EP0892977A1 - Verfahren zum einsetzen jeweils eines einzelnen bestrahlten kernreaktorbrennelements in einen kanister - Google Patents

Verfahren zum einsetzen jeweils eines einzelnen bestrahlten kernreaktorbrennelements in einen kanister

Info

Publication number
EP0892977A1
EP0892977A1 EP97919335A EP97919335A EP0892977A1 EP 0892977 A1 EP0892977 A1 EP 0892977A1 EP 97919335 A EP97919335 A EP 97919335A EP 97919335 A EP97919335 A EP 97919335A EP 0892977 A1 EP0892977 A1 EP 0892977A1
Authority
EP
European Patent Office
Prior art keywords
canister
water
container
nuclear reactor
fuel element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97919335A
Other languages
English (en)
French (fr)
Inventor
Volker Dannert
Wolfgang Hummel
Martin Peehs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0892977A1 publication Critical patent/EP0892977A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/32Apparatus for removing radioactive objects or materials from the reactor discharge area, e.g. to a storage place; Apparatus for handling radioactive objects or materials within a storage place or removing them therefrom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention relates to a method for inserting an individual irradiated nuclear reactor fuel element under water into a canister set up under water, which is then sealed under water with a canister lid and welded gas-tight and then inserted under water into a transport container set up under water, which thereupon, also under water, closed with a container lid suitable for shielding from rays and then lifted out of the water and placed outside the water.
  • the method according to the invention can be carried out in a nuclear power plant in a storage pool for spent nuclear reactor fuel elements. It is sufficient to use the canister containing the nuclear reactor fuel element and closed with a lid and welded in a gas-tight manner with the lifting tool, which is designed to lift and transport a single nuclear reactor fuel element within the reactor building.
  • the transport container After the insertion of a corresponding number under water, each containing a single irradiated nuclear reactor fuel element and sealing with a container cover suitable for shielding against radiation, the transport container can be lifted out of the water and set down outside the water. It is advantageous if the water is removed from the transport container after it has been closed with the container lid before the transport container is lifted out of the water. The water can also be removed from the transport container after it has been placed outside the water. Finally, the transport container can be closed with an additional lid and is still ready for decontamination for transport to an intermediate storage facility.
  • connection piece on the canister After it has been welded and then inert gas is filled into the canister.
  • the connection opening is then closed gas-tight. This prevents corrosion within the canister, particularly on the irradiated nuclear reactor fuel element is largely prevented in the canister.
  • the inert gas also ensures good dissipation of the post-decay heat from the emitted nuclear reactor fuel element to the wall of the canister.
  • a good effectiveness, in particular of a welding device, with which a canister lid, with which the canister is closed and welded in a gas-tight manner, is ensured if the canister is placed in a container located under water.
  • the nuclear reactor fuel element is used in this container after the water has been removed from the container and from the canister.
  • the canister is then sealed gas-tight to the canister lid and welded.
  • the container is then flooded to remove the canister.
  • FIG. 1 shows a longitudinal section of a storage pool for spent nuclear reactor fuel elements in a nuclear power plant.
  • FIG. 2 shows in longitudinal section a canister with an irradiated nuclear reactor fuel element from the storage pool according to FIG. 1.
  • a canister 2 can be seen in position 1, which is closed off with a bottom at the lower end and forms an opening at the upper end.
  • This canister 2 is under water.
  • a burned-off and irradiated nuclear reactor fuel element 3 is inserted into it, which, with its fuel element head 3a, hangs on a lifting tool 4 and already engages in the canister 2 with its fuel element foot 3b.
  • a can 2 can be seen in which the nuclear reactor fuel element 3 has already been inserted.
  • the opening at the upper end of the canister 2 is closed with a canister lid 5 which is welded gas-tight to the canister wall of the canister 2 just under water with the aid of a welding device 6.
  • FIG. 2 shows canister 2 from position II in FIG. 1.
  • the irradiated nuclear reactor fuel element 3 is located as the only nuclear reactor fuel element.
  • This nuclear reactor fuel element 3 has the fuel element head 3a and the fuel element foot 3b, both of which have the same square cross section, furthermore it has control rod guide tubes 3c which are screwed to the fuel element head 3a at one end and to the fuel element foot 3b at the other end.
  • grid-shaped spacers 3d can be seen with grid meshes, through which a control rod guide tube 3c or a fuel rod 3e containing nuclear fuel is guided.
  • the fuel rods 3e are held on the lattice meshes of the lattice-shaped spacers 3b in a force-locking manner, ie they are held in the lattice mesh by springs which are formed on a wall of the lattice mesh and the m press the fuel rod located on this mesh against rigid knobs on other walls of the mesh.
  • the canister cover 5 with which the opening at the upper end of the canister 2 according to FIG. 2 is closed and which is welded gas-tight to the inside of the canister wall of the canister 2, has a connection piece 5a in the center, which extends through a bushing the lid 5 is located.
