EP0843813A1 - Sensor zur bestimmung der konzentration oxidierbarer bestandteile in einem gasgemisch - Google Patents

Sensor zur bestimmung der konzentration oxidierbarer bestandteile in einem gasgemisch

Info

Publication number
EP0843813A1
EP0843813A1 EP97923831A EP97923831A EP0843813A1 EP 0843813 A1 EP0843813 A1 EP 0843813A1 EP 97923831 A EP97923831 A EP 97923831A EP 97923831 A EP97923831 A EP 97923831A EP 0843813 A1 EP0843813 A1 EP 0843813A1
Authority
EP
European Patent Office
Prior art keywords
sensor according
semiconductor
measuring
acceptor
donor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97923831A
Other languages
English (en)
French (fr)
Inventor
Bernd Schumann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0843813A1 publication Critical patent/EP0843813A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4073Composition or fabrication of the solid electrolyte
    • G01N27/4074Composition or fabrication of the solid electrolyte for detection of gases other than oxygen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4071Cells and probes with solid electrolytes for investigating or analysing gases using sensor elements of laminated structure

Definitions

  • the invention is based on a sensor for determining the concentration of oxidizable constituents in a gas mixture, in particular for determining one or more of the gases NOx, CO, H2 and preferably unsaturated hydrocarbons according to the type of the main claim.
  • Exhaust gases from gasoline and diesel engines, internal combustion engines and combustion systems can cause increased concentrations of oxidizable constituents, in particular NOx, CO, H2 and hydrocarbons, for example as a result of a component malfunction, such as an injection valve, or as a result of incomplete combustion. To optimize the combustion reactions, it is therefore necessary to know the concentration of these exhaust gas components.
  • JP-OS 60-61654 describes a method for determining oxidizable gases, according to which an ⁇ tochiometric reaction with oxygen takes place on a first measuring electrode made of platinum metals and on one or more further metallic measuring electrodes with reduced catalytic activity for the oxygen equilibrium reaction quasi-equilibrium states can be set. There are the Nernst voltages El and E2 between the measuring electrodes and a reference electrode measured, which is exposed to a reference gas with constant oxygen partial pressure, and from their difference based on calibration curves, the concentration of the gas components is calculated.
  • the senor according to the invention with the features of the main claim has improved analytical performance features, in particular a higher sensitivity and selectivity with respect to individual sample gas components to be determined.
  • Sensitivity and selectivity of the measuring electrodes are improved by doping the in particular oxidic or mixed-oxide semiconductors with acceptors and / or donors.
  • the conductivity of the measuring electrodes is improved by adding donors, especially in higher concentrations compared to the acceptors.
  • Particularly powerful electrodes are obtained if the acceptor is selected from the range of transition metals and / or rare earths and / or the donor is one or both of the elements tantalum and niobium.
  • An increased miniaturization, a simplification of construction and a less expensive production are achieved by sintering the solid electrolyte porous.
  • the thermodynamic equilibrium can advantageously also be set in the solid electrolyte by selecting a catalytically active solid electrolyte material.
  • a particular advantage is that the gases that disturb the reference signal can be oxidized in a targeted manner, which simplifies signal evaluation or even makes it possible in the first place.
  • the measuring electrodes can also be porous, which further improves the diffusion of the molecules of the measuring gas to the reference electrode. By adding additives to the solid electrolyte in the areas adjacent to the electrodes which correspond to the electrode materials, the electrode adhesion and thus the life of the sensor is improved.
  • Figure 1 shows a section through a sensor according to the invention.
  • a sensor according to the invention is shown in section in FIG.
