EP0430745B1 - Antenne à polarisation circulaire, notamment pour réseau d'antennes - Google Patents

Antenne à polarisation circulaire, notamment pour réseau d'antennes Download PDF

Info

Publication number
EP0430745B1
EP0430745B1 EP90403209A EP90403209A EP0430745B1 EP 0430745 B1 EP0430745 B1 EP 0430745B1 EP 90403209 A EP90403209 A EP 90403209A EP 90403209 A EP90403209 A EP 90403209A EP 0430745 B1 EP0430745 B1 EP 0430745B1
Authority
EP
European Patent Office
Prior art keywords
antenna
branches
signal
branch
radiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90403209A
Other languages
German (de)
English (en)
Other versions
EP0430745A1 (fr
Inventor
Jean Bouko
Marcel Grosbois
Joseph Roger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0430745A1 publication Critical patent/EP0430745A1/fr
Application granted granted Critical
Publication of EP0430745B1 publication Critical patent/EP0430745B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/062Two dimensional planar arrays using dipole aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/245Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction provided with means for varying the polarisation 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/06Details
    • H01Q9/065Microstrip dipole antennas

Definitions

  • the present invention relates to a circularly polarized antenna, in particular an elementary antenna for an array of antennas, as known from EP-A-0,085,486.
  • circular polarization in particular in radar applications, where it is known that circular polarization makes it possible to eliminate the echoes produced by obstacles with isotropic reflection, very particularly the echoes of rain (caused by water droplets suspended in the clouds).
  • the wave emitted according to a given circular polarization for example a right circular polarization
  • a reverse polarization circular to the left in this example. It will then be easy, at the level of the receiver, to suppress this reflection by means of a cross polarization eliminator.
  • One of the objects of the invention is to propose such an antenna with circular polarization, in particular to serve as a primary source (elementary antenna) in a network antenna, and which can be supplied directly by a line called "triplate”.
  • a three-ply line is formed by a flat central conductor forming a coaxial core, sandwiched between two thicknesses of dielectric (possibly air) themselves covered on their outer surfaces by conductors located in line with the central conductor and supplied in parallel , therefore equipotential, forming peripheral earth conductors.
  • the known primary sources with circular polarization do not operate in the same mode as the triplate line and therefore require, in addition to the mechanical and electrical interfacing of the source to the line triplate, a change in excitation mode detrimental to optimal operation of the source.
  • the radiating elements produced hitherto in triplate technology did not provide circular polarization, and it was therefore necessary, in order to obtain such a polarization mode, to add to them polarizers such as dielectric plate polarizers, with screws , with wires, etc., with all the corresponding losses of adaptation and difficulties of realization.
  • a first object of the present invention is to propose a new form of primary source with circular polarization which can directly extend the three-plate feed line, generally constituted by one of the ramifications of a network antenna distributor.
  • the invention consists in extending the supply line by two orthogonal triplate dipoles supplied by a phase shifter whose output branches are directly extended so as to form the two dipoles, in order to constitute a monoblock primary source radiating a circularly polarized wave (it is known in fact that, to produce a circularly polarized wave, it is necessary to excite two neighboring orthogonal dipoles by signals of the same amplitude but in phase quadrature).
  • a second object of the present invention is to provide an antenna structure which, with these same broadband characteristics, compactness and simplicity of construction, allows, in addition to the circular polarization (right or left), a linear polarization (rectilinear) superimposed on the circular polarization, typically a vertical and / or horizontal linear polarization.
  • This characteristic of multiple polarization antenna is particularly advantageous for antennas simultaneously ensuring two functions, for example the conventional surveillance function - obtained by circular polarization - and an IFF (Identification Friend or Foe) function - obtained by rectilinear polarization.
  • the dipolar radiating elements are excited by respective similar signals, of the same amplitude but phase shifted by 90 °, which thus circularly polarizes the signal to be radiated.
  • the triplate excitation means comprise a second hybrid 90 ° coupler, mounted in cascade with the first, with a first and a second branch of output connected to the first and to the second input branch of the first coupler, and at least one input branch receiving from the triplate line a signal to be radiated, so as to excite the dipolar radiating elements by similar respective signals, of same amplitude and phase and thus linearly polarize the signal to be radiated.
  • the three-ply supply line consists of central conductors, such as 1 or 2, sandwiched between two peripheral conductors 3 and 4 forming half ground planes; these various conductors are produced in the form of rigid plates or strips arranged parallel to each other and separated by an appropriate dielectric which may be air, spacers then being simply provided to precisely maintain the various elements of the line in their place.
  • the triplate line can in particular constitute the end of one of the ramifications of a network antenna splitter (not shown).
  • This supply line excites, as will be described below, on the one hand a horizontal dipole 10 intended to produce the horizontal component of the circular polarization of the wave, and on the other hand a vertical dipole 20 intended to produce the vertical component of this same circular polarization.
  • the antenna of the invention is described here essentially in the form of a source emitting a circularly polarized wave, this same antenna can also be used without any modification, because of the principle of reciprocity, as receiving antenna.
  • the horizontal dipole 10 is produced by extending transversely (that is to say perpendicular to the axial direction of the antenna, materialized by the axis ⁇ ), one of the central conductors of the supply line by a branch 11 forming one of the halves of a dipole.
  • the other half of the dipole is made up of branches 12, 13 formed by extending transversely, on the other side of the axis A (but on the same side for the two branches 12 and 13), the peripheral conductors 3 and 4 of the power line.
  • the branches 11, 12 and 13 are the same length, equal to about a quarter wave.
  • the dipole 20 is formed by folding another central conductor downwards, which gives the branch 21, and one of the peripheral conductors (here, the upper conductor 4) upwards, which gives the second branch 22 of the dipole 20.
  • These two branches 21 and 22 also have a length of around a quarter wave.
  • peripheral conductors 3 and 4 are folded at 5 and 6 so as to form a ground plane constituting the short-circuit plane of the dipoles 10 and 20.
  • the dipoles 10 and 20 are supplied jointly by means of a coupler 30 interposed between the supply lines 1 and 2 and the dipoles 10 and 20.
  • This coupler makes it possible, in itself known manner, (to excite the two dipoles of the antenna with a relative phase shift of 90 ° (quadrature).
  • the coupler 30 is a coupler of the “90 ° hybrid coupler” type, also called “3 dB hybrid coupler”, “3 dB hybrid ring” or “3 dB scale”.
  • This 90 ° hybrid coupler in itself known, essentially comprises two symmetrical input branches 31 and 31 '(from the radioelectric point of view) and two equally symmetrical output branches 32 and 32'. These four branches lead to four segments 33, 34, 35 and 36 each having a length of about a quarter wave. These segments 33 to 36 can be rectilinear, as illustrated in the figure - and one generally speaks of “ladder coupler” - or curvy lines - and one then speaks rather of “hybrid ring” -, or even take more complex shapes, the important parameters being the length and width of the transmission lines formed by these segments.
  • the dimensions of the input branches 31 and 31 ′, of the output branches 32 and 32 ′ and of the lines 35 and 36 are such that these elements are all adapted to the characteristic impedance of the antenna and of its associated circuits, typically 50 Q.
  • lines 33 and 34 are given a greater width, so as to create an impedance mismatch. This mismatch is such that the signals applied to one or the other input branch 31 or 31 ′ will be divided and, due to the delays introduced by the quarter wave lines 33 to 36, will give on each output branches 32 and 32 'of similar signals, of the same amplitude but 90 ° out of phase.
  • Such a 90 ° hybrid coupler has a number of advantages, in particular the fact that it makes it possible to maintain an almost constant 90 ° phase shift over a very wide frequency band, typically over a bandwidth of 20%, with a ROS little affected by frequency variations in this band; in other words, this hybrid coupler remains perfectly suited even if the frequency varies around the central frequency for which it was calculated.
  • the antenna feed system can be configured so as to radiate not only a circular polarization (right or left), but also a rectilinear, vertical and / or horizontal polarization (it can be particularly advantageous, in certain applications , to use the two crossed rectilinear polarizations simultaneously).
  • FIG. 3 it is preferred to use the solution illustrated diagrammatically in FIG. 3, consisting in providing a second 90 ° hybrid coupler referenced 40, mounted upstream of the first.
  • the two couplers 30 and 40 are cascaded, that is to say that the two output branches 42, 42 'of the upstream coupler 40 are directly connected to the input branches 31, 31' of the downstream coupler 30.
  • the signal to be radiated is applied to one and / or the other of the two input branches 41, 41 'of the upstream coupler, and / or to one and / or the other of the branches of input 31, 31 'of the downstream coupler 30.
  • the selection of the desired polarization can easily be obtained in a manner known per se by switching the different channels, for example by means of PIN diodes.
  • Such a type of elementary antenna lends itself particularly well to the constitution of a planar network, which can comprise several tens or several hundreds of radiating elements.
  • Each radiating element will then be associated with a hybrid coupler which is specific to it, the various couplers being supplied in an appropriate manner, in a manner also known per se, by appropriate distributor circuits.
  • the configuration of the radiating element / hybrid coupler assembly of the present invention makes it possible to have a very compact arrangement, which will allow the various radiating elements to be brought together as much as possible. Now we know that, in a network antenna, if we want to avoid the appearance of network lobes detrimental to a wide angular coverage, it is necessary to bring the various radiating elements as close as possible, ideally with a spacing of no more than half a wavelength.
  • the respective phase centers of the two dipoles will be slightly offset due to their respective positions (center distance x).
  • This offset certainly induces a slight asymmetry and therefore a slight defect in the circularity of the polarization for the radiating element, but this defect can be easily compensated for by alternating the positioning of the dipoles from one radiating element to the next in the network.
  • a center distance x of the order of 0.25 ⁇ provides satisfactory operation, provided that the defect in circularity is compensated for by alternating the positioning of the dipoles in the network, as just indicated.
  • Such an antenna can be produced for all frequency bands where triplate technology can be used, typically the L, S and C bands.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