  • a connection piece 5a Connected to this socket 5a on the outside is a hose 5b, through which the water is sucked out of the canister under water in the storage tank according to FIG. 1 and through which inert gas, for example nitrogen or, is removed after the water has been removed a noble gas such as argon or helium is filled.
  • the connecting piece 5a - still under water - is squeezed together with a squeezing tool in the direction of the two arrows 6b and welded gas-tight with the welding device 6 - likewise under water.
  • the canister 2 is lifted from the position II in FIG. 1 with the aid of the lifting tool 4 in accordance with FIG. 2 and inserted into a transport container 7 which is in position 3 in FIG. 1 under water.
  • a transport container 7 which is filled with canisters 2, of which each canister 2 contains only a single spent and therefore irradiated nuclear reactor fuel element. These canisters 2 stand upright and side by side with a parallel longitudinal axis.
  • the transport container 7 is already closed with a container cover 8, which shields the radioactive radiation emanating from the nuclear reactor fuel elements 2.
  • the container lid 8 is loosely inserted into the opening at the upper end of the container 7, rests on a shoulder on the inside of the wall of the container 7 and is sealed by a sealing body 9 inserted in the shoulder.
  • a tube 10 with a valve on the outside of this container cover 8 grips through the container cover 8.
  • the water can be sucked out of the transport container 7 through this tube 10 and the transport container 7 can be filled with inert gas such as nitrogen or a noble gas such as argon or helium.
  • the valve on the tube 10 on the outside of the container cover 8 is then closed.
  • the container 7 can then be lifted out of the water of the storage basin according to FIG. 1 with a crane and placed at the edge of the basin. 1 shows in the position V em such a container 7 placed on the edge of the pool, which after being deposited on the edge of the pool was still closed with an additional cover 11 which covers the cover 8 of the container.
  • the container 7 can also be lifted out of the storage pool with the water in it and placed at the pool edge. The water is then sucked through the pipe 10 from the container 7 located in position V. Then this container 7 in position V is filled through the pipe 10 with inert gas such as nitrogen or the noble gas. Then the valve 10 on the outside of the container cover 8 is closed and the container 7 in position V is closed with the additional cover 11.
  • inert gas such as nitrogen or the noble gas
  • the container 7 located in position V can be decontaminated and transported to an intermediate store. After a sufficiently long decay time, the container 7 can then be transported to a repository, where the additional cover 11 and the container cover 8 are removed and the canisters in the container 7 with the spent nuclear reactor fuel elements 3 are brought to a geological repository, for example, without that they were opened. Since these canisters 2 contain only a single nuclear reactor fuel element, they are easy to handle in this procedure.
  • FIGS. 3 to 6 show in longitudinal section a working container 20 which is located under water in the storage tank according to FIG. 1 and in which the method steps are carried out which are carried out in positions I and II in the storage tank according to FIG.
  • the welding device 6, which hangs on a hanger 6a, is located in the working container 20 according to FIGS. 3 to 6. Furthermore, the working container 20 has a passage 21 on its container ceiling, which is gas-tight with a cover 22. is closable. Finally, a lifting tool 25 and a suction pipe 26 are also provided in the working container 20, which, like the hanger 6a, are attached to the inside of the ceiling of the working container 20.
  • the lid 22 is open.
  • the spent nuclear reactor fuel element 3 was placed in the working container 20 on the container bottom with the lifting tool 4 and the position shown in FIG. 3 was set aside with the lifting tool 25.
  • the canister 2 which was open at the upper end, was placed in the working container 20 on the container bottom under the passage 21.
  • the lid 22 is closed and the water is withdrawn from the working container 20 through a non-drained drain opening.
  • the water is drawn off from the canister 2 with the aid of the suction pipe 26.
  • the working container 20 is filled with dry inert gas through a supply opening (not shown), so that both the switched off nuclear reactor fuel element and the canister 2 open at the top can dry out.
  • the nuclear reactor fuel element 3 m placed in the working container 20 m FIG. 3 m and the canister 2 likewise placed in this working container 20 are inserted, so that the state shown in FIG. 4 results in the working container 20.
  • a canister lid (not shown in FIG. 4) is inserted into the opening at the upper end of the canister 2 with the aid of the lifting device 25.
  • This canister lid 5 inserted at the upper end of the canister 2 can be seen in FIG. It is welded gas-tight to the inside of the canister wall of the canister 2 with the aid of the welding device 6.
  • the working container 20 is then flooded again with water through a flood opening shown, so that the cover 22 can finally be opened again.
  • the gas-tightly closed canister 2 can be lifted out of the working container 20 with the lifting tool 4 and the transport container 7, which is in position III in FIG. 1, can be inserted under water.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

