EP0834017B1 - Vakuumpumpe - Google Patents

Vakuumpumpe Download PDF

Info

Publication number
EP0834017B1
EP0834017B1 EP96922830A EP96922830A EP0834017B1 EP 0834017 B1 EP0834017 B1 EP 0834017B1 EP 96922830 A EP96922830 A EP 96922830A EP 96922830 A EP96922830 A EP 96922830A EP 0834017 B1 EP0834017 B1 EP 0834017B1
Authority
EP
European Patent Office
Prior art keywords
rotor
housing
vacuum pump
bearing body
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96922830A
Other languages
English (en)
French (fr)
Other versions
EP0834017A1 (de
Inventor
Christian Dahmlos
Dietmar Rook
Ralf Steffens
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sterling Industry Consult GmbH
Original Assignee
Sterling Industry Consult GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE1995122555 external-priority patent/DE19522555A1/de
Priority claimed from DE1995122560 external-priority patent/DE19522560A1/de
Application filed by Sterling Industry Consult GmbH filed Critical Sterling Industry Consult GmbH
Publication of EP0834017A1 publication Critical patent/EP0834017A1/de
Application granted granted Critical
Publication of EP0834017B1 publication Critical patent/EP0834017B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/02Arrangements of bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0085Prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/10Vacuum
    • F04C2220/12Dry running
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • F04C2240/402Plurality of electronically synchronised motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • F04C2240/51Bearings for cantilever assemblies

