EP0810611B1 - Thermistance pour des températures élevées contenant des métaux du groupe de terres rares - Google Patents

Thermistance pour des températures élevées contenant des métaux du groupe de terres rares Download PDF

Info

Publication number
EP0810611B1
EP0810611B1 EP97201494A EP97201494A EP0810611B1 EP 0810611 B1 EP0810611 B1 EP 0810611B1 EP 97201494 A EP97201494 A EP 97201494A EP 97201494 A EP97201494 A EP 97201494A EP 0810611 B1 EP0810611 B1 EP 0810611B1
Authority
EP
European Patent Office
Prior art keywords
mixed crystal
thermistor
temperature
oxide
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97201494A
Other languages
German (de)
English (en)
Other versions
EP0810611A1 (fr
Inventor
Wilhelm-Albert Dr. Groen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Intellectual Property and Standards GmbH
Koninklijke Philips NV
Original Assignee
Philips Corporate Intellectual Property GmbH
Philips Patentverwaltung GmbH
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Corporate Intellectual Property GmbH, Philips Patentverwaltung GmbH, Koninklijke Philips Electronics NV filed Critical Philips Corporate Intellectual Property GmbH
Publication of EP0810611A1 publication Critical patent/EP0810611A1/fr
Application granted granted Critical
Publication of EP0810611B1 publication Critical patent/EP0810611B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • H01C7/042Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient mainly consisting of inorganic non-metallic substances
    • H01C7/043Oxides or oxidic compounds

