EP0809067A1 - Procédé de réduction, par recombustion des oxydes d'azote contenus dans les fumées issues d'une combustion primaire réalisée dans un four, et installation pour sa mise en oeuvre. - Google Patents

Procédé de réduction, par recombustion des oxydes d'azote contenus dans les fumées issues d'une combustion primaire réalisée dans un four, et installation pour sa mise en oeuvre. Download PDF

Info

Publication number
EP0809067A1
EP0809067A1 EP97400984A EP97400984A EP0809067A1 EP 0809067 A1 EP0809067 A1 EP 0809067A1 EP 97400984 A EP97400984 A EP 97400984A EP 97400984 A EP97400984 A EP 97400984A EP 0809067 A1 EP0809067 A1 EP 0809067A1
Authority
EP
European Patent Office
Prior art keywords
zone
fuel
recombustion
pressure
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97400984A
Other languages
German (de)
English (en)
Other versions
EP0809067B1 (fr
Inventor
Thierry Ferlin
Jean-Charles Joigneault
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Engie SA
Original Assignee
Gaz de France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaz de France SA filed Critical Gaz de France SA
Priority to SI9730090T priority Critical patent/SI0809067T1/xx
Publication of EP0809067A1 publication Critical patent/EP0809067A1/fr
Application granted granted Critical
Publication of EP0809067B1 publication Critical patent/EP0809067B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • F23C6/045Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure
    • F23C6/047Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure with fuel supply in stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2201/00Staged combustion
    • F23C2201/10Furnace staging
    • F23C2201/101Furnace staging in vertical direction, e.g. alternating lean and rich zones