  • La présente invention concerne une antenne à polarisation circulaire, notamment une antenne élémentaire pour réseau d'antennes, comme connue par EP-A-0,085,486.
  • Dans nombre de circonstances, il est souhaitable de disposer d'une polarisation circulaire, notamment dans les applications radar, où l'on sait que la polarisation circulaire permet d'éliminer les échos produits par les obstacles à réflexion isotrope, tout particulièrement les échos de pluie (provoqués par les gouttelettes d'eau en suspension dans les nuages).
  • En effet, l'onde émise selon une polarisation circulaire donnée, par exemple une polarisation circulaire droite, va être déphasée de 180° par réflexion sur l'obstacle et va donc être renvoyée avec une polarisation inverse, circulaire à gauche dans cet exemple. Il sera alors aisé, au niveau du récepteur, de supprimer cette réflexion au moyen d'un éliminateur de polarisation croisée.
  • L'un des buts de l'invention est de proposer une telle antenne à polarisation circulaire, notamment pour servir de source primaire (antenne élémentaire) dans une antenne réseau, et qui puisse être alimentée directement par une ligne dite « triplaque ».
  • Une ligne triplaque est constituée par un conducteur central plat formant âme de coaxial, pris en sandwich entre deux épaisseurs de diélectrique (éventuellement l'air) elles-mêmes recouvertes à leurs surfaces extérieures par des conducteurs situés au droit du conducteur central et alimentés en parallèle, donc équipotentiels, formant conducteurs périphériques de masse.
  • Cette technologie triplaque est très courante en particulier dans les antennes réseau, car eue permet de réaliser aisément les distributeurs complexes nécessaires à l'alimentation des différentes sources primaires du réseau.
  • En revanche, l'un des inconvénients de la technologie triplaque tenait au fait que, jusqu'à présent, il n'existait aucune source primaire à polarisation circulaire prolongeant directement la ligne triplaque d'alimentation.
  • En effet, les sources primaires à polarisation circulaire connues (antennes hélicoïdales, antennes « bougie », etc.) ne fonctionnent pas dans le même mode que la ligne triplaque et nécessitent donc, outre l'interfaçage mécanique et électrique de la source à la ligne triplaque, un changement de mode d'excitation préjudiciable à un fonctionnement optimal de la source.
  • Par ailleurs, les éléments rayonnants réalisés jusqu'à présent en technologie triplaque ne procuraient pas de polarisation circulaire, et il était donc nécessaire, pour obtenir un tel mode de polarisation, de leur adjoindre des polariseurs tels que des polariseurs à lames diélectriques, à vis, à fils, etc., avec toutes les pertes d'adaptation et difficultés de réalisation corrélatives.
  • Un premier but de la présente invention est de proposer une nouvelle forme de source pri maire à polarisation circulaire qui puisse directement prolonger la ligne triplaque d'alimentation, généralement constituée par l'une des ramifications d'un distributeur d'antenne réseau.
  • Avec une telle source, on pourra, pour produire le rayonnement, utiliser le mode TM ou quasi-TM caractéristique des lignes triplaques, qui procure une excellente largeur de bande.
  • On verra en outre que la structure, très simple, de la source selon l'invention conduit à une industrialisation à faible coût, particulièrement avantageuse pour la réalisation de réseaux comportant un grand nombre de sources primaires.
  • Essentiellement, l'invention consiste à prolonger la ligne d'alimentation par deux dipôles triplaques orthogonaux alimentés par un déphaseur dont les branches de sortie sont directement prolongées de manière à former les deux dipôles, afin de constituer une source primaire monobloc rayonnant une onde polarisée circulairement (on sait en effet que, pour produire une onde polarisée circulairement, il convient d'exciter deux dipôles orthogonaux voisins par des signaux de même amplitude mais en quadrature de phase).
  • Un second but de la présente invention est de proposer une structure d'antenne qui, avec ces mêmes caractéristiques de large bande, de compacité et de simplicité de réalisation, autorise, outre la polarisation circulaire (à droite ou à gauche), une polarisation linéaire (rectiligne) surajoutée à la polarisation circulaire, typiquement une polarisation rectiligne verticale et/ou horizontale.
  • Comme on le verra, l'antenne de la présente invention permet notamment, à partir d'un unique élément rayonnant et par simple commutation sélective de voies d'entrée du signal, d'obtenir à volonté:
    • - une polarisation circulaire droite,
    • - une polarisation circulaire gauche,
    • - une polarisation rectiligne horizontale, et/ou
    • - une polarisation rectiligne verticale.
  • Cette caractéristique d'antenne à polarisations multiples est particulièrement intéressante pour les antennes assurant simultanément deux fonctions, par exemple la fonction classique de surveillance - obtenue par une polarisation circulaire - et une fonction IFF (Identification Friend or Foe: identification ami ou ennemi) - obtenue par une polarisation rectiligne.
  • À cet effet, l'antenne selon l'invention, qui est excitée par une ligne triplaque d'alimentation comprenant deux conducteurs périphérique disposés respectivement au-dessus et au-dessous d'au moins un conducteur central, comporte :
    • - des moyens triplaque d'excitation comprenant un coupleur hybride 90°, symétrique et à large bande, avec une première et une seconde branche de sortie et au moins une branche d'entrée recevant de la ligne triplaque un signai à rayonner,
    • - un premier élément rayonnant dipolaire, comprenant deux branches quart d'onde formées en prolongeant dans leur plan, en direction transversale et dans un même sens, chacun des conducteurs périphériques de la ligne triplaque, et une branche quart d'onde formée en prolongeant dans son plan, parallèlement aux deux branches précitées mais en sens opposé, la première branche de sortie du coupleur hybride 90°,