Definitions

  • the present invention relates to a semiconductor ceramic from a mixed crystal oxide of rare earth oxides and a high temperature thermistor with such a ceramic, in particular a thermistor covering the entire temperature range from room temperature can be used up to 1100 ° C.
  • Thermistors for high temperatures have been replaced by new ones in recent years Areas of application in immission protection gained importance. you will be for example as a temperature sensor for industrial exhaust gas temperature measurements or for temperature control and overtemperature protection for catalytic exhaust gas combustion used in cars.
  • the typical application temperatures in cars are between 600 ° C and 1100 ° C, only works at these elevated temperatures the catalytic exhaust gas combustion optimal.
  • Thermistors made of oxide semiconductor ceramics offer compared to thermocouples in this temperature range Advantage that they have a much larger output signal, so that for signal processing a simple circuit technology is sufficient.
  • Thermistors are also called NTC resistors because their resistance has a negative temperature coefficient (NTC).
  • thermistors are based on oxidic semiconductor ceramics, which are based on oxidic compounds of the transition metals of the spinel or perovskite type.
  • Multi-phase systems are often used, in which the base material is modified by additional components.
  • Today's NTC components consist almost exclusively of mixed crystals with a spinel structure, which are composed of 2 to 4 cations from the group Mn, Ni, Co, Fe, Cu and Ti.
  • the nominal resistance R 25 and the B constant relevant for temperature sensitivity are set to variable values by appropriate reaction control during manufacture, so that the production of a certain range of thermistors is possible with a given offset.
  • NTC thermistors The manufacturing spread of NTC thermistors is quite critical because of the contamination content is difficult to control in the sintered material. You can also the ceramic compounds forming during production and their Crystal structures change over time, especially at high temperatures. At high temperatures can also cause a slow reaction with the oxygen in the Atmosphere take place, which is a permanent change in the resistance value and of the temperature characteristic.
  • mixed crystal oxides of the spinel or perovskite type are only up to about 500 ° C operational. At higher temperatures, their long-term stability is too low and in addition, their specific resistance is too small for many areas of application.
  • Temperatures mixtures of rare earth oxides i.e. a mixture of 70 cat. % Sm and 30 cat% Tb to use. This mixture can reach temperatures of 1000 ° C, because it shows no tendency to oxygen to react to the atmosphere.
  • a thermistor is suitable as a temperature sensor for temperatures up to 1100 ° C. It is characterized by its particular stability at very high operating temperatures above 1000 ° C. It is therefore particularly suitable as a sensor in the hot area of catalytic exhaust gas cleaning or for temperature control for engine control.
  • the mixed crystal oxide has a cubic crystal structure of the CM 2 O 3 type.
  • Thermistors with a semiconductor ceramic made of such mixed crystal oxides are characterized by a special high temperature stability.
  • a semiconductor ceramic which is characterized in that the mixed crystal oxide has a cubic crystal structure of the CM 2 O 3 type is particularly preferred.
  • the semiconductor ceramic with a mixed crystal oxide of rare earth metals contains binary, ternary, quaternary, etc. generally multiple mixed crystal oxides, whose essential component is terbium and at least one other rare earth oxide from the group of yttrium, samarium, gadolinium; with the exception of binary terbium-samarium mixed crystal oxides.
  • the mixed crystal oxide can also dope neodymium, europium, dyspprosium, Contain holmium, erbium, thulium, ytterbium or lutetium.
  • the semiconductor ceramic Due to the terbium content in the structure, the semiconductor ceramic contains movable ones Electrons, which make the essential contribution to the conductivity of the semiconductor ceramic Afford.
  • the composition of the mixed crystal oxide is preferably chosen so that a cubic CM 2 O 3 type crystal structure is obtained.
  • the prerequisite for this is that the average ionic radius of the cations according to that of RD Shannon, Acta Cryst. A32 (1976) 751 values given are less than 1.06 angstroms.
  • These semiconductor ceramics are monomorphic, ie they do not change their crystal structure at higher temperatures.
  • the mixed crystal oxides according to the invention which crystallize in the CM 2 O 3 type have an outstandingly improved stability at very high temperatures, because in the mixed crystal oxides according to the invention with cations according to the definition given, the crystal structure does not change at higher temperatures.
  • the semiconductor ceramics are manufactured according to the usual ceramic ones Manufacturing methods.
  • the binary oxides are the starting compounds mentioned rare earth metals or, for example, their oxalates, carbonates, Hydroxides or similar used.
  • the starting mixtures are weighed, then mixed and ground dry or wet. This is preferably followed by better chemical homogenization and a calcination process for better compaction at 1000 ° C.
  • the shaping process follows to the green body by pressing, film pulling, screen printing or similar
  • the shaped green bodies go through a binder burnout and become then sintered at 1250 ° C to 1400 ° C.
  • the sintering process is not very sensitive for faults and not dependent on the gas atmosphere or the cooling curve.
  • connection electrodes preferably made of platinum
  • the connection electrodes can be used as wire electrodes during sintered. But it can also be platinum paste in the screen printing process applied and baked. Other methods are also possible, like applying in vacuum evaporation technology.
  • the resistance and its temperature dependency were used to test the thermistors determined in the temperature range from 200 ° C to 1100 ° C. Furthermore was the thermal resistance of the thermistors measured at high temperatures.
  • Mixed crystal oxides are produced which contain Y 2 O 3 and 3, 10 and 30 at% terbium.
  • the starting compounds Y 2 O 3 and Tb 4 O 7 are mixed in the appropriate mixing ratio and ground with zircon grinding balls for 16 hours.
  • This premixed powder is granulated with a conventional binder preparation. Tablets with a diameter of 6 mm and a thickness of 1 mm are pressed from the granules. These tablets are sintered in the air for six hours at 1350 ° C.
  • X-ray diffraction images show that the semiconductor ceramic obtained from mixed crystal oxides is a single-phase material with a CM 2 O 3 structure.
  • the average ionic radius of the mixed crystal oxides is 1.016 ⁇ , 1.018 ⁇ and 1.023 ⁇ , respectively.
  • the relative density of the mixed crystal oxides is greater than 94% of the theoretical density.
  • Quaternary mixed crystal oxides of yttrium oxide, samarium oxide and terbium oxide with the composition Y 0.5 Sm 0.9 Tb 0.6 O 3 and Y 0.5 Sm 0.5 Tb 1.0 O 3 are produced by the same method as in Example 1.
  • X-ray diffraction images show that the material is single-phase and crystallizes in the CM 2 O 3 type.
  • the average ionic radius of the mixed crystal oxides is 1.056 ⁇ and 1.046 ⁇ , respectively.
  • the relative density is greater than 95% of the theoretical density.
  • a ternary mixed crystal oxide with the composition Gd 1.4 Tb 0.6 O 3 is produced by the same method as in Example 1.
  • X-ray diffraction images show that the material is single-phase and crystallizes in the CM 2 O 3 type.
  • the average ion radius of the mixed crystal oxide is 1.054 ⁇ .
  • the density is greater than 95% of the theoretical density.
  • the temperature-resistance characteristics are used to test the thermistors according to the invention measured.
  • tablets made from the semiconductor ceramic according to the invention are coated with platinum paste on both sides for contacting.
  • the specific resistance is measured while the temperature is varied.
  • the reciprocal temperature is plotted against the logarithm of the specific conductivity ⁇ .
  • Thermistors are required to have a linear relationship between temperature and electrical output.
  • the semiconductor ceramic can be used as a thermistor.
  • Yttrium-terbium mixed crystal oxides have particularly favorable properties with a terbium content of more than 10 at%. she can be used up to temperatures of 1100 ° C.
  • Fig. 2 shows the Arrhenius curve for Y 0.5 Sm 0.9 Tb 0.6 O 3 (lower curve) and Y 0.5 Sm 0.5 Tb 1.0 O 3 (upper curve). Due to the lower resistance and the non-linearity of the Arrhenius curves above 600 ° C, mixed crystal oxides can be used as a sensor at temperatures from 20 ° C to 600 ° C.
  • the temperature-resistance characteristic must be reliable even at high temperatures be reproducible. In particular for applications in motor vehicle construction the deviations in temperature ⁇ T at 600 ° C to 1000 ° C +/- 2%, i.e. 20 ° C do not exceed at 1000 ° C.
  • Two identical thermistors are selected for each of these measurements.
  • One thermistor is heated to 1000 ° C for 100 h.
  • the resistance-temperature characteristics of both thermistors are then measured. If the resistance as a function of temperature is plotted for both thermistors, two parallel curves are obtained which are shifted by ⁇ t against each other.
  • the result of the measurements is shown in Table 4.5.
  • the results show that mixed crystal oxides based on yttrium oxide showed the best results. No aging effect was observed in 70% at% Y 2 O 3 with 30 at% terbium oxide.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Ceramic Engineering (AREA)
  • Thermistors And Varistors (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Claims (10)