  • An electrically insulating planar ceramic substrate 6 carries a reference electrode 3 made of, for example, platinum, a solid electrolyte 5, on one large surface in layers one above the other.
  • a heater device 7 with a cover ⁇ is applied to the opposite large surface of the substrate.
  • the solid electrolyte can be sintered porously, but the person skilled in the art can also choose other solutions known to him, such as via a reference channel or a reference gas atmosphere.
  • the sensor generates a cell voltage above the oxygen ion-conducting solid electrolyte by means of a first half-cell reaction set with the aid of the reference electrode and a second half-cell reaction on at least one measuring electrode influenced by the oxidizable gas components to be determined.
  • the calibration values are used to determine the concentrations of the gas components from the voltage values.
  • the sensor according to the invention is thus in the simplest case with a reference electrode which
  • measuring electrodes as shown in FIG. 1, or also several measuring electrodes, each with different catalytic activity, for setting oxygen Equilibrium states.
  • the measuring electrodes then react with different voltages depending on the type of gas, based on the reference electrode.
  • the solid electrolyte is formed, e.g. by adding 0.01 to 10% by volume of platinum so that the solid electrolyte converts the gases to be measured catalytically, so that only the gases corresponding to the thermodynamic equilibrium arrive at the reference electrode or that the solid electrolyte only converts the gases which disturb the reference signal.
  • one or more measuring electrodes are made porous in addition to the solid electrolyte, thereby facilitating gas diffusion to the reference electrode.
  • Semiconductors which have a high specific sensitivity for certain oxidizable gases are used as measuring electrode materials.
  • Oxides or mixed oxides, in particular based on rutile or dirutile or mixtures thereof, which can be doped with acceptor and / or donor are particularly suitable. Titanium and / or zirconium dioxide are advantageously used.
  • Suitable donors are in particular tantalum and niobium, preferably elements with higher valence than the metals forming the semiconductor; suitable acceptors are transition metals, in particular nickel, copper, cobalt and / or chromium, preferably nickel, copper and / or cobalt, and rare earths.
  • the acceptor can be contained in the semiconductor as a solid solution or as a segregated component.
  • the concentrations of the acceptors and donors are each in the range from 0.01 to 25%; at lower proportions, there is no improvement in the properties of the measuring electrodes, and at higher proportions grid defects occur.
  • the high sensitivity of e.g. Acceptor and donor-doped titanium dioxide for unsaturated hydrocarbons in particular is caused by the adsorptive interaction of the orbitals of the Pi bonds of the unsaturated hydrocarbons with the electrophilic acceptor sites on the semiconductor surface.
  • the following example describes a production method for a sensor according to the invention: Rutile doped with 7% niobium and 3% of one of the transition metals nickel, copper or iron is printed as a 30 ⁇ m thick screen printing layer on a substrate which has a reference electrode, for example made of platinum, and above it Solid electrolyte layer carries. A heater device is applied to the opposite side of the substrate. The sensor is sintered at 1200 ° C for 90 minutes with a heating / cooling ramp of 300 ° C / hour.
  • the solid electrolyte After sintering, the solid electrolyte has pores in the size range from 10 nm to 100 ⁇ m. With the aid of a platinum conductor track insulated from the solid electrolyte and which only contacts the measuring electrode, the voltage across the cell thus constructed is measured at a resistance of 1 MOhm between the reference and the rutile electrode. The sensor is heated to 600 ° C with its heater.
  • Simulated exhaust gas with 10% oxygen, 5% water and 5% carbon dioxide and 30 ppm sulfur dioxide is used as the measurement gas.
  • Oxidizable gases are mixed in the amounts given in the table.
  • the last line of the table below shows the voltage values for a mixed potential electrode made of 20% gold and 80% platinum, which represents a measuring electrode according to the prior art.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