Ein einzelnes bestrahltes Kernreaktorbrennelement (3) wird unter Wasser in einen unter Wasser aufgestellten Kanister (2) eingesetzt. Dieser Kanister (2) wird unter Wasser mit einem Kanisterdeckel (5) verschlossen und gasdicht verschweißt. Sodann wird er in einen unter Wasser aufgestellten Transportbehälter (7) eingesetzt, welcher hierauf, ebenfalls unter Wasser, mit einem zum Abschirmen von Strahlen geeigneten Behälterdeckel (8) verschlossen und anschließend aus dem Wasser herausgehoben und außerhalb des Wassers abgesetzt wird.

Description

Beschreibung
Verfahren zum Einsetzen 3eweιls eines einzelnen bestrahlten Kernreaktorbrennelements in einen Kanister
Die Erfindung betrifft ein Verfahren zum Einsetzen jeweils eines einzelnen bestrahlten Kernreaktorbrennelements unter Wasser in einen unter Wasser aufgestellten Kanister, der an¬ schließend unter Wasser mit einem Kanisterdeckel verschlossen und gasdicht verschweißt und sodann unter Wasser in einen un¬ ter Wasser aufgestellten Transportbehälter eingesetzt wird, welcher hierauf, ebenfalls unter Wasser, mit einem zum Ab¬ schirmen von Strahlen geeigneten Behälterdeckel verschlossen und anschließend aus dem Wasser herausgehoben und außerhalb des Wassers abgesetzt wird.
Aus DOE/RW-0 476, „OCRWM Bulletin", Sommer 1995, insbesondere Seite 1 bis 3 und 15, ist es bekannt, einen Korb, der mehrere abgebrannte Kernreaktorbrennelemente enthält, in einen Kani- ster einzusetzen. Dieser Kanister ist hohlzylmderförmig, hat an einem Kanisterunterende einen Kanisterboden und an einem Kanisteroberende eine Kanisteröffnung, in der eine Abschirm¬ platte angeordnet ist. Die Kanisteroffnung wird mit einem die Abschirmplatte abdeckenden plattenformigen Innendeckel und einem diesen Innendeckel abdeckenden plattenformigen Außen¬ deckel dicht verschlossen. Der dicht verschlossene Kanister soll nicht mehr geöffnet werden, so daß mit den Kernreaktor¬ brennelementen als solchen nicht mehr hantiert zu werden braucht. Der Kanister mit den in dem Korb befindlichen Kern- reaktorbrennelementen kann in einen faßartigen Transferbehal- ter eingesetzt werden und m diesem Transferbehalter zu einem Zwischenlager mit Betonabschirmung für den Kanister und von diesem Zwischenlager wegtransportiert werden, der Kanister mit den abgebrannten Kernreaktorbrennelementen kann aber auch in einem geologischen Endlager deponiert werden. Der Erfindung liegt die Aufgabe zugrunde, dieses bekannte Verfahren weiterzubilden, indem eine einfache Abschirmung ge¬ gen die von den Kernreaktorbrennelementen beim Einsetzen m den Kanister ausgehende radioaktive Strahlung und hohe Flexi- bilitat beim Einsetzen des Kanisters in den Transportbehälter erzielt wird.
Das erfindungsgemaße Verfahren kann in einem Kernkraftwerk in einem Lagerbecken für abgebrannte Kernreaktorbrennelemente durchgeführt werden. Es reicht aus, den das Kernreaktorbrenn¬ element enthaltenden und mit einem Deckel verschlossenen und gasdicht verschweißten Kanister mit dem Hebewerkzeug m den Transportbehälter einzusetzen, das dazu ausgelegt ist, ein einzelnes Kernreaktorbrennelement innerhalb des Reaktorgebau- des zu heben und zu transportieren.