    • - un second élément rayonnant dipolaire, orthogonal au premier, comprenant deux branches quart d'onde formées par repliement, dans des sens opposés, respectivement de la seconde branche de sortie du coupleur hybride 90° et de l'un des conducteurs périphériques, ces deux branches quart d'onde étant coplanaires et s'étendant perpendiculairement aux plans des conducteurs.
  • De cette manière, on excite les éléments rayonnants dipolaires par des signaux respectifs semblables, de même amplitude mais déphasés de 90°, ce qui polarise ainsi circulairement le signal à rayonner.
  • On peut notamment appliquer sélectivement le signal à rayonner sur l'une ou l'autre des branches d'entrée du coupleur hybride 90° en fonction du sens, droit ou gauche, choisi pour la polarisation circulaire.
  • De façon avantageuse, pour pouvoir, comme indiqué plus haut, combiner à la polarisation circulaire une polarisation rectiligne, les moyens triplaque d'excitation comprennent un second coupleur hybride 90°, monté en cascade avec le premier, avec une première et une seconde branche de sortie reliées à la première et à la seconde branche d'entrée du premier coupleur, et au moins une branche d'entrée recevant de la ligne triplaque un signal à rayonner, de manière à exciter les éléments rayonnants dipolaires par des signaux respectifs semblables, de même amplitude et phase et polariser ainsi linéairement le signal à rayonner.
  • On peut notamment appliquer sélectivement le signal à rayonner sur l'une et/ou sur l'autre des branches d'entrée du second coupleur hybride 90° en fonction du sens, vertical et/ou horizontal, choisi pour la polarisation rectiligne.
  • On va donner maintenant donner un exemple de réalisation de l'invention, en référence aux figures annexées.
    • La figure 1 est une vue perspective de l'antenne selon l'invention, l'un des plans de masse de la ligne triplaque étant partiellement arrachée.
    • La figure 2 est une vue en élévation, selon II-II de la figure 1 de cette même antenne.
    • La figure 3 illustre une variante de réalisation, dans laquelle deux coupleurs mis en cascade permettent d'obtenir, outre les polarisations circulaires, des polarisations rectilignes.
  • Sur les figures, la ligne triplaque d'alimentation est constituée de conducteurs centraux, tels que 1 ou 2, disposés en sandwich entre deux conducteurs périphériques 3 et 4 formant demi-plans de masse ; ces divers conducteurs sont réalisés sous forme de plaques ou bandes rigides disposées parallèlement entre elles et séparées par un diélectrique approprié qui peut être l'air, des entretoises étant alors simplement prévues pour maintenir précisément à leur place les différents éléments de la ligne.
  • La ligne triplaque peut notamment constituer l'extrémité de l'une des ramifications d'un répartiteur d'antenne réseau (non représenté).
  • Cette ligne d'alimentation excite, de la manière que l'on décrira plus bas, d'une part un dipôle horizontal 10 destiné à produire la composante horizontale de la polarisation circulaire de l'onde, et d'autre part un dipôle vertical 20 destiné à produire la composante verticale de cette même polarisation circulaire.
  • On notera incidemment que les termes tels que « horizontal » ou « vertical » ne sont bien entendus pas limitatifs et ne se réfèrent qu'au mode de réalisation illustré, qui correspond à la configuration la plus courante dans les antennes réseau, où les distributeurs triplaques sont généralement horizontaux. Cette orientation n'est cependant aucunement restrictive et toute autre orientation absolue dans l'espace pourrait être choisie dès lors que la condition, évoqué plus loin, d'orthogonalité entre les deux dipôles est respectée.
  • Dans le même ordre d'idées, bien que l'on décrive ici l'antenne de l'invention essentiellement sous forme d'une source émettant une onde polarisée circulairement, cette même antenne peut aussi bien être utilisée sans aucune modification, du fait du principe de réciprocité, en tant qu'antenne de réception.
  • Le dipôle horizontal 10 est réalisé en prolongeant transversalement (c'est-à-dire perpendiculairement à la direction axiale de l'antenne, matérialisée par l'axe Δ), l'un des conducteurs centraux de la ligne d'alimentation par une branche 11 formant l'une des moitiés d'un dipôle. L'autre moitié du dipôle est constituée par des branches 12, 13 formées en prolongeant transversalement, de l'autre côté de l'axe A (mais du même côté pour les deux branches 12 et 13), les conducteurs périphériques 3 et 4 de la ligne d'alimentation.
  • Les branches 11, 12 et 13 sont de même longueur, égale à environ un quart d'onde.
  • Le dipôle 20 est formé par repliement d'un autre conducteur central vers le bas, ce qui donne la branche 21, et de l'un des conducteurs périphériques (ici, le conducteur supérieur 4) vers le haut, ce qui donne la seconde branche 22 du dipôle 20. Ces deux- branches 21 et 22 ont également une longueur d'environ un quart d'onde.
  • Les conducteurs périphériques 3 et 4 sont repliés en 5 et 6 de manière à former un plan de masse constituant le plan de court-circuit des dipôles 10 et 20.
  • Les dipôles 10 et 20 sont alimentés conjointement au moyen d'un coupleur 30 intercalé entre les lignes d'alimentation 1 et 2 et les dipôles 10 et 20.
  • Ce coupleur permet, de manière en elle-même connue, (d'exciter les deux dipôles de l'antenne avec un déphasage relatif de 90° (quadrature).
  • Ici, le coupleur 30 est un coupleur du type « coupleur hybride 90° », dit encore « coupleur hybride 3 dB », « anneau hybride 3 dB » ou « échelle 3 dB » .