Es wird ein Sensor vorgeschlagen, der zur Bestimmung der Konzentration oxidierbarer Bestandteile in einem Gasgemisch, insbesondere zur Bestimmung eines oder mehrerer der Gase NOx, CO, H2 und vorzugsweise ungesättigte Kohlenwasserstoffe durch Messung der Spannung zwischen einer Meßelektrode (1, 2) und einer Referenzelektrode (3) oder durch Messung der Spannung zwischen zwei Meßelektroden [(1) und (2)] dient. Die Selektivität für einzelne Meßgaskomponenten kann durch die Auswahl der Meßelektrodenmaterialien, insbesondere durch den Einsatz von Halbleitern verbessert werden. Durch einen porösen Festelektrolyten kann auf eine Referenzgasatmosphäre verzichtet werden und somit eine erhöhte Miniaturisierung und konstruktive Vereinfachung erreicht werden.

Description

Sensor zur Bestimmung der Konzentration oxidierbarer Bestandteile in einem Gasgemisch
Stand der Technik
Die Erfindung geht aus von einem Sensor zur Bestimmung der Konzentration oxidierbarer Bestandteile in einem Gasgemisch, insbesondere zur Bestimmung eines oder mehrerer der Gase NOx, CO, H2 und vorzugsweise ungesättigte Kohlenwasserstoffe nach der Gattung des Hauptanspruches. In Abgasen von Otto- und Dieselmotoren, von Verbrennungsmaschinen und Verbrennungsanlagen können erhöhte Konzentrationen oxidierbarer Bestandteile, insbesondere von NOx, CO, H2 und Kohlenwasserstoffe auftreten z.B. als Folge einer Komponentenfehlfunktion, wie eines Einspntzventils, oder als Folge einer unvollständigen Verbrennung. Zur Optimierung der Verbrennungsreaktionen ist es daher notwendig, die Konzentration dieser Abgasbestandteile zu kennen. In der JP-OS 60-61654 ist eine Methode zur Bestimmung oxidierbarer Gase beschrieben, wonach an einer ersten Meßelektrode aus Platinmetallen eine εtochiometrische Umsetzung mit Sauerstoff erfolgt und an einer oder mehreren weiteren metallischen Meßelektroden mit reduzierter katalytischer Aktivität für die Sauerstoff- Gleichgewichtsreaktion Quasi- Gleichgewichtszustände eingestellt werden. Es werden die Nernst- Spannungen El und E2 zwischen den Meßelektroden und einer Referenzelektrode gemessen, die einem Referenzgas mit konstantem Sauerstoffpartialdruck ausgesetzt ist, und aus ihrer Differenz aufgrund von Kalibrierungskurven die Konzentration der Gaskomponenten berechnet.
Vorteile der Erfindung
Der erfmdungsgemaße Sensor mit den Merkmalen des Hauptanspruches hat demgegenüber verbesserte analytische Leistungsmerkmale, insbesondere eine höhere Empfindlichkeit und Selektivität gegenüber einzelnen zu bestimmenden Meßgaskomponenten.
Durch die in den Unteranspruchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Hauptanspruch angegebenen Sensors möglich. Empfindlichkeit und Selektivität der Meßelektroden werden durch Dotieren der insbesondere oxidischen oder mischoxidischen Halbleiter mit Akzeptoren und/oder Donatoren verbessert.
Durch Zugabe von Donatoren, insbesondere in höheren Konzentrationen gegenüber den Akzeptoren, wird die Leitfähigkeit der Meßelektroden verbessert. Besonders leistungsfähige Elektroden werden erhalten, wenn der Akzeptor aus der Reihe der Übergangsmetalle und/oder Seltenen Erden ausgewählt wird und/oder der Donator eines oder beide der Elemente Tantal und Niob ist. Eine erhöhte Miniaturisierung, eine konstruktive Vereinfachung und eine kostengünstigere Herstellung werden erreicht, indem der Festelektrolyt porös gesintert wird. Dadurch kann auf die Zuführung eines Referenzgases verzichtet werden, was den Sondenaufbau erheblich vereinfacht. Die Einstellung des thermodynamischen Gleichgewichtes kann in vorteilhafter Weise auch bereits im Feεtelektrolyten durch die Auswahl eines katalytisch wirksamen Festelektrolytmaterials erfolgen. Als besonderer Vorteil ist dabei anzusehen, daß dadurch gezielt die das Referenzsignal störenden Gase oxidiert werden können, was die Signalauswertung vereinfacht oder überhaupt erst ermöglicht.