  1. Thermistance avec une céramique de type semi-conducteur composée d'ur oxyde cristallin mixte des métaux de terres rares de composition : [YaGdbSmcTbd]2O3 avec
    0 ≤ a ≤ 0,995
    0 ≤ b ≤ 0,995
    0 ≤ c ≤ 0,995
    0,01 ≤ d ≤ 0,995 et
    a > 0, si b = 0 ou
    b > 0, si a = 0.
  2. Thermistance selon la revendication 1,
    caractérisée en ce
    que l'oxyde cristallin mixte a une structure cristalline cubique de type C-M2O3.
  3. Thermistance selon la revendication 2,
    caractérisée en ce
    que l'oxyde cristallin mixte contient, comme autres dopages, un élément du groupe néodyme, europium, gadolinium, dysprosium, holmium, erbium, thulium, ytterbium et lutétium.
  4. Thermistance selon la revendication 1,
    caractérisée en ce que
    0,5 ≤ a ≤ 0,99
    b = 0
    c = 0
    0,01 ≤ d ≤ 0,5.
  5. Thermistance selon la revendication 1,
    caractérisée en ce que
    0,65 ≤ a ≤ 0,75
    b = 0
    c = 0
    0,25 ≤ d ≤ 0,35.
  6. Thermistance selon la revendication 1,
    caractérisée en ce que
    a = 0
    0,1 ≤ b ≤ 0,7
    c = 0
    0,3 ≤ d ≤ 0,9.
  7. Thermistance selon la revendication 1,
    caractérisée en ce que
    0 < a ≤ 0,30
    b = 0
    0,3 ≤ c ≤ 0,5
    0,2 ≤ d ≤ 0,60.
  8. Céramique de type semi-conducteur à partir d'un oxyde cristallin mixte de composition [YaGdbSmcTbd]203 avec
    0 ≤ a ≤ 0,995
    0 ≤ b ≤ 0,995
    0 ≤ c ≤ 0,995
    0,01 ≤ d ≤ 0,995 et
    a > 0, si b = 0 ou
    b > 0, si a = 0.
  9. Céramique de type semi-conducteur selon la revendication 8,
    caractérisée en ce
    que l'oxyde cristallin mixte présente une structure cristalline cubique de type C-M2O3.
  10. Céramique de type semi-conducteur selon la revendication 9 ,
    caractérisée en ce
    que l'oxyde cristallin mixte contient, comme autres dopages, un élément du groupe néodyme, europium, gadolinium, dysprosium, holmium, erbium, thulium, ytterbium et lutétium.
EP97201494A 1996-05-31 1997-05-16 Thermistance pour des températures élevées contenant des métaux du groupe de terres rares Expired - Lifetime EP0810611B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19621934A DE19621934A1 (de) 1996-05-31 1996-05-31 Seltenerdmetallhaltiger Hochtemperatur-Thermistor
DE19621934 1996-05-31