  • Ce coupleur hybride 90°, en lui-même connu, comporte essentiellement deux branches d'entrée 31 et 31' symétriques (du point de vue radioélectrique) et deux branches de sortie, également symétriques 32 et 32'. Ces quatre branches aboutissent à quatre segments 33, 34, 35 et 36 ayant chacun une longueur d'environ un quart d'onde. Ces segments 33 à 36 peuvent être rectilignes, comme illustré sur la figure - et l'on parle généralement de « coupleur en échelle » - ou curvi lignes - et l'on parle alors plutôt d' « anneau hybride » -, ou même prendre des formes plus complexes, les paramètres importants étant la longueur et la largeur des lignes de transmission formées par ces segments.
  • Les dimensions des branches d'entrée 31 et 31', des branches de sortie 32 et 32' et des lignes 35 et 36 sont telles que ces éléments sont tous adaptés sur l'impédance caractéristique de l'antenne et de ses circuits associés, typiquement 50 Q. En revanche, on donne aux lignes 33 et 34 une largeur supérieure, de manière à créer une désadaptation d'impédance. Cette désadaptation est telle que les signaux appliqués sur l'une ou l'autre branche d'entrée 31 ou 31' vont se trouver divisés et, du fait des retards introduits par les lignes quart d'onde 33 à 36, vont donner sur chacune des branches de sortie 32 et 32' des signaux semblables, de même amplitude mais déphasés de 90°.
  • Un tel coupleur hybride 90° présente un certain nombre d'avantages, notamment le fait qu'il permet de maintenir un déphasage de 90° quasiment constant sur une très large bande de fréquences, typiquement sur une largeur de bande de 20%, avec un ROS peu affecté par les variations de fréquence dans cette bande ; autrement dit, ce coupleur hybride reste parfaitement adapté même si la fréquence varie autour de la fréquence centrale pour laquelle il a été calculé.
  • Ainsi, si l'on applique un signal sur la branche d'entrée 31 du coupleur hybride 30, on réalisera, du fait de l'alimentation symétrique équiamplitude mais en quadrature, une polarisation circulaire tournée vers la droite, tandis que, si l'on applique le signal sur la branche d'entrée 31' du coupleur hybride 30, on obtiendra une polarisation circulaire inverse, c'est-à-dire tournée vers la gauche.
  • Avantageusement, on peut configurer le système d'alimentation de l'antenne de manière à rayonner non seulement une polarisation circulaire (droite ou gauche), mais également une polarisation rectiligne, verticale et/ou horizontale (il peut être notamment intéressant, dans certaines applications, d'utiliser simultanément les deux polarisations rectilignes croisées).
  • On peut, à cet effet, court-circuiter sélectivement certaines parties du coupleur, par exemple au moyen de diodes PIN, de manière à n'exciter qu'un seul des deux dipôles.
  • On préfère cependant utiliser la solution illustrée schématiquement figure 3, consistant à prévoir un second coupleur hybride 90° référencé 40, monté en amont du premier. Les deux coupleurs 30 et 40 sont montés en cascade, c'est-à-dire que les deux branches de sortie 42, 42' du coupleur amont 40 sont directement reliées aux branches d'entrée 31, 31' du coupleur aval 30.
  • Par commutation sélective, on applique le signal à rayonner sur l'une et/ou l'autre des deux branches d'entrée 41,41' du coupleuramont40, et/ou sur l'une et/ou l'autre des branches d'entrée 31, 31' du coupleur aval 30.
  • On pourra ainsi obtenir, simultanément ou successivement, avec un seul et même ensemble rayonnant (c'est-à-dire avec un seul et même couple de dipôles 10, 20) :
    • - une polarisation circulaire droite, si l'on applique le signal par la voie d'entrée 31 du coupleur aval 30,
    • - une polarisation circulaire gauche, si l'on applique le signal par la voie d'entrée 31' du coupleur aval 30,
    • - une polarisation rectiligne horizontale, si l'on applique le signal par la voie d'entrée 41 du coupleur amont 40, et
    • - une polarisation rectiligne verticale, si l'on applique le signal par la voie d'entrée 51 du coupleur amont 40.
  • La sélection de la polarisation souhaitée pourra s'obtenir facilement de manière en elle-même connue par commutation des différentes voies, par exemple au moyen de diodes PIN.
  • Un tel type d'antenne élémentaire se prête particulièrement bien à la constitution d'un réseau plan, qui peu comprendre plusieurs dizaines ou plusieurs centaines d'éléments rayonnants.
  • Chaque élément rayonnant sera alors associé à un coupleur hybride qui lui est propre, les différents coupleurs étant alimentés de façon appropriée, de manière en elle-même également connue, par des circuits répartiteurs appropriés.
  • La configuration de l'ensemble élément rayon- nant/coupleur hybride de la présente invention permet d'avoir une disposition très compacte, ce qui permettra de rapprocher au maxi mum les uns des autres les divers éléments rayonnants. Or on sait que, dans une antenne réseau, si l'on veut éviter l'apparition de lobes de réseau préjudiciables à une large couverture angulaire, il est nécessaire de rapprocher le plus possible les divers éléments rayonnants, idéalement avec un espacement non supérieur à une demi- longueur d'onde.
  • On notera que, dans l'antenne de l'invention, les centres de phase respectifs des deux dipôles vont se trouver légèrement décalés en raison de leurs positions respectives (entraxe x). Ce décalage induit certes une légère dissymétrie et donc un léger défaut de circularité de la polarisation pour l'élément rayonnant, mais ce défaut peut être aisément compensé en alternant le positionnement des dipôles d'un élément rayonnant au suivant dans le réseau.
  • On constate ainsi qu'un entraxe x de l'ordre de 0,25 λ procure un fonctionnement satisfaisant, à condition de compenser le défaut de circularité en alternant le positionnement des dipôles dans le réseau, comme on vient de l'indiquer. En disposant le dipôle vertical 20 légèrement en retrait par rapport au dipôle horizontal 10, il est possible de réduire encore cet entraxe, par exemple jusqu'à une valeur de l'ordre de 0, 15λ .
  • Une telle antenne peut être réalisée pour toutes les bandes de fréquences où la technologie triplaque peut être mise en oeuvre, typiquement les bandes L, S et C.