Nach dem unter Wasser vorgenommenen Einsetzen einer entspre¬ chenden Anzahl, jeweils ein einzelnes bestrahltes Kernreak¬ torbrennelement enthaltender Kanister und Verschließen mit einem zum Abschirmen von Strahlen geeigneten Behalterdeckel kann der Transportbehälter aus dem Wasser herausgehoben und außerhalb des Wassers abgesetzt werden. Es ist gunstig, wenn das Wasser aus dem Transportbehälter nach dem Verschließen mit dem Behalterdeckel vor dem Herausheben des Transportbe- halters aus dem Wasser entfernt wird. Das Wasser kann aus dem Transportbehälter aber auch nach dessen Absetzen außerhalb des Wassers entfernt werden. Der Transportbehälter kann schließlich noch mit einem Zusatzdeckel verschlossen werden und steht noch Dekontaminieren zum Abstransport in ein Zwi- schenlager bereit.
Von besonderem Vorteil ist, wenn durch einen Anschlußstutzen am Kanister nach dem Zuschweißen desselben das Wasser aus dem Kanister entfernt und sodann Inertgas in den Kanister einge- füllt wird. Anschließend wird die Anschlußoffnung gasdicht verschlossen. Dadurch wird Korrosion innerhalb des Kanisters insbesondere auch am bestrahlten Kernreaktorbrennelement, das sich im Kanister befindet weitestgehend verhindert . Das Inertgas sorgt aber auch für eine gute Abfuhr der Nachzer- fallswarme vom Destrahlten Kernreaktorbrennelement zur Wand des Kanisters.
Eine gute Wirksamkeit insbesondere einer Schweißeinrichtung, mit der ein Kanisterdeckel, mit dem der Kanister verschlossen und gasdicht verschweißt wird, ist gewährleistet, wenn der Kanister in einem unter Wasser befindlichen Behalter abge- stellt wird. Ir diesem Behalter wird das Kernreaktorbrennele¬ ment nach dem Entfernen von Wasser aus dem Behalter und aus dem Kanister ir. den Kanister eingesetzt. Der Kanister wird sodann dem Kanisterdeckel gasdicht verschlossen und ver¬ schweißt. Anschließend wird der Behalter zum Entnehmen des Kanisters geflutet.
Die Erfindung und ihre Vorteile seien anhand der Zeichnung am Ausführungsbeispiel naher erläutert-
FIG 1 zeigt im Längsschnitt ein Lagerbecken für abgebrannte Kernreaktorbrennelemente in einem Kernkraftwerk.
FIG 2 zeigt in Längsschnitt einen Kanister mit bestrahltem Kernreaktorbrennelement aus dem Lagerbecken nach FIG 1.
FIG 3 bis 6 zeigen eine Abwandlung im Lagerbecken nach FIG 1.
Links im Lagercecken nach FIG 1 ist in Position 1 ein Kani- ster 2 zu erkennen, der am Unterende mit einem Boden abge¬ schlossen ist und am Oberende eine Öffnung bildet. Dieser Ka¬ nister 2 befindet sich unter Wasser. In ihn wird ein abge¬ branntes und αaner bestrahltes Kernreaktorbrennelement 3 ein¬ gesetzt, das irit seinem Brennelementkopf 3a an einem Hebe- Werkzeug 4 hangt und mit seinem Brennelementfuß 3b bereits in den Kanister 2 greift. An der Position II ist em Kanister 2 zu erkennen, in den das Kernreaktorbrennelement 3 bereits eingesetzt ist. Die Öffnung am Oberende des Kanisters 2 ist mit einem Kanisterdeckel 5 verschlossen, der gerade unter Wasser mit Hilfe einer Schweißvorrichtung 6 mit der Kanisterwand des Kanisters 2 gasdicht verschweißt wird.
In der vergrößerten Darstellung nach FIG 2 erkennt man den Kanister 2 aus der Position II in FIG 1. In diesem Kanister 2, der einen quadratischen Querschnitt hat, befindet sich das bestrahlte Kernreaktorbrennelement 3 als einziges Kernreak¬ torbrennelement. Dieses Kernreaktorbrennelement 3 weist den Brennelementkopf 3a und den Brennelementfuß 3b auf, die beide einen gleichen quadratischen Querschnitt haben, ferner hat es Steuerstabfuhrungsrohre 3c, die an einem Ende am Brennele¬ mentkopf 3a und am anderen Ende am Brennelementfuß 3b festge¬ schraubt sind. Außerdem sind gittertormige Abstandhalter 3d erkennbar mit Gittermaschen, durch die jeweils ein Steuer¬ stabführungsrohr 3c oder em Kernbrennstoff enthaltender Brennstab 3e gefuhrt ist. Wahrend die Steuerstabfuhrungsrohre 3c formschlussig an den gitterformigen Abstandhaltern 3d ge¬ haltert sind, sind die Brennstabe 3e an den Gittermaschen der gitterformigen Abstandhalter 3b kraftschussig gehaltert, d.h sie werden in der Gittermasche durch Federn gehalten, die an einer Wand der Gittermasche ausgebildet sind und den m die¬ ser Gittermasche befindlichen Brennstab gegen starre Noppen an anderen Wanden der Gittermasche pressen.