In zweckmäßiger Weise können zusätzlich zum
Festelektrolyten auch die Meßelektroden porös sein, wodurch die Diffusion der Moleküle des Meßgases zur Referenzelektrode weiter verbessert wird. Indem dem Festelektrolyten in den den Elektroden angrenzenden Bereichen Zusätze beigemischt werden, die den Elektrodenstoffen entsprechen, wird die Elektrodenhaftung und somit die Lebensdauer des Sensors verbessert.
Zeichnung
Die Erfindung wird im folgenden anhand einer Zeichnung und einem Ausfuhrungsbeispiel näher beschrieben. Figur 1 zeigt einen Schnitt durch einen erfindungsgemäßen Sensor.
Beschreibung der Ausführungsbeispiele
In Figur 1 ist ein erfindungsgemäßer Sensor im Schnitt dargestellt. Ein elektrisch isolierendes planares keramisches Substrat 6 trägt auf der einen Großfläche in übereinanderliegenden Schichten eine Referenzelektrode 3 aus beispielsweise Platin, einen Festelektrolyten 5, Meßelektroden 1 und 2 sowie eine gasdurchlässige Schutzschicht 4. Auf der gegenüberliegenden Großfläche des Substrats ist eine Heizervorrichtung 7 mit Abdeckung δ aufgebracht.
Zur Bestimmung der Konzentration oxidierbarer Bestandteile in Abgasen wird der Sensor mittels der Heizervorrichtung 7 auf eine Temperatur zwischen 300 und 1000 "C, vorteilhafterweise auf 600 βC erhitzt.
Um die Diffusion des Meßgases zur Referenzelektrode und die Einstellung des Sauerstoff- Gleichgewichtpotentials zu ermöglichen, kann der Festelektrolyt porös gesintert sein, der Fachmann kann aber auch andere, ihm bekannte Lösungen wählen, wie z.B. über einen Referenzkanal oder eine Referenzgasatmoεphäre.
Der Sensor erzeugt über dem Sauerstoffionenleitenden Festelektrolyten eine Zellspannung durch eine erste mit Hilfe der Referenzelektrode eingestellte Halbzellenreaktion und eine zweite durch die zu bestimmenden oxidierbaren Gaskomponenten beeinflußte Halbzellenreaktion an mindestens einer Meßelektrode, über Kalibrierungskurven werden aus den Spannungswerten die Konzentrationen der Gaskomponenten ermittelt.
Der erfindungsgemäße Sensor ist somit im einfachsten Fall mit einer Referenzelektrode, die die
Gleichgewichtseinstellung des Gasgemisches katalysiert und einer Meßelektrode, die die Gleichgewichtseinstellung des Gasgemisches nicht oder nur wenig zu katalysieren vermag, einsatzfähig.
Es ist jedoch auch möglich, zwei Meßelektroden aufzubringen, wie in Figur 1 dargestellt, oder auch mehrere Meßelektroden mit jeweils unterschiedlicher katalytischer Aktivität zur Einstellung von Sauerstoff- Gleichgewichtszuständen. Die Meßelektroden reagieren dann mit unterschiedlicher, von der Gasart abhängiger Spannung, bezogen auf die Referenzelektrode.
Bei Anordnungen mit zwei oder mehreren Meßelektroden mit unterschiedlicher katalytischer Aktivität besteht auch die Möglichkeit, Spannungen zwischen den Meßelektroden zur Bestimmung oxidierbarer Gase auszuwerten. Bei Spannungsmessungen zwischen Elektroden, die in der gleichen Ebene und im gleichen Abstand zur Heizervorrichtung angeordnet sind, wie z.B. die Elektroden 1 und 2 in Figur 1 , wird zudem der Seebeck- Effekt ausgeschaltet. Durch Anordnungen mit mindestens zwei Meßelektroden besteht des weiteren die Möglichkeit, die Querempfindlichkeit einer ersten Meßelektrode vollständig oder zumindest teilweise durch das Signal einer weiteren Meßelektrode zu kompensieren, indem die Empfindlichkeit dieser weiteren Meßelektrode auf die störenden Gaskomponenten entsprechend eingestellt wird.
Nach einer weiteren Ausführungsform ist der Festelektrolyt so ausgebildet, z.B. durch Zusatz von 0,01 bis 10 Vol.-% Platin, daß der Festelektrolyt die zu messenden Gase katalytisch umsetzt, so daß nur die dem thermodynamischen Gleichgewicht entsprechenden Gase an der Referenzelektrode ankommen oder daß der Festelektrolyt nur die das Referenzsignal störenden Gase umsetzt.