Claims (4)

1. Une antenne à polarisation circulaire, notamment une antenne élémentaire pour réseau d'antennes, cette antenne étant excitée par une ligne triplaque d'alimentation comprenant deux conducteurs périphériques (3, 4) disposés respectivement au-dessus et au-dessous d'au moins un conducteur central (1; 2), caractérisée en ce quelle comporte :
- des moyens triplaque d'excitation comprenant un coupleur hybride 90°(30), symétrique et à large bande, avec une première (32) et une seconde (32') branche de sortie et au moins une branche d'entrée (31 ; 31') recevant de la ligne triplaque un signal à rayonner,
- un premier élément rayonnant dipolaire (10), comprenant deux branches quart d'onde (12, 13) formées en prolongeant dans leur plan, en direction transversale et dans un même sens, chacun des conducteurs périphériques (3, 4) de la ligne triplaque, et une branche quart d'onde (11) formée en prolongeant dans son plan, parallèlement aux deux branches précitées mais en sens opposé, la première branche de sortie (32) du coupleur hybride 90°,
- un second élément rayonnant dipolaire (20), orthogonal au premier, comprenant deux branches quart d'onde (21, 22) formées par repliement, dans des sens opposés, respectivement de la seconde branche de sortie (32') du coupleur hybride 90° et de l'un (4) des conducteurs périphériques, ces deux branches quart d'onde étant coplanaires et s'étendant perpendiculairement aux plans des conducteurs,