Der Kanisterdeckel 5, mit dem die Öffnung am Oberende des Ka- nisters 2 nach FIG 2 verschlossen ist und der mit der Innen¬ seite der Kanisterwand des Kanisters 2 gasdicht verschweißt ist, weist im Zentrum einen Anschlußstutzen 5a auf, der sich über einer Durchfuhrung durch den Deckel 5 befindet. An die¬ sem Stutzen 5a ist auf der Außenseite em Schlauch 5b ange- schlössen, durch den im Lagerbecken nach FIG 1 unter Wasser das Wasser aus dem Kanister herausgesaugt wird und durch den nach dem Entfernen des Wassers Inertgas, z.B. Stickstoff oder em Edelgas wie Argon oder Helium eingefüllt wird. Nach dem Einfüllen des Stickstoffs oder des Edelgases wird der Stutzen 5a - nach wie vor unter Wasser - mit einem Quetschwerkzeug in Richtung der beiden Pfeile 6b zusammengequetscht und mit der Schweißvorrichtung 6 - ebenfalls unter Wasser -gasdicht zuge¬ schweißt .
Nach Abnahme des Schlauchs 5b wird der Kanister 2 entspre¬ chend FIG 2 mit Hilfe des Hebewerkzeugs 4 aus der Position II in FIG 1 abgehoben und in einen Transportbehälter 7 einge¬ setzt, der sich in Position 3 in FIG 1 unter Wasser befindet.
In Position IV in FIG 1 ist ein Transportbehälter 7 erkenn¬ bar, der mit Kanistern 2 aufgefüllt ist, von denen jeder Ka- nister 2 nur ein einziges abgebranntes und daher bestrahltes Kernreaktorbrennelement enthalt. Diese Kanister 2 stehen auf¬ recht und mit paralleler Längsachse nebeneinander. Der Trans¬ portbehälter 7 ist bereits mit einem Behalterdeckel 8 ver¬ schlossen, der die von den Kernreaktorbrennelementen 2 ausge- hende radioaktive Strahlung abschirmt.
Der Behälterdeckel 8 ist lose in die Öffnung am Oberende des Behälters 7 eingelegt, ruht auf einer Schulter an der Innen¬ seite der Wand des Behalters 7 und durch einen in der Schul- ter eingelegten Dichtungskorper 9 abgedichtet.
Durch den Behalterdeckel 8 greift ein Rohr 10 mit einem Ven¬ til auf der Außenseite dieses Behalterdeckels 8. Durch dieses Rohr 10 kann das Wasser aus dem Transportbehälter 7 abgesaugt und der Transportbehälter 7 mit Inertgas wie Stickstoff oder einem Edelgas wie Argon oder Helium gefüllt werden. Danach wird das Ventil am Rohr 10 auf der Außenseite des Behalter- deckels 8 verschlossen.
Der Behalter 7 kann sodann mit einem Kran aus dem Wasser des Lagerbeckens nach FIG 1 herausgehoben und am Beckenrand abge¬ stellt werden. In FIG 1 ist in der Position V em solcher am Beckenrand ab¬ gestellter Behalter 7 erkennbar, der nach dem Absetzen am Beckenrand noch mit einem Zusatzdeckel 11 verschlossen wurde, der den Behalterdeckel 8 abdeckt.
Der Behalter 7 kann auch mit dem m ihn befindlichen Wasser aus dem Lagerbecken herausgehoben und am Beckenrand abgesetzt werden. Das Wasser wird dann durch das Rohr 10 aus dem in Po¬ sition V befindlichen Behalter 7 abgesaugt. Anschließend wird dieser Behalter 7 m Position V durch das Rohr 10 mit Inert¬ gas wie Stickstoff oder dem Edelgas gefüllt Sodann wird das Ventil 10 auf der Außenseite des Behalterdeckels 8 geschlos¬ sen und der Behalter 7 in Position V mit dem Zuεatzdeckel 11 verschlossen.