Nach einer weiteren Alternative werden zusätzlich zum Festelektrolyten eine oder mehrere Meßelektroden porös ausgebildet, wodurch die Gasdiffusion zur Referenzelektrode erleichtert wird. Als Meßelektrodenstoffe werden Halbleiter eingesetzt, die eine hohe spezifische Empfindlichkeit für bestimmte oxidierbare Gase haben. Besonders geeignet sind Oxide oder Miεchoxide, insbesondere auf Rutil- oder Dirutilbasis oder Mischungen daraus, die Akzeptor- und/oder Donator- dotiert sein können. In vorteilhafter Weise werden Titan- und/oder Zirkoniumdioxid verwendet.
Geeignete Donatoren sind insbesondere Tantal und Niob, vorzugsweise Elemente mit höherer Valenz als die den Halbleiter bildenden Metalle; geeignete Akzeptoren sind Ubergangsmetalle, insbesondere Nickel, Kupfer, Kobalt und/oder Chrom, vorzugsweise Nickel, Kupfer und/oder Kobalt, sowie Seltene Erden. Dabei kann der Akzeptor als feste Losung oder als seggregierter Bestandteil im Halbleiter enthalten sein.
Die Konzentrationen der Akzeptoren und Donatoren liegen jeweils im Bereich von 0,01 bis 25%; bei niedrigeren Anteilen werden keine Eigenschaftsverbesserungen der Meßelektroden erreicht und bei höheren Anteilen treten Gitterstorungen auf.
Die hohe Empfindlichkeit von z.B. Akzeptor- und Donator¬ dotiertem Titandioxid für insbesondere ungesättigte Kohlenwasserstoffe ist durch die adsorptive Wechselwirkung der Orbitale der Pi-Bmdungen der ungesättigten Kohlenwasserstoffe mit den elektrophilen Akzeptorplatzen auf der Halbleiteroberflache bedingt.
Damit der die Leitfähigkeit verringernde Akzeptoranteil nicht in vollem Umfang elektronisch wirksam werden kann, ist es vorteilhaft, der Elektrode einen die Leitfähigkeit erhöhenden Donator zuzusetzen, insbesondere in höherer Konzentration als den Akzeptor. Ein Herstellungsverfahren für einen erfindungsgemäßen Sensor beschreibt das nachfolgende Beispiel: Mit 7% Niob und 3% eines der übergangεmetalle Nickel, Kupfer oder Eisen dotiertes Rutil wird als 30 μm dicke Siebdruckschicht auf ein Substrat aufgedruckt, das eine Referenzelektrode, beispielsweise aus Platin, und darüber eine Festelektrolytεchicht trägt. Auf der gegenüberliegenden Seite des Substrats ist eine Heizervorrichtung aufgebracht. Der Sensor wird bei 1200 °C 90 Minuten lang mit einer Aufheiz-/Abkühlrampe von 300 °C/Stunde gesintert. Der Festelektrolyt hat nach dem Sintern Poren im Größenbereich von 10 nm bis lOOμm. Mit Hilfe einer isoliert zum Festelektrolyten angebrachten Platinleiterbahn, die nur die Meßlelektrode kontaktiert, wird die Spannung an der so aufgebauten Zelle an einem Widerstand von 1 MOhm zwischen der Referenz- und der Rutilelektrode gemessen. Der Sensor wird dabei mit seiner Heizervorrichtung auf 600 °C erhitzt.
Als Meßgas wird simuliertes Abgas mit 10 % Sauerstoff, 5 % Wasser und 5 % Kohlendioxid sowie 30 ppm Schwefeldioxid eingesetzt. Oxidierbare Gase werden in den in der Tabelle angegebenen Mengen zugemischt.
Zum Vergleich sind in der letzten Zeile der nachfolgenden Tabelle die Spannungswerte für eine Mischpotentialelektrode aus 20 % Gold und 80 % Platin angegeben, die eine Meßelektrode nach dem Stand der Technik darstellt.
Tabelle: Spannungswerte (in mV) in Abhängigkeit von der Konzentration an oxidierbaren Gasen und der Zusammensetzung der Meßelektrode
Spannungen in mV
Rutilelektrode
Vergleichselektrode mit 7%Nb und 3% Ni Cu Fe 20%Au und 80%Pt oxidierbare Gase (ppm)
Propen 460 150 45 60 320
180 120 36 47 280
90 90 27 35 180
H2 460 30 12 20 500
180 17 6 10 450
90 5 3 4 380
CO 460 40 3 16 70
180 15 - 7 35
90 7 - 6 23
Aus der Tabelle ist ersichtlich, daß eine Rutil- Halbleiterelektrode mit 7 % Niob als Donator und 3 % Nickel als Akzeptor die größte Selektivität für Propen als Leitsubstanz zeigt. Das nach dem Stand der Technik bekannte Gold- Platin- System zeigt demgegenüber eine besonders große Wasserstoffquerempfmdlichkeit.