Definitions

  • the invention relates to a vacuum pump with a pair within an axially flow Scooping space, in particular helically interlocking Displacement rotors, each of which is supported by a shaft mounted on the pressure side, each with the rotor of an outside of the housing that forms the scoop arranged motor is connected.
  • the unit is the operationally sensitive Warehouse functions contracted. It can be used by the manufacturer for exchange purposes delivered pre-assembled, adjusted and balanced and as a whole sent to the manufacturer for maintenance while the rest of the maintenance including assembly and disassembly of the less specialized available to the user Personnel can be left.
  • each rotor assembly preassembled independently of the other a separate bearing body is assigned to each rotor.
  • a common bearing body is provided for both rotors can be.
  • the housing forming the scooping chamber is expediently on the pressure side of one Base plate limited, in or on which the bearing body can be centered and / or fixed.
  • This Base plate can be connected in one piece to the scoop chamber. Conveniently however, it is a separate part. It can also be part of the motor housing. this is usually on the base plate on the side remote from the chamber is arranged.
  • the flange plate is expediently sealed off from the scooping space realized in that the flange plate opposite the base plate or the motor housing is sealed, while the base plate or the motor housing opposite the chamber housing is sealed.
  • the pump chamber (or its Jacket and cover) can be removed for maintenance of the scooping area and the rotor surfaces become. without this the tight closure of the synchronization discs receiving rooms impaired.
  • the motor housing is expediently sealed in a dust-tight manner from the atmosphere. It is therefore not necessary to seal the receiving the synchronization discs Spaces opposite the drive.
  • the motor rotor expediently also belongs to the one that can be pulled off the housing as a whole Rotor unit. The same applies to the synchronization gear or to the rotor assembly non-rotatable encoder disk, which is part of a device for measuring the angle of rotation of the rotor.
  • the invention makes it possible to considerably increase the cost of warehousing reduce the need for pumps with different delivery data belonging to the same series essentially only by the length of the rotors, the scoop housing and if necessary, distinguish the tubular parts of the bearing bodies. Instead or in addition They can also differ from the design of the displacement projections on the circumference of the rotors differentiate.
  • the motor housing 2 rests on the foot part 1, with the flange-like base plate at the top 3 may be connected in one piece. on which the pump chamber 4 is built. This is closed at the top by a cover 5 which contains a suction opening 6.
  • each serve to support a rotor 8.
  • its scope preferably two-helically arranged displacer projections 9 carries in the type of tooth engagement in the conveying cavities 10 between the displacer projections 9 of the adjacent rotor.
  • the displacement projections also have an effect 9 together on the circumference with the inner surface of the scoop housing part 4.
  • the Rotors 8 are connected to the suction chamber 11 at the top and to the pressure chamber 12 at the bottom.
  • the pressure chamber 12 communicates with the pressure outlet 17 through the channel 16 Parts are provided at the lower end of the vertical scoop housing.
  • Each rotor 8 is non-rotatably connected to a shaft 20 which passes through the bottom of the bearing body 7 a permanently lubricated roller bearing 21 is mounted.
  • a second, also permanently lubricated Rolling bearing 22 is located at the upper end of a tubular part 23 of the Bearing body 7, in a downward, ie pressure side, open, concentric bore 24 of the rotor 8 protrudes.
  • This bearing 22 is preferably located above the Center of the rotor 8.
  • the tubular part 23 of the bearing body preferably extends by the greater part of the length of the rotor 8.
  • the end of the tubular part 23 is in a vertical arrangement of the pump much higher than the pressure outlet 17. This is helpful for protecting the bearing and drive region from the ingress of liquid or other heavy impurities from the scooping area.
  • Cooling channels 25 are provided in the tubular part 23 of the bearing body, which channels 26 with a cooling water source and via corresponding channels shown in the drawing non-appearance. connected to a cooling water drain.
  • the cooling channels 25 are preferably formed by helical recesses through a sleeve are tightly covered.
  • the cooling of the rotor bearings extends the service life or the Maintenance intervals for these bearings.
  • the circumferential surface is also due to the cooling of the tubular part 23 of the bearing body is kept at a low temperature. This Circumferential surface is the inner peripheral surface of the cavity 24 of the rotor with little Distance opposite.
  • These surfaces are designed to ensure good heat exchange are capable and thus heat from the rotor indirectly via the tubular Part 23 of the bearing body and its cooling devices 25 can be removed.
  • these can be designed in a suitable manner. For example, they can be treated or be browned that the radiation exchange is favored by high absorption coefficients becomes.
  • the convective heat exchange mediates the gas layer in between can by small surface distance and suitable surface structure, the leads to an increase in the heat transfer coefficient.
  • One area or both can be rough for this purpose or with heat exchange fins or threads or the like be trained.
  • Suitable sealing and / or locking devices are provided.
  • the equipment of the opposing surfaces of the bearing body is advantageous 23 and the inner surfaces of the rotor cavity 24 on one side or on both Sides with a feed thread, not shown, that have a feed effect from the rotor cavity 24 exercises towards the pressure chamber 12.
  • This promotional effect works because of it higher density primarily on solid or liquid particles and thereby prevents their penetration into the bearing and drive area.
  • the conveyor thread is expedient designed so that this effect even at significantly reduced speed is effective.
  • the conveying effect can also be brought about by the gap between the rotor and bearing body widens conically towards the pressure chamber.
  • the gap width (distance of the Surface of the bearing body from the surface of the rotor) remains essentially constant.
  • the surfaces facing each other can also be used in this case be provided with a conveyor thread on one or both sides; required but it is not.
  • the cleaning operation is not carried out continuously, but periodically when cleaning is required (e.g. due to an increase in drive torque) is detected. Thanks to the pump's insensitivity to liquids relatively large amounts of liquid can then also be used. If the operating speed due to the amount or type of cleaning fluid used cannot be maintained, the speed can be reduced accordingly.
  • suitable control devices are provided. For example, the speed can be dependent are controlled by the drive torque. what with increased power requirements automatically to a corresponding reduction in speed compared to the operating speed leads.
  • the continuous rotation of the rotors even during the cleaning phase not only serves to seal the rotor bearing, but also promotes the action the cleaning liquid on the soiled surfaces.
  • the promotional effect in the gap between the rotor and bearing body can also be used to promote Seal gas can be used independently of an external compressed gas source. In general but is the effect of such a pressurized gas source to promote the sealing gas prefer to be independent of the rotor speed in the sealing gas supply.
  • the scoop chamber 4 can contain a chamber 30 (Fig. 2), the whole or over Much of the circumference revolves and circulates through the cooling water to the housing to keep at a predetermined temperature. Cooling of the housing jacket is not required in all cases. However, it is in the context of the invention advantageously possible because the rotors 8 are cooled and their thermal expansion is therefore limited. There is no need to fear that the rotors are only there tarnish on the case because they stretch while the case on less Temperature is maintained.
  • the pump according to the invention can be equipped with pre-inlet. It means that Channels 31 in the areas of high, possibly even medium compression in the housing are provided, through which gas of higher pressure than it reaches the compression stage corresponds to this area of the scooping space, is let in to effect cooling and / or noise reduction according to known principles.
  • the pre-inlet gas can be directly the Pressure side of the pump can be removed by placing it in the cooler pockets 30 of the scoop jacket 4 is cooled. For this purpose, it can be passed through heat exchanger tubes become.
  • roller bearings 21, 22 in the example shown are angular contact ball bearings, which are set against each other by a spring 29.
  • Each shaft 20 carries below the Bearing 21 preferably immediately, i.e. without an intermediate clutch, the rotor 35 of the drive motor, the stator 36 is arranged in the motor housing 2.
  • the Motor housing can be equipped with cooling channels 38.
  • the flange plates 50 which in the example shown with the bearing bodies 7 from one Pieces are, with their outer edges 51, which is essentially the scope follow the scoop chamber 4, and their abutting inner edges 52 the top of the base plate 3 placed.
  • the flange plates 50 are opposite Base plate 3 sealed. Also the end faces following a secant in radial section 53, on which they lie against each other, are equipped with a sealing insert.
  • a recess is provided under the flange plates 50, between the edges 51, 52, which includes a space 39 with the top of the base plate 3, which is for receiving of synchronization gears 40, which rotates with known means on the Shafts 20 are arranged between the bearings 21 and the motor rotors. So that they Area of the inner edges 52 of the flange plates 50 can comb with each other the inner edges at a corresponding point on a cutout through which the gears reach through. Below this section there is a bridge on each side 1 the reference line of the reference number 52, which generally designates the inner edge points. This web is not only advantageous for reasons of stability, but also because it is a circumferential seal on the one hand against the base plate 3 and on the other hand allows between the flattened secant surfaces of the flange plates 50.
  • the recesses 39 in the flange plates 50 have a diameter that is larger than the diameter of the synchronization gears 40. They are in relation to the Inner edges 52 arranged a little eccentrically so that the synchronization gears 40 when assembling the rotor assemblies despite the presence of the sealing web can be used at 52.
  • the synchronization gears 40 can also serve as pulse generator disks or be supplemented by additional pulse generator disks, which are sensed by sensors 42 1, of which one is shown. These sensors 42 are with a control device in connection, which the respective rotational position of the rotors relative to one Setpoint is monitored and corrected via the drive. It is a synchronization of the rotors electronically, which is known as such and therefore no further explanation is required here.
  • the game between the teeth of the synchronization gears 40 is slightly less than the backlash between the projections 9 of the rotors 8. However, it is larger than the synchronization tolerance of the electronic ones Synchronization device.
  • the performance data of the pump are determined by the drive power and speed by the displacement or delivery volume formed on the rotors and thus by the Length of the rotors determined.
  • the funding data can therefore be changed in that the length of the pump part containing the rotors is changed.
  • a range of Pumps with different performance data are therefore characterized by this from that the individual pumps of this series differ by grading the length distinguish between these parts, the scoop chamber, the rotors and possibly the include tubular parts of the bearing body protruding into the rotors.
  • each rotor with the associated bearing and drive devices forms an independently mountable unit which, in addition to the rotor, consists of the bearings 21, 22, the bearing body 7, the cooling devices provided therein, the shaft 20, the synchronization gear 40, the associated sensor 42 and the motor rotor 35.
  • These units are completely pre-assembled in the pump. You can go after the removal of the pumping chamber housing is easily removed from the base plate 3 or be used. Your replacement can therefore be left to the user. while the manufacturer takes care of the maintenance of the sensitive units as such.
  • Fig. 2 and Fig. 4 illustrate that the suction chamber 11 through the scoop a cover plate 14 is separated, which allows an immediate passage of the sucked medium prevented from the suction opening 6 in the scoop. Instead, it arrives first through one or the other of two openings 61 into the head space 62 one of two settling rooms 63, which act as special containers 68 on the broad sides of the pumping chamber housing 4 are scheduled.
  • the head space 62 is down towards the settling space 63 open and laterally delimited by partitions 64 from two side spaces 65 which are also open to the settling space 63 and through an opening 66 on both sides the opening 61 are arranged, are connected to the pumping chamber of the pump.
  • the medium drawn in passes from the suction opening 6 through the suction chamber 11 into a middle head space 62, is deflected downward into the settling space 63, is therein deflected upwards to one of the side head spaces 65 and passes through from here the opening 66 into the scoop.
  • the openings 61, 62 through which the medium in the Settling space 63 flows in are thus spatially offset from the openings 65, 66, through which it flows back into the scoop.
  • the one thereby forced on the gas flow Redirection has the result that liquid or solid particles carried by him are thrown down into the settling chamber 63 due to the inertia effect. In particular, this also applies to any liquid surge. If often with Liquid slug must be expected, the settling rooms with discharge devices be provided for the liquid contained therein. Regardless of or a fill level meter 67 may also be functionally connected therewith.
  • the pump is preferably of an isochoric design to handle larger quantities of liquid to be able to support without harm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Electrophonic Musical Instruments (AREA)
  • Rotary Pumps (AREA)