Definitions

  • the invention relates to a process for reduction by recombination, nitrogen oxides contained in the fumes from primary combustion produced in an oven, as well as an installation for the implementation of this process.
  • This process consists in injecting a hydrocarbon according to very precise operating conditions, downstream of a first combustion during which the nitrogen oxides are produced.
  • the purpose of injecting this hydrocarbon is to create a reducing atmosphere which has the consequence, when the temperature is sufficiently high (generally above 1000 ° C.), of cracking the components of the hydrocarbon and of producing radicals (CH ° , H °, ..) which will combine with nitrogen monoxide and the other precursors of nitrogen oxides from the main combustion (first combustion) by complex chemical transformations to form molecular nitrogen and oxygen.
  • the zone in which the injection of this hydrocarbon is carried out is called the reduction or overcombustion zone.
  • the unburnt materials formed in the reductive overcombustion zone are then oxidized in a third step known as post-combustion.
  • the hydrocarbon which will supply the radicals necessary for the destruction of nitrogen oxides, is thus used both as a reactive depollution agent and as energy.
  • the efficiency of a recombustion process depends on many factors such as the temperature, the residence time in the recombustion zone, the nature and mode of injection of the hydrocarbon, the quantity of hydrocarbon injected, the rate initial nitrogen oxides, etc.
  • the recombination process of the prior art described above only achieves efficiency rates for the reduction of nitrogen oxides of the order of 50 to 60%.
  • the rate of effectiveness of the reduction of nitrogen oxides corresponds to the ratio of the number of moles of nitrogen oxides destroyed by the recombination / number of moles of nitrogen oxides before the recombustion.
  • the present invention aims to overcome the above drawbacks by ensuring better penetration and distribution of the fuel in the combustion zone and thus obtaining satisfactory nitrogen oxide reduction rates even when the dimensions of the furnace do not did not allow a good mixture of fuel and fumes, as in the process of the prior art.
  • the invention proposes a process for reducing the nitrogen oxides contained in the fumes from primary combustion, in an oven, by recombination of said fumes characterized by an injection of fuel into the recombustion zone of said oven according to at least two jets associated with relatively high and relatively low pressure respectively.
  • the low pressure fuel jet is externally concentric with the higher pressure fuel jet.
  • the fuel is a gas at a pressure of between a few millibars and a few hundred millibars for the low pressure jet and between a few hundred millibars and a few bars for the high pressure jet.
  • the pressure and the gas flow rates of the two above-mentioned jets are controlled so as to adapt to the dimensions of the combustion zone and to the characteristics of the fumes.
  • furnace's recombustion zone is subjected to acoustic waves.
  • the above-mentioned acoustic waves have a frequency of less than about 20 Hz.
  • the invention also provides an installation for implementing the method described above comprising an oven equipped with a primary combustion zone supplied by a main fuel and followed by a recombustion zone supplied by a secondary fuel, characterized in that that said recombustion zone is provided with at least two secondary fuel inlets at different pressures.
  • the two aforementioned inputs are coaxial.
  • the two aforementioned inlets are respectively provided with a device for controlling the flow rate and the pressure of the secondary fuel forming the two aforementioned jets.
  • the installation according to the invention has an acoustic wave generator mounted on the wall of the furnace so as to be able to homogenize the mixture in the recombustion zone.
  • One of the problems encountered during the implementation of the recombination process of the prior art resides in the mixing of the fuel (natural gas or any other hydrocarbon used) with the fumes containing the nitrogen oxides originating from the combustion zone and arriving in the recombustion zone. Indeed, a good homogenization of the fuel and the fumes in the recombustion zone is essential from the point of view of the temperature and mass exchanges. In fact, if there are flow zones where the radicals (CH °, etc.) are not produced and diffused, no destruction of the nitrogen oxides will take place in these zones.
  • the temperature must be sufficient to crack the radicals which will react with the nitrogen oxides to give molecular nitrogen and oxygen.
  • hydrocarbon used is dispersed and cracked as quickly as possible. Otherwise, the hydrocarbon (fuel) will burn with the residual oxygen from the fumes from the main combustion and create nitrogen oxides which is contrary to the desired goal.
  • the homogenization of the mixture is all the more difficult to obtain that the dimensions of the furnace are large and that the volume of fuel injected represents only about 1% of the volume of the fumes of the main combustion.
  • the homogenization of the fuel and smoke mixture is often limited by the residence time of the fuel-smoke mixture in the combustion zone. Indeed, this residence time is limited by the dimensions of the oven which are most often limited in height.
  • FIG. 1 a combustion oven for implementing the process for reducing nitrogen oxides according to the invention is illustrated in FIG. 1.
  • This oven has the three combustion zones mentioned above, that is to say say a first zone A of main combustion, a second zone B of recombustion and a third zone C of post-combustion. Above the post-combustion zone, there is a gas cooling zone D.
  • the main combustion zone A comprises supply orifices 3 for a mixture of a so-called fuel primary fuel and air.
  • the primary fuel can be of any kind: coal, fuel oil, waste, wood, natural gas, etc.
  • the primary fuel will be natural gas.
  • the aeration rate of this main combustion zone i.e., the ratio of the actual combustion air volume to the theoretical combustion air (stoichiometric combustion) generally varies in the range of 1.05 at 1.1.
  • the nitrogen oxides contained in the fumes from this primary combustion are then reduced in zone B of reductive combustion or overcombustion.