Claims

Ansprüche
1. Sensor zur Bestimmung der Konzentration oxidierbarer Bestandteile in einem Gasgemisch, insbesondere zur Bestimmung eines oder mehrerer der Gase NOx , CO, H2 und vorzugsweise ungesättigte Kohlenwasεerstoffe, bei dem in übereinanderliegenden Schichten auf der einen Großfläche eineε planaren elektriεch iεolierenden Subεtrats(6) eine die Gleichgewichtseinstellung des Gasgemisches katalysierende Referenzelektrode (3), ein ionenleitender Festelektrolyt (5), und mindestens eine dem Meßgaε ausgesetzte Meßelektrode (1,2), die die Gleichgewichtseinstellung des Gasgemisches nicht oder nur wenig zu katalysieren vermag, angeordnet sind, dadurch gekennzeichnet, daß die Meßelektrode (1,2) als Hauptkomponente einen oder mehrere Halbleiter enthält.
2. Sensor nach Anspruch 1, dadurch gekennzeichnet, daß auf dem Festelektrolyten (5) zwei Meßelektroden (1,2) beabstandet nebeneinander angeordnet sind.
3. Sensor nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Halbleiter Akzeptor- und/oder Donator- dotiert ist.
4. Sensor nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Halbleiter ein Oxid oder ein ein- oder mehrphasiges Mischoxid ist, insbesondere ein Rutil oder Dirutil oder eine Mischung daraus.
5. Sensor nach Anspruch 4, dadurch gekennzeichnet, daß der Halbleiter aus Titanoxid besteht.
6. Sensor nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, daß der Donator in größerer Konzentration als der Akzeptor vorliegt.
7. Sensor nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, daß der Donator em Element mit höherer Valenz als das oder die den Halbleiter bildenden Metalle
8. Sensor nach Anspruch 7, dadurch gekennzeichnet, daß der Donator Tantal und/oder Niob ist.
9. Sensor nach einem der Ansprüche 3 DIS 8, dadurch gekennzeichnet, daß der Halbleiter als Akzeptor em oder mehrere Übergangselemente, insbesondere Nickel, Kupfer, Kobalt und/oder Chrom, vorzugsweise Nickel, Kupfer und/oder Kobalt und/oder Seltene Erden enthalt
10. Sensor nach Anspruch 9, dadurch gekennzeichnet, daß der Akzeptor als feste Losung oder als seggregierter Bestandteil im Halbleiter enthalten ist.
11. Sensor nach einem der Ansprüche 3 bis 10, dadurch gekennzeichnet, daß der Halbleiter Donator und/oder Akzeptor in einer Konzentration von jeweils 0,01 bis 25 % enthalt.
12. Sensor nach Anspruch 11, dadurch gekennzeichnet, daß der Halbleiter 0,5 bis 15 % Niob und 0,25 bis 7 % Nickel, vorzugsweise 7 % Niob und 3 % Nickel enthalt
EP97923831A 1996-06-12 1997-05-16 Sensor zur bestimmung der konzentration oxidierbarer bestandteile in einem gasgemisch Withdrawn EP0843813A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19623434 1996-06-12
DE19623434A DE19623434A1 (de) 1996-06-12 1996-06-12 Sensor zur Bestimmung der Konzentration oxidierbarer Bestandteile in einem Gasgemisch
PCT/DE1997/000996 WO1997047963A1 (de) 1996-06-12 1997-05-16 Sensor zur bestimmung der konzentration oxidierbarer bestandteile in einem gasgemisch

Publications (1)

Publication Number Publication Date
EP0843813A1 true EP0843813A1 (de) 1998-05-27

Family

ID=7796739

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97923831A Withdrawn EP0843813A1 (de) 1996-06-12 1997-05-16 Sensor zur bestimmung der konzentration oxidierbarer bestandteile in einem gasgemisch

Country Status (7)