Description

Die Erfindung betrifft eine Vakuumpumpe mit einem Paar innerhalb eines axial durchströmten Schöpfraums umlaufender, insbesondere schraubenförmig ineinandergreifender Verdrängerrotoren, die fliegend von je einer druckseitig gelagerten Welle getragen sind, von denen jede mit dem Läufer eines außerhalb des den Schöpfraum bildenden Gehäuses angeordneten Motors verbunden ist.
Diese Bauart hat den Vorteil, daß sämtliche die Lagerung und den Antrieb der Rotoren betreffenden Organe druckseitig angeordnet sind und von ihnen stammende Ausgasungen daher weniger leicht zur Saugseite der Pumpe gelangen können. Aufwendige Dichtungen werden dadurch unnötig. Jedoch haben bekannte Pumpen dieser Art (EP-A 472933 = US-A 5,197,861 und US-A 5,354 179; EP-A 558921 = US-A 5,393,201; US-A 5,295,798; US-A 5,314,312; US-A 5,329,216; JP-Abstract 2283890) den Nachteil, daß die drehenden Teile schwer zugänglich sind und nicht leicht gewartet werden können, weil ihre Montage bzw. Demontage voraussetzt, daß sie oder mehrere die Lagerung aufnehmende Gehäuseteile voneinander getrennt werden. Da die drehenden Teile und ihre Lagerung einstellungsempfindlich sind, ist dafür besonders qualifiziertes Personal erforderlich, das in der Regel lediglich dem Hersteller der Pumpe zur Verfügung steht.
Die Erfindung vermeidet diese Nachteile dadurch, daß jeder Rotor mit der zugehörigen Welle und einem am Gehäuse fixierbaren, stationären Lagerkörper, der die gesamte Wellenlagerung aufnimmt, eine von dem Gehäuse abziehbare Einheit bildet. In dieser Baueinheit sind die betriebssensiblen Lagerfunktionen zusammengezogen. Sie kann vom Hersteller zu Austauschzwecken vormontiert, eingestellt und ausgewuchtet geliefert werden und als Ganzes dem Hersteller zu Wartungszwecken eingesandt werden, während die übrige Wartung einschließlich Montage und Demontage dem beim Anwender verfügbaren, weniger spezialisierten Personal überlassen werden kann.
Damit jede Rotorbaueinheit unabhängig von der anderen vormontierbar ist, ist zweckmäßigerweise jedem Rotor ein gesonderter Lagerkörper zugeordnet. Jedoch mag es Anwendungsfälle geben, in denen ein gemeinsamer Lagerkörper für beide Rotoren vorgesehen werden kann.
Das den Schöpfraum bildende Gehäuse ist zweckmäßigerweise druckseitig von einer Grundplatte begrenzt, in oder an der der Lagerkörper zentrier- und/oder fixierbar ist. Diese Grundplatte kann einstückig mit dem Schöpfraumgehäuse verbunden sein. Zweckmäßigerweise ist sie jedoch ein gesonderter Teil. Sie kann auch Teil des Motorgehäuses sein. das in der Regel an der Grundplatte an der dem Schöpfraumgehäuse abgelegenen Seite angeordnet ist.
Wie aus dem eingangs genannten Stand der Technik bekannt, ist es zweckmäßig, wenn wenigstens ein Rotorlager innerhalb des Rotors in einem nur zur Druckseite hin offenen Raum an einem in den Rotor hineinragenden, rohrförmigen Teil des Lagerkörpers angeordnet ist. Auf diese Weise erreicht man, daß die Rotorwelle lediglich geringen Biegebeanspruchungen unterworfen ist und daß demzufolge die verformungsbedingten Änderungen des Spiels eines Rotors gegenüber dem anderen sowie zwischen den Rotoren und dem Gehäuse gering gehalten werden können. Auch erlaubt dies eine günstige Dimensionierung der Rotorwelle, wodurch der mit der Rotorinnenlagerung verbundene radiale Platzbedarf teilweise kompensiert wird.
Es ist bekannt, die Rotorwellen mit zusammenwirkenden Zahnrädern zu versehen, die die Synchronisierung der Wellen bewirken oder zusätzlich zu elektronischer Synchronisation eine Notsynchronisation ermöglichen. Damit diese Zahnräder nicht durch unmittelbare Berührung mit dem Fördermedium verschmutzt werden und damit sie ggf. geschmiert werden können, ohne daß das Schmiermittel in den Schöpfraum gelangt, sind sie gemäß der Erfindung motorseits einer Flanschplatte angeordnet, die für diesen Zweck einen vom Schöpfraum abgedichteten Raum begrenzt und zu der mit dem Rotor abziehbaren Baueinheit gehört. Statt der Zahnräder kann es sich auch um Impulsgeberscheiben handeln oder die Zahnräder dienen gleichzeitig als Impulsgeberscheiben.
Zweckmäßigerweise ist die Abdichtung der Flanschplatte gegenüber dem Schöpfraum dadurch verwirklicht, daß die Flanschplatte gegenüber der Grundplatte oder dem Motorgehäuse abgedichtet ist, während die Grundplatte bzw. das Motorgehäuse gegenüber dem Schöpfraumgehäuse abgedichtet ist. Dies gibt die Möglichkeit, die Flanschplatte am Motorgehäuse zu montieren und zu zentrieren. Das Schöpfraumgehäuse (bzw. dessen Mantel und Deckel) können zur Wartung des Schöpfraums und der Rotoroberflächen abgenommen werden. ohne daß dies den dichten Abschluß der die Synchronisationsscheiben aufnehmenden Räume beeinträchtigt.
Das Motorgehäuse ist zweckmäßigerweise staubdicht gegenüber der Atmosphäre abgedichtet. Es oedarf deshalb auch keiner Abdichtung der die Synchronisationsscheiben aufnehmenden Räume gegenüber dem Antrieb.
Zweckmäßigerweise gehört auch der Motorläufer der insgesamt vom Gehäuse abziehbaren Rotoreinheit an. Dasselbe gilt für das Synchronisationszahnrad bzw. die mit der Rotorbaueinheit drehverbundene Impulsgeberscheibe, die Teil einer Einrichtung zur Drehwinkelmessung des Rotors ist.
Die Erfindung ermöglicht es, den Aufwand für die Lagerhaltung dadurch beträchlich zu reduzieren, daß Pumpen unterschiedlicher Förderdaten, die derselben Baureihe angehören, sich im wesentlichen nur durch die Länge der Rotoren, der Schöpfraumgehäuse und ggf. der rohrförmigen Teile der Lagerkörper unterscheiden. Statt dessen oder zusätzlich können sie sich auch von der Ausführung der Verdrängervorprünge am Umfang der Rotoren unterscheiden.
Die Erfindung wird im folgenden näher unter Bezugnahme auf die Zeichnung erläutert, die ein vorteilhaftes Ausführungsbeispiel der Erfindung veranschaulicht. Darin zeigen:
Fig.1
einen Längsschnitt in der Ebene beider Rotorachsen,
Fig.2
einen Längsschnitt quer dazu,
Fig.3
einen Horizontalschnitt gemäß Linie III-III der Fig.1 und
Fig.4
eine teilweise gemäß Linie IV der Fig.2 geschnittene Draufsicht.
Auf dem Fußteil 1 ruht das Motorgehäuse 2, das oben mit der flanschartigen Grundplatte 3 ggf. einstückig verbunden ist. auf der das Schöpfraumgehäuse 4 aufgebaut ist. Dieses wird oben durch einen Deckel 5 abgeschlossen, der eine Saugöffnung 6 enthält.
An der Grundplatte 3 sind in später zu erläuternder Weise die Flanschplatten 50 der Lagerkörper 7 befestigt, die je zur Lagerung eines Rotors 8 dienen. dessen Umfang vorzugsweise zweigängig schraubenförmig angeordnete Verdrängervorsprünge 9 trägt, die in der Art eines Zahneingriffs in die Förderhohlräume 10 zwischen den Verdrängervorsprüngen 9 des benachbarten Rotors eingreifen. Außerdem wirken die Verdrängervorsprünge 9 am Umfang mit der Innenfläche des Schöpfraumgehäuseteils 4 zusammen. Die Rotoren 8 stehen oben mit dem Saugraum 11 und unten mit dem Druckraum 12 in Verbindung.
Der Druckraum 12 steht durch den Kanal 16 in Verbindung mit dem Druckauslaß 17. Diese Teile sind am unteren Ende des vertikal aufgestellten Schöpfraumgehäuses vorgesehen.
Jeder Rotor 8 ist drehfest mit einer Welle 20 verbunden, die unten im Lagerkörper 7 durch ein dauergeschmiertes Wälzlager 21 gelagert ist. Ein zweites, gleichfalls dauergeschmiertes Wälzlager 22 befindet sich am oberen Ende eines rohrförmigen Teils 23 des Lagerkörpers 7, der in eine nach unten, also druckseitig, offene, konzentrische Bohrung 24 des Rotors 8 hineinragt. Dieses Lager 22 befindet sich vorzugsweise oberhalb der Mitte des Rotors 8. Der rohrförmige Teil 23 des Lagerkörpers erstreckt sich vorzugsweise durch den größeren Teil der Länge des Rotors 8. Das Ende des rohrförmigen Teils 23 liegt bei vertikaler Anordnung der Pumpe wesentlich höher als der Druckauslaß 17. Dies ist hilfreich für den Schutz der Lager- und Antriebsregion vor dem Eindringen von Flüssigkeit oder anderen schweren Verunreinigungen vom Schöpfraum her.
Im rohrförmigen Teil 23 des Lagerkörpers sind Kühlkanäle 25 vorgesehen, die über Kanäle 26 mit einer Kühlwasserquelle und über entsprechende Kanäle, die in der Zeichnung nicht erscheinen. mit einem Kühlwasserabfluß in Verbindung stehen. Die Kühlkanäle 25 sind vorzugsweise durch schraubenförmige Eindrehungen gebildet, die durch eine Hülse dicht abgedeckt sind. Die Kühlung der Rotorlager verlängert die Lebensdauer bzw. die Wartungsintervalle dieser Lager. Ferner wird durch die Kühlung auch die Umfangsfläche des rohrförmigen Teils 23 des Lagerkörpers auf niedriger Temperatur gehalten. Diese Umfangsfläche steht der inneren Umfangsfläche des Hohlraums 24 des Rotors mit geringem Abstand gegenüber. Diese Flächen sind so ausgebildet, daß sie zu gutem Wärmeaustausch fähig sind und somit Wärme aus dem Rotor mittelbar über den rohrförmigen Teil 23 des Lagerkörpers und dessen Kühleinrichtungen 25 abgeführt werden kann. Zur Verbesserung des Wärmeaustauschs zwischen den einander gegenüberstehenden Flächen des rohrförmigen Teils 23 des Lagerkörpers und des Rotorhohlraums 24 können diese in geeigneter Weise ausgebildet sein. Beispielsweise können sie so behandelt bzw. brüniert sein, daß der Strahlungsaustausch durch hohe Absorptionskoeffizienten begünstigt wird. Der konvektive Wärmeaustausch vermittelst der dazwischen befindlichen Gasschicht kann durch geringen Oberflächenabstand und geeignete Oberflächenstruktur, die zur Erhöhung der Wärmeübergangszahl führt, verbessert werden. Eine Fläche oder beide können zu diesem Zweck rauh oder mit Wärmeaustauschrippen oder Gewinde oder dergleichen ausgebildet sein. Es ist auch möglich, dem Rotorhohlraum 24 durch den Lagerkörper oder die Welle 20 ein Sperrgas zuzuführen, das mit dem Fördermedium vom Druckraum 12 abgeführt wird. Es kann neben der Absperrung der Lagerregion auch der zusätzlichen Kühlung des Lagers, des Lagerkörpers und des Rotors dienen, wobei es aber zweckmäßigerweise nicht durch das bzw. die Lager geführt wird, um diese nicht zu verschmutzen, sondern über einen eine Umgehung bildenden Kanal 28.
Zum Schutz des Lager- und Antriebsbereichs vor vom Schöpfraum her eindringenden Einflüssen sind geeignete Dicht- und/oder Sperreinrichtungen vorgesehen. Besonders vorteilhaft ist die Ausrüstung der einander gegenüberstehenden Flächen des Lagerkörpers 23 und der Innenflächen des Rotorhohlraums 24 auf einer Seite oder auf beiden Seiten mit einem nicht dargestellten Fördergewinde, das einen Fördereffekt vom Rotorhohlraum 24 zum Druckraum 12 hin ausübt. Dieser Fördereffekt wirkt sich wegen deren höherer Dichte vornehmlich auf feste oder flüssige Teilchen aus und verhindert dadurch deren Eindringen in den Lager- und Antriebsbereich. Das Fördergewinde wird zweckmäßigerweise so ausgebildet, daß dieser Effekt auch bei erheblich abgesenkter Drehzahl noch wirksam ist.
Der Fördereffekt kann auch dadurch herbeigeführt werden, daß der Spalt zwischen Rotor und Lagerkörper sich konisch zum Druckraum hin erweitert. Die Spaltweite (Abstand der Oberfläche des Lagerkörpers von der Oberfläche des Rotors) bleibt dabei im wesentlichen konstant. Zusätzlich können auch in diesem Falle die einander gegenüberstehenden Flächen auf einer Seite oder auf beiden Seiten mit Fördergewinde versehen sein; erforderlich ist dies aber nicht.
Da die Ausrüstung des Spalts zwischen Rotor und Lagerkörper mit einem Fördergewinde oder einer fördernd wirkenden Konizität sehr wirksam gegen das Eindringen von Flüssigkeit oder Feststoffteilchen abdichtet, kann oft auf zusätzliche Dichteinrichtungen verzichtet werden; jedoch können sie vorgesehen sein, und zwar vorzugsweise in berührungsfreier oder berührungsarmer Bauart, z.B. Labyrinthdichtungen oder kolbenringartige Dichtungen.