  • the reduction of nitrogen oxides is achieved by injecting a fuel called secondary fuel by the feed marked 2 in FIG. 1.
  • the secondary fuel is injected through inlet 2 in a volume representing 10 to 20% of the volume of the primary fuel, in order to obtain a ventilation rate close to 0.9 in zone B.
  • the secondary fuel used for the recombustion injected into the reducing zone B can, like the primary fuel, be of any kind: coal, fuel oil, waste, wood, natural gas, etc. However, according to the invention, natural gas is preferably used.
  • the oxidation stage of unburnt materials is called the post-combustion stage, and is then carried out.
  • the post-combustion stage is carried out thanks to the introduction, by the inlet marked 1 in FIG. 1, of air to complete the combustion.
  • the injection of the secondary fuel, preferably natural gas, into the recombustion zone B must be carried out in a temperature range between 1100 and 1500 ° C. and it must be carried out at a corresponding flow rate and pressure.
  • sufficient residence time in the recombination zone to allow satisfactory homogenization of the fuel-smoke mixtures as well as to allow reduction reactions to take place.
  • the residence time must generally be of the order of 0.5 to 1 second depending on the operating conditions.
  • the reduction temperature used for the recombustion step, in the recombustion zone B, can be lowered to approximately 1000 ° C. but it is then necessary to increase the residence time.
  • a balance must therefore be found between the residence time-temperature parameters, in order to obtain a satisfactory homogenization between the secondary fuel used in zone B of combustion and the fumes from zone A of primary or main combustion containing the oxides d nitrogen to reduce.
  • the secondary fuel behaves like a jet in a transverse flow and the homogenization of a mixture of a jet (secondary fuel) in a transverse flow (fumes from primary combustion) is subject to antagonistic constraints, d 'all the more difficult as the volume flow rate of the jet on the wall of the furnace is low compared to the main transverse flow.
  • the present invention consists in injecting the secondary fuel, preferably natural gas, via a system with several pulses. More particularly, in the installation illustrated in FIG. 1, the secondary fuel is injected by a double pulse system into the recombustion zone.
  • the secondary fuel preferably natural gas
  • the double pulse injection according to the invention has two gas supply circuits 2, 2 ′, a low pressure supply circuit 2 ′, adjusted and controlled by any suitable means noted 4 in FIG. 1, and a high pressure gas supply circuit 2 adjusted and controlled by any suitable means noted 5 in FIG. 1.
  • the double pulse makes it possible to improve the penetration of the jet of secondary fuel up to the center of the oven and also to distribute this fuel throughout the oven enclosure.
  • the central high pressure jet also entrains part of the fuel injected at lower pressure, which also improves its mixing.
  • This double pulse of gaseous fuel can be very easily adjusted, the variations in flow rate and pressure of the gaseous fuel are very easy to achieve in order to optimize the mixture, that is to say in order to adapt to the dimensions of the combustion zone, to the characteristics of the smoke, and at the desired reduction rates.
  • the two inlets 2, 2 ′ of the secondary fuel are coaxial and the inlet of the low pressure fuel is externally concentric with the inlet of the high pressure fuel.
  • the invention is therefore particularly advantageous in cases in which the dimensions of the furnace do not allow good mixing of the fuel in the flue gases, in particular.
  • the invention also makes it possible, by improving the mixture, to reduce the quantities of secondary fuel to be injected in order to obtain a given rate of reduction of nitrogen oxides.
  • the nitrogen reduction rates obtained are of the order of 50 to 60% in moles, by substituting, for coal, 20% in energy supply of natural gas.
  • an infrasound generator denoted 6 in FIG. 1 appended is mounted on one of the walls of the combustion furnace at the level of the recombination zone B.
  • the reduction rate of nitrogen oxides contained in the fumes from primary combustion is generally greater than 80%, more precisely in the range of about 80 to about 90%, in moles.
  • the process for reducing nitrogen oxides by recombining the fumes from primary combustion therefore makes it possible to achieve an NOx reduction efficiency of the order of 70 to 80% by performing the injection.
  • secondary fuel preferably natural gas, in the combustion zone, following at least two jets associated with relatively high and relatively low pressure respectively.
  • the low pressure fuel jet is externally concentric with the higher pressure fuel jet, which improves the penetration of the secondary fuel to the center of the furnace thanks to the high pressure jet and also distributes the gas throughout the enclosure.
  • the central high-pressure jet entraining part of the gas injected at a lower pressure, the mixture of the gaseous secondary fuel with the fumes of the primary combustion containing the nitrogen oxide to be reduced is thus improved.
  • the gaseous fuel is injected for the low pressure jet at a pressure between a few millibars and a few hundred millibars and for the high pressure jet, between a few hundred millibars and a few bars.
  • the acoustic waves used have a frequency of less than about 20 Hz.
  • the use of multiple pulse injection and the production of infrasound in the nitrogen oxides recombination process makes it possible to achieve NOx reduction efficiency rate of around 50% but using less fuel.
  • the reduction in the quantity of secondary fuel is of the order of 50% by volume, which makes it possible to reduce the cost of the process.
  • a method and a device comprising a double-pulse injection have been described, devices and methods using a multiple-pulse injection of the secondary fuel in the recombination zone can be used.
  • a triple pulse injection of the secondary fuel can be envisaged, in which the gaseous fuel will be injected according to two high pressure jets concentric with one another and a low pressure jet concentrically external to the two high pressure jets.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Incineration Of Waste (AREA)