de manière à exciter les éléments rayonnants dipolaires par des signaux respectifs semblables, de même amplitude mais déphasés de 90° et polariser ainsi circulairement le signal à rayonner.
2. Utilisation de l'antenne de la revendication 1, dans laquelle on applique sélectivement le signal à rayonner sur l'une (31) ou l'autre (31') des branches d'entrée du coupleur hybride 90° en fonction du sens, droit ou gauche, choisi pour la polarisation circulaire.
3. L'antenne de la revendication 1, dans laquelle les moyens triplaque d'excitation comprennent un second coupleur hybride 90° (40), monté en cascade avec le premier (30), avec une première (42) et une seconde (42') branche de sortie reliées à la première (31) et à la seconde (31') branche d'entrée du premier coupleur, et au moins une branche d'entrée (41 ; 41') recevant de la ligne triplaque un signal à rayonner,
de manière à exciter les éléments rayonnants dipolaires par des signaux respectifs semblables, de même amplitude et phase et polariser ainsi linéairement le signal à rayonner.
4. Utilisation de l'antenne de la revendication 3, dans laquelle on applique sélectivement le signal à rayonner sur l'une (41) et/ou sur l'autre (41') des branches d'entrée du second coupleur hybride 90° en fonction du sens, vertical et/ou horizontal, choisi pour la polarisation rectiligne.
EP90403209A 1989-11-24 1990-11-13 Antenne à polarisation circulaire, notamment pour réseau d'antennes Expired - Lifetime EP0430745B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8915474 1989-11-24
FR8915474A FR2655202B1 (fr) 1989-11-24 1989-11-24 Antenne a polarisation circulaire, notamment pour reseau d'antennes.