Aufgrund der Dichtwirkung des Fördergewindes bzw. der Spaltkonizität ist die erfindungsgemäße Pumpe unempfindlich gegen das Vorhandensein von Flüssigkeit im Schöpfraum, solange sich die Rotoren in Drehung befinden. Diese Unempfindlichkeit besteht auch im stationären Zustand dank der hohen Lageranordnung im Rotor, solange die Flüssigkeit im Schöpfraum das Lagerniveau nicht erreicht. Sie ist nicht nur dann wichtig, wenn das Fördermedium einen Flüssigkeitsschwall mit sich führt, sondern kann auch für die Reinigung und/oder Kühlung der Pumpe durch Flüssigkeitseinspritzung genutzt werden. Beispielsweise kann durch Düsen, von denen eine bei 27 angedeutet ist, Reinigungs- oder Kühlflüssigkeit eingesprüht werden. Es können dieselben oder gesonderte Düsen 27 zum Einsprühen der Reinigungsflüssigkeit und der Kühlflüssigkeit verwendet werden.
Wenn mit sehr starker Verschmutzung gerechnet werden muß, besteht die Möglichkeit. während des Betriebs ständig Reinigungsflüssigkeit einzusprühen. Beim Betrieb einer Vakuumpumpe sollte die Reinigungsflüssigkeit, soweit sie in den Saugraum gelangen kann, einen Dampfdruck unterhalb des Ansaugdrucks haben. Wenn die Pumpe mehrstufig ist und die Verschmutzung sich (beispielsweise druckabhängig) hauptsächlich in der zweiten und/oder folgenden Stufen niederschlägt, besteht die Möglichkeit, die Einspritzung der Reinigungsflüssigkeit auf die zweite bzw. folgende Stufe zu begrenzen und dadurch von der Saugseite zu trennen.
In den meisten Fällen erfolgt der Reinigungsbetrieb jedoch nicht ständig, sondern periodisch wenn Reinigungsbedarf (beispielsweise infolge Anstiegs des Antriebsdrehmoments) festgestellt wird. Dank der Unempfindlichkeit der Pumpe gegenüber Flüssigkeiten können dann auch verhältnismäßig große Flüssigkeitsmengen verwendet werden. Wenn aufgrund der Menge oder Art der verwendeten Reinigungsflüssigkeit die Betriebsdrehzahl nicht gehalten werden kann, kann die Drehzahl entsprechend gesenkt werden. Dafür sind geeignete Steuerungseinrichtungen vorgesehen. Beispielsweise kann die Drehzahl abhängig vom Antriebsdrehmoment gesteuert werden. was bei erhöhtem Leistungsbedarf selbsttätig zu einer entsprechenden Absenkung der Drehzahl gegenüber der Betriebsdrehzahl führt. Die fortdauernde Drehung der Rotoren auch während der Reinigungsphase dient nicht nur der Abdichtung der Rotorlagerung, sondern fördert auch die Einwirkung der Reinigungsflüssigkeit auf die verschmutzten Oberflächen.
Die Förderwirkung im Spalt zwischen Rotor und Lagerkörper kann auch zur Förderung von Sperrgas unabhängig von einer extemen Druckgasquelle genutzt werden. Im allgemeinen wird man aber zur Förderung des Sperrgases die Wirkung einer solchen Druckgasquelle bevorzugen, um in der Sperrgaszufuhr unabhängig von der Rotordrehzahl zu sein.
Das Schöpfraumgehäuse 4 kann eine Kammer 30 enthalten (Fig. 2), die ganz oder über einen großen Teil des Umfangs umläuft und durch die Kühlwasser zirkuliert, um das Gehäuse auf einer vorbestimmten Temperatur zu halten. Kühlung des Gehäusemantels ist nicht in allen Fällen erforderlich. Sie ist jedoch im erfindungsgemäßen Zusammenhang vorteilhafterweise möglich, weil auch die Rotoren 8 gekühlt sind und deren Wärmedehnung daher begrenzt ist. Es braucht nicht befürchtet zu werden, daß die Rotoren nur deshalb am Gehäuse anlaufen, weil sie sich dehnen, während das Gehäuse auf geringerer Temperatur gehalten wird.
Die erfindungsgemäße Pumpe kann mit Voreinlaß ausgerüstet werden. Das bedeutet, daß in den Bereichen hoher, ggf. auch schon mittlere Kompression im Gehäuse Kanäle 31 vorgesehen sind, durch die in den Schöpfraum Gas von höherem Druck als es dem Kompressionsstadium in diesem Bereich des Schöpfraums entspricht, eingelassen wird, um nach bekannten Grundsätzen eine Kühlung und/oder Geräuschminderung zu bewirken. Gemäß einem vorteilhaften Merkmal der Erfindung kann das Voreinlaßgas unmittelbar der Druckseite der Pumpe entnommen werden, indem es in den Kühltaschen 30 des Schöpfraummantels 4 gekühlt wird. Zu diesem Zweck kann es durch Wärmetauscherrohre geleitet werden.
Bei den Wälzlagern 21, 22 handelt es sich im dargestellten Beispiel um Schrägkugellager, die durch eine Feder 29 gegeneinander angestellt sind. Jede Welle 20 trägt unterhalb des Lagers 21 vorzugsweise unmittelbar, d.h. ohne zwischengeschaltete Kupplung, den Läufer 35 des Antriebsmotors, dessen Stator 36 in dem Motorgehäuse 2 angeordnet ist. Das Motorgehäuse kann mit Kühlkanälen 38 ausgerüstet sein.
Die Flanschplatten 50, die in dem dargestellten Beispiel mit den Lagerkörpern 7 aus einem Stück bestehen, sind mit ihren Außenrändem 51, die im wesentlichen dem Umfang des Schöpfraumgehäuses 4 folgen, und ihren aneinanderliegenden Innenrändem 52 auf die Oberseite der Grundplatte 3 aufgesetzt. Die Flanschplatten 50 sind gegenüber der Grundplatte 3 gedichtet. Auch die im Radialschnitt einer Sekante folgenden Stirnflächen 53, an denen sie aneinander anliegen, sind mit einer Dichtungseinlage ausgerüstet.
Unter den Flanschplatten 50, zwischen den Rändern 51, 52 ist eine Eindrehung vorgesehen, die mit der Oberseite der Grundplatte 3 einen Raum 39 einschließt, der zur Aufnahme von Synchronisations-Zahnrädern 40 dient, die mit bekannten Mitteln drehfest auf den Wellen 20 zwischen den Lagern 21 und den Motorläufern angeordnet sind. Damit sie im Bereich der Innenränder 52 der Flanschplatten 50 miteinander kämmen können, weisen die Innenränder an entsprechender Stelle einen Ausschnitt auf, durch den die Zahnräder hindurchgreifen. Unterhalb dieses Ausschnitts bleibt auf jeder Seite ein Steg stehen, auf den in Fig. 1 die Bezugslinie der den Innenrand allgemein bezeichnenden Bezugsziffer 52 weist. Dieser Steg ist nicht nur aus Stabilitätsgründen vorteilhaft, sondern auch weil er eine umlaufende Abdichtung einerseits gegenüber der Grundplatte 3 und andererseits zwischen den abgeflachten Sekantenflächen der Flanschplatten 50 ermöglicht.