Abstract

Procédé de réduction des oxydes d'azote contenus dans les fumées issues d'une combustion primaire (A), dans un four, par recombustion. Elle concerne également une installation pour la mise en oeuvre de ce procédé. Le procédé selon l'invention est caractérisé en ce qu'on injecte un combustible secondaire dans la zone de recombustion (B) dudit four, suivant au moins deux jets (2,2') associés à pression relativement haute et relativement basse, respectivement. L'invention trouve application dans le domaine de l'épuration des fumées, issues d'une combustion primaire. <IMAGE>

Description

  • L'invention concerne un procédé de réduction par recombustion, des oxydes d'azote contenus dans les fumées issues d'une combustion primaire réalisés dans un four, ainsi qu'une installation pour la mise en oeuvre de ce procédé.
  • On sait que la combustion de combustibles de toute nature est à l'origine de la production d'oxydes d'azote par réaction avec l'air, en quantité plus ou moins importante selon le type du combustible et les conditions de la combustion. Ces oxydes d'azote émis dans l'atmosphère sont la cause de diverses pollutions. Ils contribuent notamment à la formation des pluies acides. Par ailleurs, combinés avec le monoxyde de carbone et les composés organiques volatils présents dans l'atmosphère , ils produisent de l'ozone troposphérique qui est à l'origine de l'augmentation des affections respiratoires (asthme, insuffisance respiratoire, etc.).
  • Il est donc important de réduire ou d'éliminer ces oxydes d'azote.
  • Dans ce but, on connaît un procédé dit de recombustion ou de surcombustion réductrice.
  • Ce procédé consiste à injecter un hydrocarbure selon des conditions opératoires très précises, en aval d'une première combustion au cours de laquelle les oxydes d'azote sont produits. L'injection de cet hydrocarbure a pour but de créer une atmosphère réductrice qui a pour conséquence, lorsque la température est suffisamment élevée (généralement supérieure à 1000°C), de craquer les composants de l'hydrocarbure et de produire des radicaux (CH°, H°, ..) qui vont se combiner avec le monoxyde d'azote et les autres précurseurs des oxydes d'azote issus de la combustion principale (première combustion) par des transformations chimiques complexes pour former de l'azote moléculaire et de l'oxygène. La zone dans laquelle l'injection de cet hydrocarbure est effectuée est appelée zone de recombustion ou de surcombustion réductrice.
  • Les imbrûlés formés dans la zone de surcombustion réductrice sont ensuite oxydés dans une troisième étape dite de post-combustion. L'hydrocarbure qui va fournir les radicaux nécessaires à la destruction des oxydes d'azote, est ainsi utilisé à la fois comme agent réactif de dépollution et comme énergie.
  • Le procédé de recombustion comporte donc trois étapes :
    • une première étape dite de combustion principale ou primaire effectuée dans une première zone d'un four de combustion, dite zone de combustion principale ou primaire. Cette étape correspond à l'étape proprement dite de combustion des combustibles, étape au cours de laquelle les oxydes d'azote se forment et sont entraînés dans les fumées;
    • une deuxième étape dite de recombustion ou de surcombustion réductrice effectuée dans une deuxième zone, dite zone de recombustion ou de surcombustion réductrice, du four de combustion lui-même.
  • Dans cette étape, un combustible dit combustible secondaire est injecté dans la zone de recombustion pour réduire les oxydes d'azote contenus dans les fumées issues de la combustion principale; et
    • une troisième étape dite de post-combustion effectuée dans une troisième zone du four de combustion en aval de la zone de recombustion, consistant à injecter de l'air dans cette troisième zone pour achever la combustion.
  • L'efficacité d'un procédé de recombustion dépend de nombreux facteurs tels que la température, le temps de séjour dans la zone de recombustion, la nature et le mode d'injection de l'hydrocarbure, la quantité d'hydrocarbure injectée, le taux d'oxydes d'azote initial, etc.
  • Mais, le procédé de recombustion de l'art antérieur décrit ci-dessus ne permet d'atteindre que des taux d'efficacité de la réduction des oxydes d'azote de l'ordre de 50 à 60%. Le taux d'efficacité de la réduction des oxydes d'azote correspond au rapport du nombre de moles d'oxydes d'azote détruits par la recombustion/nombre de moles d'oxydes d'azote avant la recombustion.
  • Or, les études théoriques de cinétique montrent que si le mélange du combustible introduit dans la zone de recombustion et des fumées issues de la zone de combustion principale était parfaitement homogène on pourrait atteindre une efficacité de réduction des oxydes d'azote de près de 90%.
  • La présente invention a pour but de pallier les inconvénients précédents en permettant d'assurer une meilleure pénétration et répartition du combustible dans la zone de recombustion et ainsi d'obtenir des taux de réduction des oxydes d'azote satisfaisants même lorsque les dimensions du four ne permettaient pas un bon mélange du combustible et des fumées, comme dans le procédé de l'art antérieur.
  • Ces buts sont atteints par l'invention qui propose un procédé de réduction des oxydes d'azote contenus dans les fumées issues d'une combustion primaire, dans un four, par recombustion desdites fumées caractérisé par une injection de combustible dans la zone de recombustion dudit four suivant au moins deux jets associés à pression relativement haute et relativement basse respectivement.
  • Plus précisément dans ce procédé le jet de combustible basse pression est extérieurement concentrique au jet de combustible à pression plus élevée.
  • De préférence, selon l'invention le combustible est un gaz à une pression comprise entre quelques millibars et quelques centaines de millibars pour le jet basse pression et entre quelques centaines de millibars et quelques bars pour le jet haute pression.
  • Egalement selon l'invention, la pression et les débits du gaz des deux jets précités sont commandés de façon à s'adapter aux dimensions de la zone de recombustion et aux caractéristiques des fumées.
  • De plus, la zone de recombustion du four est soumise à des ondes acoustiques.
  • De préférence, les ondes acoustiques précitées ont une fréquence inférieure à environ 20 Hz.
  • L'invention propose également une installation pour la mise en oeuvre du procédé décrite ci-dessus comprenant un four équipé d'une zone de combustion primaire alimentée par un combustible principal et suivie par une zone de recombustion alimentée par un combustible secondaire, caractérisée en ce que ladite zone de recombustion est munie d'au moins deux entrées de combustible secondaire à des pressions différentes.