Publications (2)

Publication Number Publication Date
EP0430745A1 EP0430745A1 (fr) 1991-06-05
EP0430745B1 true EP0430745B1 (fr) 1994-06-29

Family

ID=9387750

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90403209A Expired - Lifetime EP0430745B1 (fr) 1989-11-24 1990-11-13 Antenne à polarisation circulaire, notamment pour réseau d'antennes

Country Status (6)

Country Link
US (1) US5172128A (fr)
EP (1) EP0430745B1 (fr)
JP (1) JPH03177101A (fr)
CA (1) CA2029378A1 (fr)
DE (1) DE69010310T2 (fr)
FR (1) FR2655202B1 (fr)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2697949B1 (fr) * 1992-11-06 1995-01-06 Thomson Csf Antenne pour radar notamment de désignation et de trajectographie.
DE4332476A1 (de) * 1993-09-24 1995-03-30 Bosch Gmbh Robert Verfahren und Einrichtung zur Übertragung von Datensignalen
NL9401429A (nl) * 1994-09-02 1996-04-01 Hollandse Signaalapparaten Bv Striplijn antenne.
FR2725075B1 (fr) * 1994-09-23 1996-11-15 Thomson Csf Procede et dispositif d'elargissement du diagramme de rayonnement d'une antenne active
DE4438809B4 (de) * 1994-10-31 2004-11-04 Rohde & Schwarz Gmbh & Co. Kg Dipolspeiseanordnung
FR2746991B1 (fr) 1996-03-28 1998-06-12 Nortel Matra Cellular Station radio a antennes a polarisation circulaire
US6121929A (en) * 1997-06-30 2000-09-19 Ball Aerospace & Technologies Corp. Antenna system
US6458375B1 (en) 1998-02-27 2002-10-01 Musculoskeletal Transplant Foundation Malleable paste with allograft bone reinforcement for filling bone defects
US20030048226A1 (en) * 2001-01-31 2003-03-13 Tantivy Communications, Inc. Antenna for array applications
KR100846487B1 (ko) * 2003-12-08 2008-07-17 삼성전자주식회사 등방향성 방사패턴을 갖는 초광대역 안테나
TW200926576A (en) * 2007-12-10 2009-06-16 Wistron Neweb Corp Down-converter having matching circuits with tuning mechanism coupled to 90 degree hybrid coupler included therein
TW200926575A (en) * 2007-12-10 2009-06-16 Wistron Neweb Corp Down-converter having 90 degree hybrid coupler with open-circuit transmission line(s) or short-circuit transmission line(s) included therein
US8264405B2 (en) * 2008-07-31 2012-09-11 Raytheon Company Methods and apparatus for radiator for multiple circular polarization
US9548526B2 (en) 2012-12-21 2017-01-17 Htc Corporation Small-size antenna system with adjustable polarization
CN103887595B (zh) * 2012-12-21 2016-08-17 宏达国际电子股份有限公司 天线***
CN113659339B (zh) * 2021-08-23 2023-07-25 深圳市塞防科技有限公司 车载毫米波雷达及其发射天线与接收天线***、天线***
CN114725671B (zh) * 2022-05-10 2023-07-21 安徽大学 一种双向圆极化单元天线及阵列天线