Die Ausdrehungen 39 in den Flanschplatten 50 haben einen Durchmesser, der größer ist als der Durchmesser der Synchronisations-Zahnräder 40. Sie sind im Verhältnis zu den Innenrändern 52 ein wenig exzentrisch angeordnet, damit die Synchronisations-Zahnräder 40 bei der Montage der Rotor-Baueinheiten trotz des Vorhandenseins des Dichtungsstegs bei 52 eingesetzt werden können.
Da der die Synchronisations-Zahnräder 40 enthaltende Raum 39 von dem Schöpfraum vollständig getrennt ist, besteht für die Synchronisations-Zahnräder die Gefahr der Verschmutzung nicht. Sie dienen lediglich der Notsynchronisation der Rotoren. Ihre Zähne kommen normalerweise nicht miteinander in Berührung. Eine Schmierung ist deshalb in der Regel nicht erforderlich. Zwar ist sie gewünschtenfalls anwendbar, aber der Trockenlauf der Synchronisation-Zahnräder vereinfacht die Konstruktion, weil eine Abdichtung zwischen dem Raum 39 und den Antriebsmotoren nicht erforderlich ist.
Die Synchronisations-Zahnräder 40 können auch als Impulsgeberscheiben dienen oder durch zusätzliche Impulsgeberscheiben ergänzt sein, die von Sensoren 42 abgetastet werden, von denen in Fig.1 einer dargestellt ist. Diese Sensoren 42 stehen mit einer Regeleinrichtung in Verbindung, die die jeweilige Drehstellung der Rotoren gegenüber einem Sollwert überwacht und über den Antrieb korrigiert. Es handelt sich dabei um eine Synchronisation der Rotoren auf elektronischem Wege, die als solche bekannt ist und daher hier keiner näheren Erläuterung bedarf. Das Spiel zwischen den Zähnen der Synchronisationszahnräder 40 ist etwas geringer als das Flankenspiel zwischen den Verdrängervorsprüngen 9 der Rotoren 8. Es ist jedoch größer als die Synchronisationstoleranz der elektronischen Synchronisationseinrichtung. Bei ordnungsgemäßem Funktionieren der letzteren kommen somit weder die Flanken der Verdrängervorsprünge 9 noch die Zähne der Synchronisationszahnräder 40 miteinander in Kontakt. Für den Fall, daß die letzteren doch einmal miteinander in Kontakt kommen sollten, sind sie mit einer verschleißfesten und ggf. gleitgünstigen Beschichtung versehen.
Die Leistungsdaten der Pumpe werden außer durch die Antriebsleistung und Drehzahl durch das an den Rotoren gebildete Verdränger- bzw. Fördervolumen und somit durch die Länge der Rotoren bestimmt. Man kann daher die Förderdaten dadurch verändern, daß man die Länge des die Rotoren enthaltenden Pumpenteils ändert. Eine Baureihe von Pumpen mit unterschiedlichen Leistungsdaten zeichnet sich deshalb vorzugsweise dadurch aus, daß die einzelnen Pumpen dieser Baureihe sich durch Abstufung der Länge dieser Teile unterscheiden, zu denen das Schöpfraumgehäuse, die Rotoren sowie ggf. die rohrförmigen, in die Rotoren hineinragenden Teile der Lagerkörper gehören.
Man erkennt, daß jeder Rotor mit den zugehörigen Lager- und Antriebseinrichtungen eine selbständig montierbare Baueinheit bildet, die neben dem Rotor aus den Lagern 21, 22, dem Lagerkörper 7, dem darin vorgesehenen Kühleinrichtungen, der Welle 20, dem Synchronisationszahnrad 40, dem zugehörigen Sensor 42 und dem Motorläufer 35 besteht. Diese Einheiten werden komplett vormontiert in die Pumpe eingesetzt. Sie können nach der Abnahme des Schöpfraumgehäuses leicht von der Grundplatte 3 abgenommen bzw. eingesetzt werden. Ihre Auswechslung kann daher dem Anwender überlassen bleiben. während der Hersteller die Wartung der empfindlichen Einheiten als solchen besorgt.
Fig. 2 und Fig. 4 veranschaulichen, daß der Saugraum 11 von dem Schöpfraum durch eine Deckplatte 14 getrennt ist, die einen unmittelbaren Durchtritt des angesaugten Mediums von der Saugöffnung 6 in den Schöpfraum verhindert. Stattdessen gelangt es zunächst durch die eine oder andere von zwei Öffnungen 61 in den Kopfraum 62 eines von zwei Absetzräumen 63, die als besondere Behälter 68 an die Breitseiten des Schöpfraumgehäuses 4 angesetzt sind. Der Kopfraum 62 ist nach unten zum Absetzraum 63 hin offen und seitlich durch Trennwände 64 von zwei Seitenräumen 65 abgegrenzt, die gleichfalls zum Absetzraum 63 hin offen sind und durch je eine Öffnung 66, die beiderseits der Öffnung 61 angeordnet sind, mit dem Schöpfraum der Pumpe verbunden sind. Das angesaugte Medium gelangt von der Saugöffnung 6 durch den Saugraum 11 in einen mittleren Kopfraum 62, wird darin nach unten umgelenkt in den Absetzraum 63, wird darin umgelenkt nach oben zu einem der Seitenkopfräume 65 und gelangt von hier aus durch die Öffnung 66 in den Schöpfraum. Die Öffnungen 61, 62, durch die das Medium in den Absetzraum 63 einströmt, sind somit räumlich versetzt gegenüber den Öffnungen 65, 66, durch die es in den Schöpfraum wieder abfließt. Die dem Gasstrom dadurch aufgezwungene Umlenkung hat zur Folge, daß etwa von ihm mitgeführte flüssige oder feste Partikeln aufgrund der Trägheitswirkung nach unten in den Absetzraum 63 geschleudert werden. Insbesondere gilt dies auch für einen etwaigen Flüssigkeitsschwall. Falls des öfteren mit Flüssigkeitsschwall gerechnet werden muß, können die Absetzräume mit Ausschleuseinrichtungen für die darin enthaltene Flüssigkeit versehen sein. Unabhängig davon oder auch ggf. damit funktionell verbunden kann ein Füllstandsmesser 67 vorgesehen sein.
Die Pumpe ist vorzugsweise von isochorer Bauart, um auch größere Flüssigkeitsmengen schadlos mitfördern zu können.