  • Plus précisément, les deux entrées précitées sont coaxiales.
  • Selon l'invention, les deux entrées précitées sont respectivement munies d'un appareil de commande du débit et de la pression du combustible secondaire formant les deux jets précités.
  • De plus, l'installation selon l'invention a un générateur d'ondes acoustiques monté sur la paroi du four de façon à pouvoir homogénéiser le mélange dans la zone de recombustion.
  • L'invention sera mieux comprise et d'autres buts, caractéristiques, détails et avantages de celle-ci apparaîtront plus clairement au cours de la description explicative qui va suivre et qui est faite en référence au dessin unique annexé qui représente un mode de réalisation préféré d'un four dans lequel on effectue l'ensemble des opérations ci-dessus décrites de combustion principale, recombustion et post-combustion.
  • Un des problèmes rencontrés lors de la mise en oeuvre du procédé de recombustion de l'art antérieur réside dans le mélange du combustible (gaz naturel ou tout autre hydrocarbure employé) avec les fumées contenant les oxydes d'azote issus de la zone de combustion et parvenant dans la zone de recombustion. En effet, une bonne homogénéisation du combustible et des fumées, dans la zone de recombustion est indispensable du point de vue de la température et des échanges massiques. En effet s'il existe des zones d'écoulements où les radicaux (CH°, etc...) ne sont produits et diffusés, aucune destruction des oxydes d'azote n'aura lieu dans ces zones.
  • De même, il faut qu'en tout point du mélange la température soit suffisante pour craquer les radicaux qui vont réagir avec les oxydes d'azote pour donner de l'azote moléculaire et de l'oxygène.
  • Par ailleurs il est crucial que l'hydrocarbure utilisé soit le plus rapidement possible dispersé et craqué. Dans le cas contraire, l'hydrocarbure (combustible) va brûler avec l'oxygène résiduel des fumées issues de la combustion principale et, créer des oxydes d'azote ce qui est contraire au but recherché.
  • L'homogénéisation du mélange est d'autant plus délicate à obtenir que les dimensions du four sont importantes et que le volume de combustible injecté ne représente que environ 1% du volume des fumées de la combustion principale.
  • De plus, l'homogénéisation du mélange du combustible et des fumées est souvent limitée par le temps de séjour du mélange combustible-fumées dans la zone de recombustion. En effet, ce temps de séjour est limité par les dimensions du four qui sont le plus souvent limitées en hauteur.
  • A titre d'exemple, un four de combustion pour la mise en oeuvre du procédé de réduction des oxydes d'azote selon l'invention est illustré en figure 1. Ce four comporte les trois zones de combustion citées précédemment, c'est-à-dire une première zone A de combustion principale, une seconde zone B de recombustion et une troisième zone C de post-combustion. Au-dessus de la zone de post-combustion, il existe une zone D de refroidissement des gaz.
  • La zone de combustion principale A comporte des orifices d'alimentation 3 d'un mélange d'un combustible dit combustible primaire et d'air. Le combustible primaire peut être de toute nature : charbon, fioul, déchets, bois, gaz naturel, etc...
  • De préférence dans l'invention, le combustible primaire sera du gaz naturel.
  • Le taux d'aération de cette zone de combustion principale c'est-à-dire, le rapport du volume d'air réel de combustion sur l'air de combustion théorique (combustion stoechiométrique) varie généralement dans l'intervalle de 1,05 à 1,1.
  • Les oxydes d'azote contenus dans les fumées issues de cette combustion primaire sont ensuite réduits dans la zone B de recombustion ou surcombustion réductrice. La réduction des oxydes d'azote est réalisée grâce à l'injection d'un combustible dit combustible secondaire par l'alimentation notée 2 en figure 1. De préférence, le combustible secondaire est injecté par l'entrée 2 en un volume représentant 10 à 20% du volume du combustible primaire, afin d'obtenir un taux d'aération voisin de 0,9 dans la zone B.
  • De cette façon, l'atmosphère réductrice (en défaut d'oxygène) voulue est créée dans la zone de recombustion.
  • Le combustible secondaire utilisé pour la recombustion injecté dans la zone réductrice B, peut, comme le combustible primaire, être de toute nature : charbon, fioul, déchet, bois, gaz naturel, etc. Cependant, selon l'invention, le gaz naturel est de préférence utilisé.
  • L'étape d'oxydation des imbrûlés est dite étape de post-combustion, est ensuite effectuée.
  • L'étape de post-combustion est réalisée grâce à l'introduction, par l'entrée notée 1 en figure 1, d'air pour achever la combustion.
  • Pour être efficace, l'injection du combustible secondaire, de préférence le gaz naturel, dans la zone de recombustion B doit se faire dans une plage de température comprise entre 1100 et 1500°C et elle doit être réalisée à un débit et une pression correspondant à un temps de séjour suffisant dans la zone de recombustion pour permettre une homogénéisation des mélanges combustible-fumées satisfaisante ainsi que pour permettre aux réactions de réduction de se produire. Le temps de séjour doit généralement être de l'ordre de 0,5 à 1 seconde selon les conditions opératoires.
  • La température de réduction utilisée pour l'étape de recombustion, dans la zone de recombustion B, peut être abaissée à environ 1000°C mais il faut alors augmenter le temps de séjour.
  • Si l'élévation de la température augmente l'efficacité de la destruction des précurseurs des oxydes d'azote dans la zone de recombustion, il y a cependant un risque dans ce cas de produire des oxydes d'azote au niveau de l'injection d'air dans la zone de post-combustion au-delà d'une certaine température.
  • Un équilibre doit donc être trouvé entre les paramètres temps de séjour-température, afin d'obtenir une homogénéisation satisfaisante entre le combustible secondaire utilisé dans la zone B de recombustion et les fumées issues de la zone A de combustion primaire ou principale contenant les oxydes d'azote à réduire.
  • En fait le combustible secondaire se comporte comme un jet dans un flux transversal et l'homogénéisation d'un mélange d'un jet (combustible secondaire) dans un flux transversal (fumées issues de la combustion primaire) est soumise à des contraintes antagonistes, d'autant plus difficile que le débit volumique du jet sur la paroi du four est faible en comparaison au flux transversal principal.
  • Ceci est le cas dans le procédé de recombustion où le volume de combustible, de préférence du gaz naturel, injecté représente 1% et parfois moins du débit des fumées.