Country Link
US (1) US6022464A (de)
EP (1) EP0843813A1 (de)
JP (1) JP4162262B2 (de)
KR (1) KR19990036337A (de)
CN (1) CN1195403A (de)
DE (1) DE19623434A1 (de)
WO (1) WO1997047963A1 (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19623212A1 (de) * 1996-06-11 1997-12-18 Bosch Gmbh Robert Sensor zur Bestimmung der Konzentration oxidierbarer Bestandteile in einem Gasgemisch
DE19846487C5 (de) 1998-10-09 2004-12-30 Basf Ag Meßsonde für die Detektion der Momentankonzentrationen mehrerer Gasbestandteile eines Gases
DE19932048A1 (de) * 1999-07-09 2001-01-11 Bosch Gmbh Robert Meßfühler zur Bestimmung einer Konzentration von Gaskomponenten in Gasgemischen
DE19944181A1 (de) 1999-09-15 2001-04-12 Bosch Gmbh Robert Sensor zur Bestimmung der Konzentration von Gaskomponenten in Gasgemischen
US6849239B2 (en) * 2000-10-16 2005-02-01 E. I. Du Pont De Nemours And Company Method and apparatus for analyzing mixtures of gases
FR2819314B1 (fr) * 2001-01-08 2003-06-13 Alstom Procede pour controler de facon non intrusive un taux de melange d'un melange gazeux a au moins deux composants
DE10310953B4 (de) * 2003-03-13 2006-03-09 Robert Bosch Gmbh Unbeheiztes, planares Sensorelement zur Bestimmung der Konzentration einer Gaskomponente in einem Gasgemisch
JP2006126056A (ja) * 2004-10-29 2006-05-18 Tdk Corp 二酸化炭素センサ
DE102005015569A1 (de) * 2005-04-05 2006-10-12 Robert Bosch Gmbh Keramisches Widerstands- oder Sensorelement
US20080110769A1 (en) * 2006-11-09 2008-05-15 Delphi Technologies Inc. Exhaust gas sensors and methods for measuring concentrations of nox and ammonia and temperatures of the sensors
EP2286209A1 (de) * 2008-02-28 2011-02-23 Nextech Materials, Ltd Amperometrische elektrochemische zellen und sensoren
JP4996527B2 (ja) * 2008-04-14 2012-08-08 日本特殊陶業株式会社 積層型ガスセンサ素子及びガスセンサ
EP2330410A4 (de) * 2008-09-30 2013-01-16 Iljin Copper Foil Co Ltd Stickoxidsensor
US8399883B2 (en) 2008-09-30 2013-03-19 Iljin Copper Foil Co., Ltd. Nitrogen-oxide gas sensor with long signal stability
US8974657B2 (en) 2010-09-03 2015-03-10 Nextech Materials Ltd. Amperometric electrochemical cells and sensors
CH705070B1 (fr) * 2011-07-15 2022-01-14 Swatch Group Res & Dev Ltd Capteur d'hydrogène à couche active et procédé de fabrication de capteurs d'hydrogène.
KR102168091B1 (ko) 2012-03-08 2020-10-20 넥스테크 머티리얼스, 엘티디. 전류계 전기화학 센서, 센서 시스템 및 검출 방법
CN104374818A (zh) * 2014-08-08 2015-02-25 杭州纳瑙新材料科技有限公司 一种平面型氧传感器
KR101769303B1 (ko) * 2016-06-14 2017-08-18 현대자동차주식회사 고체전해질용 co2 센서 및 이의 제조방법

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2304464C2 (de) * 1973-01-31 1983-03-10 Robert Bosch Gmbh, 7000 Stuttgart Meßfühler für die Überwachung der Funktionsfähigkeit von Katalysatoren in Abgas
DE3004571A1 (de) * 1980-02-07 1981-08-13 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., 3400 Göttingen Feste elektrode in einer elektrolytischen zelle
JPS6061654A (ja) * 1983-09-14 1985-04-09 Ngk Insulators Ltd 酸素・可燃ガス分圧測定方法及び装置
US5037525A (en) * 1985-10-29 1991-08-06 Commonwealth Scientific And Industrial Research Organisation Composite electrodes for use in solid electrolyte devices
DE3610364A1 (de) * 1986-03-27 1987-10-01 Kernforschungsz Karlsruhe Verfahren zum verringern des no(pfeil abwaerts)x(pfeil abwaerts)-gehaltes in gasen, bei welchem dem gaststrom kontinuierlich nh(pfeil abwaerts)3(pfeil abwaerts) zugesetzt wird
US4879016A (en) * 1986-07-25 1989-11-07 Ceramatec, Inc. Electrolyte assembly for oxygen generating device and electrodes therefor
US4931213A (en) * 1987-01-23 1990-06-05 Cass Richard B Electrically-conductive titanium suboxides
DE68927087T2 (de) * 1988-11-01 1997-02-06 Ngk Spark Plug Co Sauerstoffempfindlicher Sensor und Verfahren zu dessen Herstellung
JP2514701B2 (ja) * 1988-12-02 1996-07-10 日本特殊陶業株式会社 酸素センサ
DE4021929C2 (de) * 1990-07-10 1998-04-30 Abb Patent Gmbh Sensor
US5480535A (en) * 1992-12-28 1996-01-02 Kabushiki Kaisha Toyota Chuo Kenkyusho Thin film multilayered air/fuel ratio sensor
JPH06235715A (ja) * 1993-02-10 1994-08-23 Toyota Motor Corp 酸素濃度センサ
DE4311851A1 (de) * 1993-04-10 1994-10-13 Bosch Gmbh Robert Sensoranordnung zur Bestimmung von Gaskomponenten und/oder von Gaskonzentrationen von Gasgemischen
DE4408361C2 (de) * 1994-03-14 1996-02-01 Bosch Gmbh Robert Elektrochemischer Sensor zur Bestimmung der Sauerstoffkonzentration in Gasgemischen
DE4408504A1 (de) * 1994-03-14 1995-09-21 Bosch Gmbh Robert Sensor zur Bestimmung der Konzentration von Gaskomponenten in Gasgemischen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9747963A1 *