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3725943A (en) * 1970-10-12 1973-04-03 Itt Turnstile antenna
FR2153164B1 (fr) * 1971-09-22 1976-10-29 Thomson Csf
GB1416343A (en) * 1972-02-16 1975-12-03 Secr Defence Radomes
GB2048571B (en) * 1979-05-03 1983-04-27 Marconi Co Ltd Circularly polarised antenna array
FR2457020A1 (fr) * 1979-05-18 1980-12-12 Thomson Csf Element rayonnant a plans paralleles et son application a la realisation d'antennes reseaux
FR2594260B1 (fr) * 1981-05-22 1989-01-13 Thomson Csf Source primaire hyperfrequence pour antenne a balayage conique et antenne l'incorporant.
GB2113476B (en) * 1982-01-15 1985-07-03 Marconi Co Ltd Antenna arrangement
US4737793A (en) * 1983-10-28 1988-04-12 Ball Corporation Radio frequency antenna with controllably variable dual orthogonal polarization
FR2560448B1 (fr) * 1984-02-24 1987-11-20 Thomson Csf Element rayonnant des ondes electromagnetiques et son application a une antenne a balayage electronique
JPS61164303A (ja) * 1985-01-16 1986-07-25 Sumitomo Electric Ind Ltd 両円偏波アンテナ
US4772890A (en) * 1985-03-05 1988-09-20 Sperry Corporation Multi-band planar antenna array
GB2191044B (en) * 1986-05-28 1989-12-13 Gen Electric Plc Antenna arrangement
GB2207005A (en) * 1987-07-15 1989-01-18 Gen Electric Co Plc Antenna
GB2211024B (en) * 1987-10-10 1991-05-15 Gen Electric Co Plc Antenna

Also Published As

Publication number Publication date
FR2655202A1 (fr) 1991-05-31
FR2655202B1 (fr) 1992-02-07
JPH03177101A (ja) 1991-08-01
CA2029378A1 (fr) 1991-05-25
EP0430745A1 (fr) 1991-06-05
DE69010310D1 (de) 1994-08-04
DE69010310T2 (de) 1994-10-27
US5172128A (en) 1992-12-15

Similar Documents

Publication Publication Date Title
EP0430745B1 (fr) Antenne à polarisation circulaire, notamment pour réseau d'antennes
EP3547450B1 (fr) Element rayonnant a polarisation circulaire mettant en oeuvre une resonance dans une cavite de fabry perot
EP0899814B1 (fr) Structure rayonnante
EP2869400B1 (fr) Répartiteur de puissance compact bipolarisation, réseau de plusieurs répartiteurs, élément rayonnant compact et antenne plane comportant un tel répartiteur
EP2869396B1 (fr) Répartiteur de puissance comportant un coupleur en Té dans le plan E, réseau rayonnant et antenne comportant un tel réseau rayonnant
FR2652453A1 (fr) Antenne coaxiale a fentes du type a alimentation a ondes progressives.
CA2821250C (fr) Antenne d'emission et de reception multifaisceaux a plusieurs sources par faisceau, systeme d'antennes et systeme de telecommunication par satellite comportant une telle antenne
EP0315141A1 (fr) Dispositif d'excitation d'un guide d'onde en polarisation circulaire par une antenne plane
FR2800920A1 (fr) Dispositif de transmission bi-bande et antenne pour ce dispositif
FR2751471A1 (fr) Dispositif rayonnant a large bande susceptible de plusieurs polarisations
WO2014202498A1 (fr) Source pour antenne parabolique
EP0098192B1 (fr) Dispositif de multiplexage pour grouper deux bandes de fréquences
EP2059973B1 (fr) Système multi-antenne à diversité de polarisation
EP3176875B1 (fr) Architecture d'antenne active a formation de faisceaux hybride reconfigurable
FR2873236A1 (fr) Dispositif rayonnant omnidirectionnel large bande
FR3069713B1 (fr) Antenne integrant des lentilles a retard a l'interieur d'un repartiteur a base de diviseurs a guide d'ondes a plaques paralleles
EP2009735A1 (fr) Antenne a diversité de polarisation pour la transmission et/ou la reception de signaux audio et/ou video
FR3105611A1 (fr) Antenne à double polarisation
EP3900113B1 (fr) Antenne microruban élémentaire et antenne réseau
EP0456579A1 (fr) Antenne orientable plane, fonctionnant en micro-ondes
EP0477102B1 (fr) Réseau directif pour radiocommunications, à éléments rayonnants adjacents et ensemble de tels réseaux directifs
EP0337841A1 (fr) Antenne boucle large bande à alimentation dissymétrique, notamment antenne pour émission, et antenne réseau formée d'une pluralité de telles antennes
EP0429338A1 (fr) Antenne à polarisation circulaire, notamment pour réseau d'antennes
FR2751138A1 (fr) Antenne microruban a polarisations multiples, notamment antenne elementaire pour reseau de type dalle
FR3013909A1 (fr) Cornet, antennaire elementaire, structure antennaire et procede de telecommunication associes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT

17P Request for examination filed

Effective date: 19911130

17Q First examination report despatched

Effective date: 19931207

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON-CSF

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

ITF It: translation for a ep patent filed

Owner name: JACOBACCI CASETTA & PERANI S.P.A.

REF Corresponds to:

Ref document number: 69010310

Country of ref document: DE

Date of ref document: 19940804

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940825

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19941024

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19941025

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19951113

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19951113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051113