  • Afin d'améliorer l'homogénéisation, la présente invention consiste à injecter le combustible secondaire, de préférence du gaz naturel, par l'intermédiaire d'un système à plusieurs impulsions. Plus particulièrement, dans l'installation illustrée en figure 1, le combustible secondaire est injecté par un système à double impulsion dans la zone de recombustion.
  • L'injection à double impulsion selon l'invention possède deux circuits 2, 2' d'alimentation en gaz, un circuit d'alimentation à basse pression 2', réglé et contrôlé par tout moyen approprié noté 4 dans la figure 1, et un circuit d'alimentation en gaz haute pression 2 réglé et contrôlé par tout moyen approprié noté 5 sur la figure 1.
  • La double impulsion permet d'améliorer la pénétration du jet du combustible secondaire jusqu'au centre du four et également de répartir ce combustible dans l'ensemble de l'enceinte du four. Le jet central à haute pression entraîne également une partie du combustible injecté à plus basse pression, ce qui améliore également son mélange. Cette double impulsion de combustible gazeux peut être très facilement réglée, les variations de débit et des pressions du combustible gazeux sont très faciles à réaliser pour optimiser le mélange, c'est-à-dire de façon à s'adapter aux dimensions de la zone de recombustion, aux caractéristiques des fumées, et aux taux de réduction recherchés.
  • Dans le mode de réalisation représenté en figure 1, les deux entrées 2, 2' du combustible secondaire sont coaxiales et l'entrée du combustible basse pression est extérieurement concentrique à l'entrée du combustible à haute pression.
  • L'utilisation d'un tel système d'injection à double impulsion permet d'obtenir une réduction des oxydes d'azote contenus dans les fumées issues de la combustion primaire de l'ordre de 70 à 80%, en moles, alors qu'avec le procédé et le dispositif de l'art antérieur ne comportant ni cette étape d'injection à double impulsion du combustible secondaire et ni le système d'injection du combustible secondaire à plusieurs impulsions, les taux de réduction des NOx sont de l'ordre de 50 à 60%, en moles.
  • L'invention est donc particulièrement avantageuse dans les cas dans lesquels les dimensions du four ne permettent pas un bon mélange du combustible dans les fumées, en particulier.
  • L'invention permet également, en améliorant le mélange, de réduire les quantités de combustible secondaire à injecter pour obtenir un taux donné de réduction des oxydes d'azote.
  • Ceci est particulièrement avantageux, par exemple, dans le cas d'une chaudière où le combustible primaire est du charbon et le combustible secondaire ou de recombustion est du gaz naturel.
  • Actuellement dans un procédé de recombustion les taux de réduction d'azote obtenus sont de l'ordre de 50 à 60% en moles, en substituant, au charbon, 20% en apport énergétique de gaz naturel.
  • Avec l'utilisation du procédé et/ou de l'installation de l'invention, on peut obtenir ce même taux de réduction avec seulement 10 à 15% en valeur énergétique de gaz naturel injecté, ce qui représente un avantage économique.
  • Afin d'améliorer encore le mélange, en particulier dans les zones proches des parois du réacteur, et également entre les couches du jet haute pression et du jet basse pression du combustible secondaire gazeux, un générateur d'infrasons noté 6 dans la figure 1 annexée est monté sur une des parois du four de combustion au niveau de la zone B de recombustion.
  • Avec l'ajout de ce générateur d'infrasons, le taux de réduction des oxydes d'azote contenus, dans les fumées issues de la combustion primaire, est généralement supérieur à 80%, plus précisément dans l'intervalle d'environ 80 à environ 90%, en moles.
  • Le procédé de réduction des oxydes d'azote par recombustion des fumées issues d'une combustion primaire, selon l'invention, permet donc d'atteindre une efficacité de réduction des NOx de l'ordre de 70 à 80% en réalisant l'injection du combustible secondaire, de préférence du gaz naturel, dans la zone de recombustion, suivant au moins deux jets associés à pression relativement haute et relativement basse respectivement.
  • Dans ce procédé, le jet de combustible à basse pression est extérieurement concentrique au jet de combustible à pression plus élevée, ce qui permet d'améliorer la pénétration du combustible secondaire jusqu'au centre du four grâce au jet haute pression et également de répartir les gaz dans l'ensemble de l'enceinte. Le jet central à haute pression entraînant une partie du gaz injecté à plus basse pression, le mélange du combustible secondaire gazeux avec les fumées de la combustion primaire contenant l'oxyde d'azote à réduire est ainsi amélioré.
  • En associant à cette injection du combustible secondaire, dans la zone de recombustion, suivant au moins deux jets associés, concentriques, à pression relativement haute et pression relativement basse respectivement, le jet étant extérieurement concentrique au jet combustible à pression plus élevée, une production d'ondes acoustiques dans la zone de recombustion, l'efficacité du procédé de l'invention atteint près de 80 à 90%.
  • De préférence, le combustible gazeux est injecté pour le jet à basse pression à une pression comprise entre quelques millibars et quelques centaines de millibars et pour le jet à haute pression, entre quelques centaines de millibars et quelques bars.
  • Les ondes acoustiques utilisées ont une fréquence inférieure à environ 20 Hz.
  • Lorsque les contraintes réglementaires ne nécessitent pas d'atteindre une réduction aussi importante que celle citée précédemment, l'utilisation de l'injection à impulsion multiple et la production d'infrasons dans le procédé de recombustion des oxydes d'azote permet d'atteindre des taux d'efficacité de réduction des NOx de l'ordre de 50% mais en utilisant moins de combustible. Par exemple, la réduction de la quantité de combustible secondaire est de l'ordre de 50% en volume, ce qui permet de réduire le coût du procédé.
  • Bien entendu l'invention n'est nullement limitée aux modes de réalisation décrits et illustrés qui n'ont été donnés qu'à titre d'exemple.
  • Ainsi bien que l'on ait décrit un procédé et un dispositif comportant une injection à double impulsion, des dispositifs et des procédés utilisant une injection à impulsion multiple du combustible secondaire dans la zone de recombustion pourront être utilisés. Ainsi une injection à triple impulsion du combustible secondaire peut être envisagée, dans laquelle le combustible gazeux sera injecté selon deux jets à haute pression concentriques l'un avec l'autre et un jet à basse pression concentriquement extérieur aux deux jets haute pression.
  • Par conséquent, l'invention comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci sont effectuées suivant son esprit.