Im Anschluß hieran kann der in Position V befindliche Behal¬ ter 7 dekontaminiert und in em Zwischenlager transportiert werden. Nach ausreichend langer Abklingzeit kann der Behalter 7 dann zu einem Endlager transportiert werden, wo der Zusatz- deckel 11 und der Behalterdeckel 8 abgenommen werden und die im Behalter 7 befindlichen Kanister mit den abgebrannten Kernreaktorbrennelementen 3 in ein beispielsweise geologi¬ sches Endlager verbracht werden, ohne daß sie geöffnet wur¬ den. Da diese Kanister 2 nur em einziges Kernreaktorbrenn- element enthalten, sind sie bei dieser Prozedur leicht hand¬ habbar.
Die Figuren 3 bis 6 zeigen im Längsschnitt einen Arbeitsbe- halter 20, der sich unter Wasser im Lagerbecken nach Figur 1 befindet und in dem die Verfahrensschritte durchgeführt wer¬ den, die m den Positionen I und II im Lagerbecken nach FIG 1 vorgenommen werden.
Im Arbeitsbehalter 20 nach den Figuren 3 bis 6 befindet sich die Schweißvorrichtung 6, die an einem Gehänge 6a hangt. Fer¬ ner weist der Arbeitsbehalter 20 an semer Behalterdecke eine Durchfuhrung 21 auf, die mit einem Deckel 22 gasdicht ver- schließbar ist. Schließlich sind noch im Arbeitsbehalter 20 ein Hubwerkzeug 25 und em Absaugrohr 26 vorgesehen, die wie das Gehänge 6a an der Innenseite der Decke des Arbeitsbehal- ters 20 angebracht sind.
In FIG 3 ist der Deckel 22 geöffnet. Zunächst wurden mit dem Hebewerkzeug 4 das abgebrannte Kernreaktorbrennelement 3 im Arbeitsbehalter 20 auf dem Behalterboden abgesetzt und mit dem Hubwerkzeug 25 zur Seite m die in FIG 3 erkennbare Po- sition gestellt. Anschließend wurde ebenfalls mit dem Hebe¬ werkzeug 4 der am oberen Ende offene Kanister 2 im Arbeitsbe¬ halter 20 auf dem Behalterboden unter der Durchfuhrung 21 ab¬ gestellt . Hierauf wird der Deckel 22 geschlossen und aus dem Arbeitsbehalter 20 das Wasser durch eine nichtdarge≤tellte Abflußöffnung abgezogen. Schließlich wird noch mit Hilfe des Absaugrohres 26 das Wasser aus dem Kanister 2 abgezogen. An¬ schließend wird der Arbeitsbehalter 20 durch eine nicht dar¬ gestellte Zufuhroffnung mit trockenem Inertgas gefüllt, so daß sowohl das abgestellte Kernreaktorbrennelement als auch der oben offene Kanister 2 austrocknen können. Schließlich wird mit Hilfe der Hubvorrichtung 25 das im Arbeitsbehalter 20 m FIG 3 abgestellte Kernreaktorbrennelement 3 m den ebenfalls in diesen Arbeitsbehalter 20 abgestellten Kanister 2 eingesetzt, so daß sich der m FIG 4 dargestellte Zustand im Arbeitsbehalter 20 ergibt. In dem in FIG 4 gezeigten Ar¬ beitsbehalter wird noch mit Hilfe der Hubvorrichtung 25 ein in FIG 4 nicht dargestelltere Kanisterdeckel in die Öffnung am Oberende des Kanisters 2 eingesetzt.
In FIG 5 ist dieser am Oberende des Kanisters 2 eingesetzte Kanisterdeckel 5 erkennbar. Er wird mit Hilfe der Schweißvor¬ richtung 6 mit der Innenseite der Kanisterwand des Kanisters 2 gasdicht verschweißt .
Hierauf wird der Arbeitsbehalter 20 durch eine ment darge¬ stellte Flutoffnung wieder mit Wasser geflutet, so daß schließlich der Deckel 22 wieder geöffnet werden kann. Durch die Durchfuhrung 21 kann jetzt, wie in FIG 6 dargestellt ist, der gasdicht verschlossene Kanister 2 mit dem Hebewerkzeug 4 aus dem Arbeitsbehalter 20 herausgehoben und m den Trans¬ portbehälter 7, der sich in FIG 1 in Position III befindet, unter Wasser eingesetzt werden.