Claims (9)

  1. Vakuumpumpe mit einem Paar innerhalb eines axial durchströmten Schöpfraums umlaufender, insbesondere schraubenförmig ineinandergreifender Verdrängerrotoren (8), die fliegend von je einer druckseitig gelagerten Welle (20) getragen sind, von denen jede mit dem Läufer (35) eines außerhalb des den Schöpfraum bildenden Gehäuses (4) angeordneten Motors verbunden ist, dadurch gekennzeichnet, daß jeder Rotor (8) mit der zugehörigen Welle (20) und einem besonderen, am Gehäuse fixierbaren, stationären Lagerkörper (7), der die gesamte Wellenlagerung aufnimmt, eine von dem Gehäuse abziehbare Einheit bildet.
  2. Vakuumpumpe nach Anspruch 1, dadurch gekennzeichnet, daß jedem Rotor (8) ein gesonderter Lagerkörper (7) zugeordnet ist.
  3. Vakuumpumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das den Schöpfraum bildende Gehäuse (4) druckseitig an eine Grundplatte (3) angrenzt, an der der Lagerkörper (7) fixierbar ist.
  4. Vakuumpumpe nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß eine Flanschplatte (50), die mit der Rotor-Baueinheit abziehbar ist, einen vom Schöpfraum abgedichteten Raum begrenzt, in welchem ein Synchronisationszahnrad (40) und/oder eine Impulsgeberscheibe vorgesehen ist.
  5. Vakuumpumpe nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß an der Grundplatte (3) an der dem Schöpfraumgehäuse (4) abgelegenen Seite ein die Motoren aufnehmendes Motorgehäuse (37) angeordnet ist.
  6. Vakuumpumpe nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß wenigstens ein Rotorlager (22) innerhalb des Rotors (8) in einem nur zur Druckseite (12) hin offenen Raum (24) des Rotors an einem in den Rotor (8) hineinragenden, rohrförmigen Teil (23) des Lagerkörpers (7) angeordnet ist.
  7. Vakuumpumpe nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß auch der Motorläufer (35) der insgesamt abziehbaren Rotor-Baueinheiten angehört.
  8. Vakuumpumpe nach einem der Ansprüche 1 bis 7. dadurch gekennzeichnet, daß auch das Synchronisationszahnrad bzw. die Impulsgeberscheibe der insgesamt abziehbaren Rotor-Baueinheit angehört.
  9. Baureihe von Vakuumpumpen nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß Pumpen unterschiedlicher Förderdaten sich abgesehen vom Antrieb im wesentlichen nur durch die Länge der Rotoren, der Schöpfraumgehäuse und ggf. der rohrförmigen Teile der Lagerkörper sowie ggf. die Ausführung der Verdrängervorsprünge am Umfang der Rotoren (8) unterscheiden.
EP96922830A 1995-06-21 1996-06-18 Vakuumpumpe Expired - Lifetime EP0834017B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE1995122555 DE19522555A1 (de) 1995-06-21 1995-06-21 Rotationskolbenverdichter mit zwei Rotoren
DE19522560 1995-06-21
DE19522555 1995-06-21
DE1995122560 DE19522560A1 (de) 1995-06-21 1995-06-21 Vakuumpumpe mit einem Paar innerhalb eines axial durchströmten Schöpfraums umlaufender Verdrängerrotoren
PCT/EP1996/002630 WO1997001037A1 (de) 1995-06-21 1996-06-18 Vakuumpumpe

Publications (2)

Publication Number Publication Date
EP0834017A1 EP0834017A1 (de) 1998-04-08
EP0834017B1 true EP0834017B1 (de) 1999-10-27

Family

ID=26016150

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96922830A Expired - Lifetime EP0834017B1 (de) 1995-06-21 1996-06-18 Vakuumpumpe

Country Status (12)

Country Link
US (1) US5904473A (de)
EP (1) EP0834017B1 (de)
JP (1) JP3957083B2 (de)
KR (1) KR100390254B1 (de)
AT (1) ATE186102T1 (de)
DE (1) DE59603493D1 (de)
DK (1) DK0834017T3 (de)
ES (1) ES2140108T3 (de)
GR (1) GR3032483T3 (de)
PT (1) PT834017E (de)
TW (1) TW454066B (de)
WO (1) WO1997001037A1 (de)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19745616A1 (de) * 1997-10-10 1999-04-15 Leybold Vakuum Gmbh Gekühlte Schraubenvakuumpumpe
EP1059454B1 (de) * 1999-06-09 2003-08-27 Sterling Fluid Systems (Germany) GmbH Drehkolbenverdichter mit axialer Förderrichtung
FR2812040B1 (fr) * 2000-07-18 2003-02-07 Cit Alcatel Carter monobloc pour pompe a vide
GB2370320A (en) * 2000-12-21 2002-06-26 Ingersoll Rand Europ Sales Ltd Compressor and driving motor assembly
DE20314793U1 (de) * 2003-09-24 2005-02-03 Hugo Vogelsang Maschinenbau Gmbh Hydraulisch angetriebene Pumpe
US20070196228A1 (en) * 2003-11-10 2007-08-23 Tunna Clive Marcus L Dry Pumps
EP1979619B1 (de) * 2006-01-31 2016-12-14 Ebara Corporation Vakuumpumpeneinheit
JP4853168B2 (ja) * 2006-08-10 2012-01-11 株式会社豊田自動織機 スクリューポンプ
BE1017371A3 (nl) * 2006-11-23 2008-07-01 Atlas Copco Airpower Nv Rotor en compressorelement voorzien van zulke rotor.
JP4844489B2 (ja) 2007-07-19 2011-12-28 株式会社豊田自動織機 流体機械
KR101441924B1 (ko) * 2008-06-23 2014-09-22 엘지전자 주식회사 냉장고
DE102008053522A1 (de) * 2008-10-28 2010-04-29 Oerlikon Leybold Vacuum Gmbh Verfahren zum Reinigen einer Vakuumpumpe
IT1393277B1 (it) * 2009-03-17 2012-04-12 Vhit Spa Pompa per vuoto rotativa con un dispositivo di disaccoppiamento dal motore di azionamento
US8764424B2 (en) 2010-05-17 2014-07-01 Tuthill Corporation Screw pump with field refurbishment provisions
WO2012076204A2 (fr) * 2010-12-10 2012-06-14 Ateliers Busch Sa Pompe à vide pour applications dans des machines d'emballage sous vide
RU2014152812A (ru) * 2012-05-25 2016-07-20 Ателье Буш Са Усовершенствованная объемная машина винтового типа
TWI491803B (zh) * 2013-02-07 2015-07-11 Hanbell Precise Machinery Co Ltd 一種雙段螺旋導程真空泵
JP6377838B2 (ja) * 2015-03-27 2018-08-22 株式会社日立産機システム ガス圧縮機
JP6377839B2 (ja) * 2015-03-31 2018-08-22 株式会社日立産機システム ガス圧縮機
CN106762646A (zh) * 2016-12-27 2017-05-31 北京朗禾科技有限公司 一种双电机复合转子双轴传动设备
CN106050664A (zh) * 2016-08-05 2016-10-26 北京朗禾科技有限公司 一种复合转子真空泵
CN106151031A (zh) * 2016-09-30 2016-11-23 北京艾岗科技有限公司 一种无油螺杆空压机
JP6930290B2 (ja) * 2017-08-28 2021-09-01 株式会社ジェイテクト 外接ギヤポンプ
US11365735B2 (en) * 2017-10-25 2022-06-21 Carrier Corporation Internal discharge gas passage for compressor