Claims (10)

  1. Procédé de réduction des oxydes d'azote contenus dans les fumées issues d'une combustion primaire, dans un four, par recombustion desdites fumées caractérisé par une injection d'un combustible secondaire dans la zone de recombustion dudit four suivant au moins deux jets associés à pression relativement haute et relativement basse respectivement.
  2. Procédé selon la revendication 1, caractérisé en ce que le jet de combustible basse pression est extérieurement concentrique au jet de combustible à pression plus élevée.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que le combustible est un gaz à une pression comprise entre quelques millibars et quelques centaines de millibars pour le jet basse pression et entre quelques centaines de millibars et quelques bars pour le jet haute pression.
  4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la pression et les débits du gaz des deux jets précités sont commandés de façon à s'adapter aux dimensions de la zone de recombustion et aux caractéristiques des fumées.
  5. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la zone de recombustion du four est soumise à des ondes acoustiques.
  6. Procédé selon la revendication 5, caractérisé en ce que les ondes acoustiques précitées ont une fréquence inférieure à environ 20 Hz.
  7. Installation pour la mise en oeuvre du procédé selon l'une quelconque des revendications 1 à 6, comprenant un four comprenant une zone de combustion primaire (A) alimentée par un combustible principal et suivie par une zone de recombustion (B) alimentée par un combustible secondaire, caractérisée en ce que ladite zone de recombustion est munie d'au moins deux entrées (2, 2') de combustible secondaire à des pressions différentes.
  8. Installation selon la revendication 7, caractérisée en ce que les deux entrées (2, 2') précitées sont coaxiales.
  9. Installation selon la revendication 7 ou la revendication 8, caractérisée en ce que les deux entrées précitées sont respectivement munies d'un appareil de commande du débit et de la pression (4, 5) du combustible secondaire formant les deux jets précités.
  10. Installation selon l'une quelconque des revendications 7 à 9, caractérisée en ce qu'un générateur d'ondes acoustiques (6) est monté sur la paroi du four de façon à pouvoir homogénéiser le mélange dans la zone de recombustion.
EP97400984A 1996-05-21 1997-04-30 Procédé de réduction, par recombustion des oxydes d'azote contenus dans les fumées issues d'une combustion primaire réalisée dans un four, et installation pour sa mise en oeuvre. Expired - Lifetime EP0809067B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI9730090T SI0809067T1 (en) 1996-05-21 1997-04-30 Process and installation for reducing by recombustion of nitric oxides in exhaust gases from a primary combustion in a furnace