Claims

Patentansprüche
1. Verfahren zum Einsetzen jeweils eines einzelnen bestrahl¬ ten Kernreaktorbrennelements (3) unter Wasser in einen unter Wasser aufgestellten Kanister (2) , der anschließend unter
Wasser mit einem Kanisterdeckel (5) verschlossen und gasdicht verschweißt und sodann unter Wasser in einen unter Wasser aufgestellten Transportbehälter (7) eingesetzt wird, welcher hierauf, ebenfalls unter Wasser, mit einem zum Abschirmen von Strahlen geeigneten Behalterdeckel (8) verschlossen und an¬ schließend aus dem Wasser herausgehoben und außerhalb des Wassers abgesetzt wird.
2. Verfahren nach Anspruch 1, bei dem Wasser aus dem Trans- portbehalter (7), nach dem Verschließen mit dem Behalterdek- kel (8) vor dem Herausheben des Transportbehälters (7) aus dem Wasser entfernt wird.
3. Verfahren nach Anspruch 1, bei dem Wasser aus dem Trans- portbehalter (7) nach dessen Absetzen außerhalb des Wassers entfernt wird.
4. Verfahren nach Anspruch 1, bei dem durch einen Anschluß- Stutzen (5a) am Kanister (2) aus dem Kanister (2) nach dem Zuschweißen des Anschlußstutzen (5a) das Wasser entfernt und sodann Inertgas eingefüllt wird und bei dem anschließend der Anschlußstutzen (5a) gasdicht verschlossen wird.
5. Verfahren nach Anspruch 1, bei dem der Kanister (2) in ei- nem unter Wasser befindlichen Arbeitsbehalter (7) abgestellt wird, in dem das Kernreaktorbrennelement (3) nach dem Entfer¬ nen von Wasser aus diesem Arbeitsbehalter (7) und aus dem Ka¬ nister (2) m den Kanister (2) eingesetzt und der Kanister (2) mit einem Kanisterdeckel (5) verschlossen und verschweißt wird und der anschließend zum Entnehmen des Kanisters (2) ge¬ flutet wird.
EP97919335A 1996-04-12 1997-04-11 Verfahren zum einsetzen jeweils eines einzelnen bestrahlten kernreaktorbrennelements in einen kanister Withdrawn EP0892977A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19614553 1996-04-12
DE19614553 1996-04-12
PCT/EP1997/001810 WO1997039454A1 (de) 1996-04-12 1997-04-11 Verfahren zum einsetzen jeweils eines einzelnen bestrahlten kernreaktorbrennelements in einen kanister

Publications (1)

Publication Number Publication Date
EP0892977A1 true EP0892977A1 (de) 1999-01-27

Family

ID=7791130

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97919335A Withdrawn EP0892977A1 (de) 1996-04-12 1997-04-11 Verfahren zum einsetzen jeweils eines einzelnen bestrahlten kernreaktorbrennelements in einen kanister

Country Status (3)

Country Link
EP (1) EP0892977A1 (de)
JP (1) JP2000508426A (de)
WO (1) WO1997039454A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2806828B1 (fr) * 2000-03-27 2002-05-24 Commissariat Energie Atomique Procede et dispositif de fermeture sous eau d'un etui de combustible irradie
US6587536B1 (en) 2002-03-18 2003-07-01 Holtec International, Inc. Method and apparatus for maximizing radiation shielding during cask transfer procedures
JP4575204B2 (ja) * 2005-03-28 2010-11-04 日立Geニュークリア・エナジー株式会社 使用済燃料の処理方法
WO2008079439A2 (en) 2006-07-10 2008-07-03 Holtec International, Inc. Apparatus, system and method for facilitating transfer of high level radioactive waste to and/or from a pool
US8995604B2 (en) 2009-11-05 2015-03-31 Holtec International, Inc. System, method and apparatus for providing additional radiation shielding to high level radioactive materials
GB201105030D0 (en) * 2011-03-25 2011-05-11 Rolls Royce Plc Nuclear installation
CN108689299B (zh) * 2018-05-22 2019-11-01 广东核电合营有限公司 百万千瓦级乏燃料水池扩容用旧格架拆除翻转工艺