Publications (2)

Publication Number Publication Date
EP0810611A1 EP0810611A1 (fr) 1997-12-03
EP0810611B1 true EP0810611B1 (fr) 1999-10-06

Family

ID=7795826

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97201494A Expired - Lifetime EP0810611B1 (fr) 1996-05-31 1997-05-16 Thermistance pour des températures élevées contenant des métaux du groupe de terres rares

Country Status (7)

Country Link
US (1) US5955937A (fr)
EP (1) EP0810611B1 (fr)
JP (1) JPH1087367A (fr)
KR (1) KR100427900B1 (fr)
CN (1) CN1118834C (fr)
DE (2) DE19621934A1 (fr)
TW (1) TW353233B (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7138901B2 (en) 2004-03-30 2006-11-21 General Electric Company Temperature measuring device and system and method incorporating the same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19736855A1 (de) 1997-08-23 1999-02-25 Philips Patentverwaltung Schaltungsanordnung mit einem SMD-Bauelement, insbesondere Temperatursensor und Verfahren zur Herstellung eines Temperatursensors
US7574369B1 (en) * 2001-10-11 2009-08-11 Eanesthesia Software Llc Data recording, billing, charges, and quality assurance software for mobile devices
JP2005294452A (ja) * 2004-03-31 2005-10-20 Fujitsu Ltd 薄膜積層体、その薄膜積層体を用いたアクチュエータ素子、フィルター素子、強誘電体メモリ、および光偏向素子
DE602007004871D1 (de) * 2007-12-21 2010-04-01 Vishay Resistors Belgium Bvba Stabiler Thermistor
DE102008009817A1 (de) * 2008-02-19 2009-08-27 Epcos Ag Verbundwerkstoff zur Temperaturmessung, Temperatursensor aufweisend den Verbundwerkstoff und Verfahren zur Herstellung des Verbundwerkstoffs und des Temperatursensors
DE102008055108A1 (de) 2008-12-22 2010-07-01 Robert Bosch Gmbh Sensoranordnung mit Temperaturfühler
WO2012056797A1 (fr) * 2010-10-27 2012-05-03 株式会社村田製作所 Céramique semi-conductrice et élément résistif
DE102014110553A1 (de) * 2014-07-25 2016-01-28 Epcos Ag Sensorelement, Sensoranordnung und Verfahren zur Herstellung eines Sensorelements
DE102014110560A1 (de) 2014-07-25 2016-01-28 Epcos Ag Sensorelement, Sensoranordnung und Verfahren zur Herstellung eines Sensorelements und einer Sensoranordnung
CN114544023B (zh) * 2022-01-25 2022-11-11 北京科技大学 一种阵列式稀土镍基氧化物精密测温***及使用方法
CN116023140B (zh) * 2023-01-03 2023-08-22 中国科学院新疆理化技术研究所 基于高熵稀土锡酸盐的氧不敏感型负温度系数热敏材料

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5439920B2 (fr) * 1973-06-21 1979-11-30
DE2518865C3 (de) * 1975-04-28 1979-03-08 Siemens Ag, 1000 Berlin Und 8000 Muenchen Heißleiter für hohe Temperaturen
DE2518894C3 (de) * 1975-04-28 1979-02-22 Siemens Ag, 1000 Berlin Und 8000 Muenchen Heißleiter für hohe Temperaturen
DE2518856C3 (de) * 1975-04-28 1979-03-01 Siemens Ag, 1000 Berlin Und 8000 Muenchen Heißleiter für hohe Temperaturen
GB1518487A (en) * 1976-08-18 1978-07-19 Siemens Ag Hot conductors
US4097345A (en) * 1976-10-15 1978-06-27 E. I. Du Pont De Nemours And Company Na5 GdSi4 O 12 and related rare earth sodium ion conductors and electrolytic cells therefrom
JPH07115872B2 (ja) * 1990-06-14 1995-12-13 財団法人国際超電導産業技術研究センター 酸化物超電導体およびその製造方法
JP2871258B2 (ja) * 1991-01-18 1999-03-17 日本碍子株式会社 酸化物超電導体及びその製造方法
US5644284A (en) * 1994-04-27 1997-07-01 Matsushita Electric Industrial Co., Ltd. Temperature sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7138901B2 (en) 2004-03-30 2006-11-21 General Electric Company Temperature measuring device and system and method incorporating the same

