matsushita Electric Works Ltd 平面アンテナ
    US5278569A (en) * 1990-07-25 1994-01-11 Hitachi Chemical Company, Ltd. Plane antenna with high gain and antenna efficiency
    FR2677491B1 (fr) * 1991-06-10 1993-08-20 Alcatel Espace Antenne hyperfrequence elementaire bipolarisee.

    Patent Citations (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP0627783A1 (fr) * 1993-06-03 1994-12-07 Alcatel N.V. Structure rayonnante multicouches à directivité variable
    WO1996039728A1 (fr) * 1995-06-05 1996-12-12 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Industry Through The Communications Research Centre Antenne a cavite a plaques en microruban a gain moderement eleve

    Non-Patent Citations (1)

    * Cited by examiner, † Cited by third party
    Title
    LEE ET AL.: "Antennas and propagation society symposium,1991 digest, no.1", CIRCULAR POLARISATION CHARACTERISTICS OF PARASITIC MICROSTRIP ANTENNAS, no. 1, pages 310 - 313, XP000242438 *

    Cited By (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2010029125A1 (fr) * 2008-09-12 2010-03-18 Advanced Automotive Antennas, S.L. Antenne surbaissée encastrée à renfoncement résonnant
    US8836589B2 (en) 2008-09-12 2014-09-16 Advanced Automotive Antennas, S.L. Flush-mounted low-profile resonant hole antenna
    EP2194602A1 (fr) 2008-12-05 2010-06-09 Thales Antenne à partage de sources et procède d'élaboration d'une antenne à partage de sources pour l'élaboration de multi-faisceaux
    FR2939568A1 (fr) * 2008-12-05 2010-06-11 Thales Sa Antenne a partage de sources et procede d'elaboration d'une antenne a partage de sources pour l'elaboration de multi-faisceaux
    US8299963B2 (en) 2008-12-05 2012-10-30 Thales Antenna with shared feeds and method of producing an antenna with shared feeds for generating multiple beams
    EP2194602B1 (fr) 2008-12-05 2015-09-02 Thales Antenne à partage de sources et procède d'élaboration d'une antenne à partage de sources pour l'élaboration de multi-faisceaux

    Also Published As

    Publication number Publication date
    CA2243603A1 (fr) 1999-03-01
    FR2767970B1 (fr) 1999-10-15
    CA2243603C (fr) 2007-02-06
    EP0899814B1 (fr) 2012-11-14
    NO984006L (no) 1999-03-02
    FR2767970A1 (fr) 1999-03-05
    NO984006D0 (no) 1998-08-31
    US6061027A (en) 2000-05-09

    Similar Documents

    Publication Publication Date Title
    CA2243603C (fr) Structure rayonnante
    EP3547450B1 (fr) Element rayonnant a polarisation circulaire mettant en oeuvre une resonance dans une cavite de fabry perot
    EP1038333B1 (fr) Antenne a plaque
    FR2810163A1 (fr) Perfectionnement aux antennes-sources d'emission/reception d'ondes electromagnetiques
    EP2564466A1 (fr) Element rayonnant compact a cavites resonantes
    EP2710676B1 (fr) Element rayonnant pour antenne reseau active constituee de tuiles elementaires
    WO2004040694A1 (fr) Antenne multi-faisceaux a materiau bip
    EP0430745B1 (fr) Antenne à polarisation circulaire, notamment pour réseau d'antennes
    WO2000014825A9 (fr) Antenne
    WO2003028157A1 (fr) Antenne a large bande ou multi-bandes
    WO2004040696A1 (fr) Antenne a materiau bip multi-faisceaux
    EP0860893A1 (fr) Ensemble d'antennes concentriques pour des ondes hyperfréquences
    FR2518828A1 (fr) Filtre spatial de frequences et antenne comportant un tel filtre
    EP0860894B1 (fr) Antenne miniature résonnante de type microruban de forme annulaire
    EP0860895A1 (fr) Antenne résonnante pour l'émission ou la réception d'ondes polarisées
    EP4046241B1 (fr) Antenne-reseau
    EP0337841A1 (fr) Antenne boucle large bande à alimentation dissymétrique, notamment antenne pour émission, et antenne réseau formée d'une pluralité de telles antennes
    EP3902059B1 (fr) Antenne directive large bande à émission longitudinale
    FR2677493A1 (fr) Reseau d'elements rayonnants a topologie autocomplementaire, et antenne utilisant un tel reseau.
    EP0067753A1 (fr) Source rayonnante hyperfréquence à cavités ouvertes excitée par deux dipoles orthogonaux
    FR2814593A1 (fr) Antenne de telecommunication, notamment entre avions
    FR2815479A1 (fr) Reflecteur hyperfrequence actif a deux polarisations independantes, notamment pour antenne a balayage electronique
    FR2854735A1 (fr) Antenne a materiau bip multi-faisceaux
    FR2854734A1 (fr) Systeme d'emission et ou de reception d'ondes electromagnetiques equipe d'une antenne multi-faisceaux a materiau bip
    FR2807876A1 (fr) Antenne plaque micro-onde

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE ES FR GB IT

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    RAP3 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: ALCATEL

    17P Request for examination filed

    Effective date: 19990903

    AKX Designation fees paid

    Free format text: DE ES FR GB IT

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: ALCATEL LUCENT

    17Q First examination report despatched

    Effective date: 20070906

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: ALCATEL LUCENT

    GRAC Information related to communication of intention to grant a patent modified

    Free format text: ORIGINAL CODE: EPIDOSCIGR1

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE ES FR GB IT

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R096

    Ref document number: 69842881

    Country of ref document: DE

    Effective date: 20130110

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20130225

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20121114

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20130815

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: 732E

    Free format text: REGISTERED BETWEEN 20130926 AND 20131002

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: GC

    Effective date: 20131018

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R097

    Ref document number: 69842881

    Country of ref document: DE

    Effective date: 20130815

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: RG

    Effective date: 20141016

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 18

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20150819

    Year of fee payment: 18

    Ref country code: DE

    Payment date: 20150821

    Year of fee payment: 18

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20150820

    Year of fee payment: 18

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 69842881

    Country of ref document: DE

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20160831

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20170428

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160831

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160831

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20170301