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS599596A (ja) * 1982-07-07 1984-01-18 動力炉・核燃料開発事業団 キヤスク取扱い方法及びそれに用いる二重容器
DE3226986C2 (de) * 1982-07-19 1984-08-30 Kraftwerk Union AG, 4330 Mülheim Verfahren zum Einkapseln von radioaktiven Bauteilen und Einrichtung zur Durchführung dieses Verfahrens
JPH06324199A (ja) * 1993-05-14 1994-11-25 Ishikawajima Harima Heavy Ind Co Ltd 使用済核燃料の封入方法及び封入設備
JPH07218686A (ja) * 1994-02-04 1995-08-18 Ishikawajima Harima Heavy Ind Co Ltd 使用済燃料体のキャニスタへの装荷方法および装置
JPH0829584A (ja) * 1994-07-15 1996-02-02 Ishikawajima Harima Heavy Ind Co Ltd 放射能汚染物の収納移送方法及び収納移送設備

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9739454A1 *

Also Published As

Publication number Publication date
JP2000508426A (ja) 2000-07-04
WO1997039454A1 (de) 1997-10-23

Similar Documents

Publication Publication Date Title
DE69209211T2 (de) Verfahren zur Konditionierung oder Wiederaufbereitung von gebrauchten ionischen Kartuschen
DE2652259A1 (de) Behaelter zum lagern verbrauchter radioaktiver kernbrennstoffelemente und verfahren zu ihrer herstellung
EP0892977A1 (de) Verfahren zum einsetzen jeweils eines einzelnen bestrahlten kernreaktorbrennelements in einen kanister
CH664453A5 (de) Transport- und lagerfass fuer schwach- und mittelradioaktive abfaelle sowie verfahren zur befuellung eines transport- und lagerfasses.
DE3324543C2 (de)
DE2629938A1 (de) Gestell zur lagerung von brennelementen
DE3226986C2 (de) Verfahren zum Einkapseln von radioaktiven Bauteilen und Einrichtung zur Durchführung dieses Verfahrens
DE19632678A1 (de) Verfahren zum Lagern eines bestrahlten Kernreaktorbrennelements
WO1997035321A1 (de) Verfahren zum entsorgen einer in einem reaktordruckbehälter einer kernreaktoranlage angeordneten komponente
DE3125211A1 (de) Lagerbehaelter und verfahren zu seiner herstellung
DE2919797C2 (de) Lager für die Aufbewahrung abgebrannter Brennelemente
EP0061043A1 (de) Verfahren zum Manipulieren und/oder Lagern eines ein langgestrecktes Skelett mit Brennstäben aufweisenden Kernreaktorbrennelementes und Kernreaktorbrennelement insbesondere für dieses Verfahren
DE19708899C2 (de) Verfahren zum Transport und zur Lagerung von abgebrannten Brennelementen und Neutronenabsorbern für die Durchführung des Verfahrens
DE102007033376B4 (de) Verfahren zum Rückbau einer nukleartechnischen Anlage
DE2907738C2 (de) Verfahren zur Zerlegung aktivierter Behälter in stillgelegten kerntechnischen Anlagen
EP0043096A1 (de) Vorrichtung für die Aufnahme radioaktiver Stoffe
CH626740A5 (en) Device for avoiding contamination of a cooling pond
DE3242878C1 (de) Verfahren zum Beladen eines Behaelters mit Kernbrennstoff oder Neutronenabsorberstoff enthaltenden Staeben von Kernreaktorbrennelementen und Vorrichtungen zur Durchfuehrung dieses Verfahrens
EP0088945B1 (de) Verfahren zum Ent- und Beladen eines Kernreaktors und Steuerelement insbesondere für dieses Verfahren
DE19628362C1 (de) Verfahren zum Transport und zur Lagerung von abgebrannten Brennelementen und Neutronenabsorber für die Durchführung des Verfahrens
DE1812088C3 (de) Vorrichtung zum Wechsel von Brennelementen eines nicht stationären Kernreaktors
DE60029344T2 (de) Vorrichtung zur reinigung eines kernreaktor-brennelements
DE4437276A1 (de) Verfahren und Vorrichtung zur Entsorgung einer aktivierten und/oder radioaktiv kontaminierten metallischen Komponente eines Kernkraftwerkes
WO1997039456A1 (de) Kanister zum aufnehmen eines kernreaktorbrennstabbündels
WO1997039457A1 (de) Kanister zum aufnehmen von kernbrennstoff enthaltenden brennstäben

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19981005

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE FR GB LI

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20001123

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20001031