Also Published As

Publication number Publication date
DE19621934A1 (de) 1997-12-04
KR970076910A (ko) 1997-12-12
CN1175778A (zh) 1998-03-11
US5955937A (en) 1999-09-21
TW353233B (en) 1999-02-21
CN1118834C (zh) 2003-08-20
KR100427900B1 (ko) 2004-08-04
JPH1087367A (ja) 1998-04-07
DE59700516D1 (de) 1999-11-11
EP0810611A1 (fr) 1997-12-03

Similar Documents

Publication Publication Date Title
DE3150558C2 (fr)
EP3504169B1 (fr) Matériau ceramique, composant et procédé de fabrication dudit composant
EP0810611B1 (fr) Thermistance pour des températures élevées contenant des métaux du groupe de terres rares
EP2488468B1 (fr) Resistance comprenant un matériau céramique
DE2800495A1 (de) Nichtlinearer widerstand
DE69024340T2 (de) Halbleiterkeramikkondensator von laminiertem und zwischenkornisolationstyp und verfahren zu seiner herstellung
EP0687656B1 (fr) Céramique frittée pour thermisteurs hautement stables et procédé de fabrication
US3996168A (en) Ceramic electrical resistor
DE69833203T2 (de) Verfahren zur herstellung von ptc-halbleiterkeramiken
EP0609776A1 (fr) Céramique frittée pour thermistors à stabilité élevée et procédé pour sa production
DE3019098C2 (de) Keramisches Kaltleitermaterial und Verfahren zu dessen Herstellung
DE68910640T2 (de) Spannungsabhängiger nichtlinearer Widerstand und Verfahren zu seiner Herstellung.
EP2118037B1 (fr) Matériau céramique et composant électrocéramique contenant le matériau céramique
DE69712977T2 (de) Spannungsabhängiger nichtlinearer Widerstand, Herstellungsverfahren und Überspannungsschutzelement
DE102008046858A1 (de) Keramikmaterial, Verfahren zur Herstellung eines Keramikmaterials, elektrokeramisches Bauelement umfassend das Keramikmaterial
EP2585418B1 (fr) Céramique à ctn exempte de cobalt et procédé de fabrication d&#39;une telle céramique
EP0066333B1 (fr) Résistance non-linéaire et procédé pour sa fabrication
DE19740262C1 (de) Sinterkeramik für hochstabile Thermistoren und Verfahren zur Herstellung
EP0065806B1 (fr) Résistance dépendant de la tension et procédé pour sa fabrication
EP0638910B1 (fr) Céramique frittée pour thermistors stables à hautes températures et leur procédé de fabrication
EP0810612B1 (fr) Thermistance céramique d&#39;oxydes contenant de l&#39;indium
DE19834423B4 (de) Verwendung einer Sinterkeramik für hochstabile NTC-Einschaltstrombegrenzer und niederohmige NTC-Thermistoren
DE60305852T2 (de) Sinterkörper für Thermistoren, Thermistor und Temperatursensor
DE2449028B2 (de) Zu einem kaltleiterelement sinterbare zusammensetzung mit batio tief 3 als hauptbestandteil und verfahren zu ihrer herstellung
DE19817481A1 (de) Kaltleiterwerkstoff und Verfahren zu seiner Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19980603

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Owner name: PHILIPS PATENTVERWALTUNG GMBH

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19981209

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 59700516

Country of ref document: DE

Date of ref document: 19991111

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19991110

ET Fr: translation filed
RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Owner name: PHILIPS CORPORATE INTELLECTUAL PROPERTY GMBH

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Opponent name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080522

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080521

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090516

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090602

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080514

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091201