Also Published As

Publication number Publication date
JP4162262B2 (ja) 2008-10-08
US6022464A (en) 2000-02-08
WO1997047963A1 (de) 1997-12-18
DE19623434A1 (de) 1997-12-18
KR19990036337A (ko) 1999-05-25
JPH11510908A (ja) 1999-09-21
CN1195403A (zh) 1998-10-07

Similar Documents

Publication Publication Date Title
EP0904533B1 (de) Sensor zur bestimmung der konzentration oxidierbarer bestandteile in einem gasgemisch
EP0843813A1 (de) Sensor zur bestimmung der konzentration oxidierbarer bestandteile in einem gasgemisch
DE19912102C2 (de) Elektrochemischer Gassensor
DE4334672C2 (de) Sensor zum Nachweis von Stickoxid
DE3019072C2 (de) Vorrichtung zur Bestimmung der Sauerstoffkonzentration in Verbrennungsgasen
DE10247144A1 (de) Gasdetektorelement und diese enthaltendes Gasdetektorgerät
DE19861198B4 (de) Sensor für die Untersuchung von Abgasen und Untersuchungsverfahren
WO2009074471A1 (de) Gassensor
DE19549147C2 (de) Gassensor
DE69930175T2 (de) Kohlenwasserstoffsensor
DE4333232A1 (de) Meßfühler zur Bestimmung des Sauerstoffgehaltes von Gasgemischen
DE4445033A1 (de) Verfahren zur Messung der Konzentration eines Gases in einem Gasgemisch sowie elektrochemischer Sensor zur Bestimmung der Gaskonzentration
DE19963008B4 (de) Sensorelement eines Gassensors zur Bestimmung von Gaskomponenten
DE19960338A1 (de) Gassensor zur Bestimmung der Konzentration von Gaskomponenten in Gasgemischen und dessen Verwendung
DE19930636A1 (de) Elektrochemischer Gassensor und Verfahren zur Bestimmung von Gaskomponenten
WO1999008101A1 (de) Sensorelement zur bestimmung der konzentration oxidierbarer bestandteile in einem gasgemisch
DE10013881B4 (de) Sensorelement mit katalytisch aktiver Schicht und Verfahren zur Herstellung desselben
EP0892922B1 (de) Sensor zur bestimmung der konzentration oxidierbarer bestandteile in einem gasgemisch
DE19937016A1 (de) Sensorelement und Verfahren zur Bestimmung der Sauerstoffkonzentration in Gasgemischen
DE102009011298A1 (de) Gassensor
DE10207229A1 (de) Katalytisch aktive Schicht
EP1498729A1 (de) Elektrochemische Pumpzelle für Gassensoren
WO2004072634A1 (de) Sensorelement
DE10117819A1 (de) Methode und Vorrichtung auf der Basis halbleitender Oxide zur Bestimmung der Konzentration von reduzierenden Gasbestandteilen in reduzierenden Gasatmosphären
DE19756893A1 (de) Gassensor zur Sauerstoffdetektion

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19980618

17Q First examination report despatched

Effective date: 20061019

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070301