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4293290A (en) * 1979-05-04 1981-10-06 Crepaco, Inc. Positive displacement rotary pump with bearings in countersunk portions of the rotors
US4846641A (en) * 1983-08-08 1989-07-11 Micropump Corporation Readily-removable floating bushing pump construction
GB8333929D0 (en) * 1983-12-20 1984-02-01 Ssp Pumps Rotary pumps
DE69132867T2 (de) * 1990-08-01 2002-09-12 Matsushita Electric Industrial Co., Ltd. Drehkolbenanlage für flüssige Medien
US5354179A (en) * 1990-08-01 1994-10-11 Matsushita Electric Industrial Co., Ltd. Fluid rotating apparatus
JP3049793B2 (ja) * 1991-03-04 2000-06-05 松下電器産業株式会社 流体回転装置
JP3074829B2 (ja) * 1991-09-05 2000-08-07 松下電器産業株式会社 流体回転装置
KR960009861B1 (ko) * 1992-01-31 1996-07-24 다니이 아끼오 유체회전장치
DE69304102T3 (de) * 1992-01-31 2004-06-03 Matsushita Electric Industrial Co., Ltd., Kadoma Gerät mit mehreren synchron rotierenden Wellen
JPH05209594A (ja) * 1992-01-31 1993-08-20 Hitachi Ltd スクリュー真空ポンプ
JP3569924B2 (ja) * 1992-03-19 2004-09-29 松下電器産業株式会社 流体回転装置
EP0733804B1 (de) * 1995-03-20 2002-12-18 Ebara Corporation Vakuumpumpe

Also Published As

Publication number Publication date
GR3032483T3 (en) 2000-05-31
WO1997001037A1 (de) 1997-01-09
ATE186102T1 (de) 1999-11-15
DE59603493D1 (de) 1999-12-02
KR19990083660A (ko) 1999-12-06
KR100390254B1 (ko) 2003-08-19
DK0834017T3 (da) 2000-04-25
TW454066B (en) 2001-09-11
JPH11508343A (ja) 1999-07-21
US5904473A (en) 1999-05-18
PT834017E (pt) 2000-04-28
JP3957083B2 (ja) 2007-08-08
EP0834017A1 (de) 1998-04-08
ES2140108T3 (es) 2000-02-16

Similar Documents

Publication Publication Date Title
EP0834017B1 (de) Vakuumpumpe
EP0834018B1 (de) Mehrstufiger schraubenspindelverdichter
EP1163451B1 (de) Schraubenkompressor
EP1163452B1 (de) Schraubenkompressor
DE69123898T3 (de) Drehanlage für flüssige Medien
EP0409287B1 (de) Vakuumpumpe mit Schöpfraum
EP1021654B1 (de) Schraubenvakuumpumpe mit rotoren
DE19522559A1 (de) Verdichter mit axialer Förderrichtung, insbesondere in Schraubenspindel-Bauweise
DE19522560A1 (de) Vakuumpumpe mit einem Paar innerhalb eines axial durchströmten Schöpfraums umlaufender Verdrängerrotoren
EP0569455B1 (de) Trockenlaufende zweiwellenvakuumpumpe
EP0290663A1 (de) Ein- oder mehrstufige Zweiwellenvakuumpumpe
EP0569424B1 (de) Trockenlaufende vakuumpumpe
DE20302989U1 (de) Drehkolbenpumpe
WO2000053931A1 (de) Schraubenkompressor
EP0287797B1 (de) Zweiwellenvakuumpumpe mit einem Synchronisationsgetriebe
EP0942172B1 (de) Mehrwellenvakuumpumpe
EP0617201B1 (de) Füll-, Fluid-Transport- und Pumpeinrichtung
DE19522555A1 (de) Rotationskolbenverdichter mit zwei Rotoren
DE19522551C2 (de) Zweiwellen-Verdrängermaschine
DE19522557A1 (de) Drehkolbenverdichter, insbesondere Vakuumpumpe
DE10149366A1 (de) Axial fördernde Reibungsvakuumpumpe
DE3118297A1 (de) Zahnradpumpe
DE60318841T2 (de) Flüssigkeitsringverdichter
EP0618364B1 (de) Hydrostatische Pumpe
DE4134939A1 (de) Spiralverdichter mit verbessertem schmiermittelfluss

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971112

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19990203

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: STERLING INDUSTRY CONSULT GMBH

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

REF Corresponds to:

Ref document number: 186102

Country of ref document: AT

Date of ref document: 19991115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG

REF Corresponds to:

Ref document number: 59603493

Country of ref document: DE

Date of ref document: 19991202

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: UFFICIO TECNICO ING. A. MANNUCCI

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2140108

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000201

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20000124

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20090624

Year of fee payment: 14

Ref country code: IE

Payment date: 20090618

Year of fee payment: 14

Ref country code: ES

Payment date: 20090629

Year of fee payment: 14

Ref country code: DK

Payment date: 20090622

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20090623

Year of fee payment: 14

Ref country code: PT

Payment date: 20090617

Year of fee payment: 14

Ref country code: LU

Payment date: 20090625

Year of fee payment: 14

Ref country code: FI

Payment date: 20090624

Year of fee payment: 14

Ref country code: AT

Payment date: 20090622

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20090623

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090618

Year of fee payment: 14

Ref country code: CH

Payment date: 20090624

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20090629

Year of fee payment: 14

Ref country code: GB

Payment date: 20090623

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090626

Year of fee payment: 14

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20101220

BERE Be: lapsed

Owner name: *STERLING INDUSTRY CONSULT G.M.B.H.

Effective date: 20100630

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20110101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100618

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

Ref country code: DK

Ref legal event code: EBP

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101220

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100618

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110101

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110104

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110706

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100619

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100618

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150629

Year of fee payment: 20

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20000400178

Country of ref document: GR

Effective date: 20110104

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59603493

Country of ref document: DE