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9606293 1996-05-21
FR9606293A FR2749066B1 (fr) 1996-05-21 1996-05-21 Procede de reduction, par recombustion, des oxydes d'azote contenus dans les fumees issues d'une combustion primaire realisee dans un four, et installation pour sa mise en oeuvre

Publications (2)

Publication Number Publication Date
EP0809067A1 true EP0809067A1 (fr) 1997-11-26
EP0809067B1 EP0809067B1 (fr) 2000-08-30

Family

ID=9492315

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97400984A Expired - Lifetime EP0809067B1 (fr) 1996-05-21 1997-04-30 Procédé de réduction, par recombustion des oxydes d'azote contenus dans les fumées issues d'une combustion primaire réalisée dans un four, et installation pour sa mise en oeuvre.

Country Status (11)

Country Link
EP (1) EP0809067B1 (fr)
AT (1) ATE195999T1 (fr)
CZ (1) CZ135297A3 (fr)
DE (1) DE69702950T2 (fr)
ES (1) ES2152070T3 (fr)
FR (1) FR2749066B1 (fr)
HU (1) HUP9700845A1 (fr)
PL (1) PL320054A1 (fr)
PT (1) PT809067E (fr)
SI (1) SI0809067T1 (fr)
SK (1) SK55397A3 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999008045A1 (fr) * 1997-08-08 1999-02-18 Gas Research Institute Reduction de l'oxyde d'azote au moyen de l'injection de combustible gazeux dans un gaz de combustion a basse temperature pauvre en combustible
FR2834774A1 (fr) * 2002-01-16 2003-07-18 Saint Gobain Emballage BRULEUR ET PROCEDE POUR LA REDUCTION DE L'EMISSION DES NOx DANS UN FOUR DE VERRERIE
NL2001797C2 (nl) * 2008-07-14 2010-01-18 Essent En Produktie B V Werkwijze voor het verbranden van een tweede vaste brandstof in combinatie met een eerste vaste brandstof.

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59173605A (ja) * 1983-03-23 1984-10-01 Hitachi Zosen Corp 燃焼炉における粉体燃料の均一供給方法
EP0159492A2 (fr) * 1984-03-24 1985-10-30 Steag Ag Procédé et foyer pour la diminution de la formation de NOx dans des chauffages au charbon pulvérisé, particulièrement dans des foyers à cendres fondues
EP0182063A2 (fr) * 1984-11-15 1986-05-28 L. &amp; C. Steinmüller GmbH Procédé de réduction de la teneur en oxydes d'azote dans les gaz de combustion
US4779545A (en) * 1988-02-24 1988-10-25 Consolidated Natural Gas Service Company Apparatus and method of reducing nitrogen oxide emissions
EP0512156A1 (fr) * 1991-05-07 1992-11-11 Ente Nazionale Per L'energia Elettrica - (Enel) Procédé pour réduire les oxides d'azote dans un gaz fumée
US5181475A (en) * 1992-02-03 1993-01-26 Consolidated Natural Gas Service Company, Inc. Apparatus and process for control of nitric oxide emissions from combustion devices using vortex rings and the like
JPH0727313A (ja) * 1992-08-27 1995-01-27 Tokyo Gas Co Ltd 高温炉装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59173605A (ja) * 1983-03-23 1984-10-01 Hitachi Zosen Corp 燃焼炉における粉体燃料の均一供給方法
EP0159492A2 (fr) * 1984-03-24 1985-10-30 Steag Ag Procédé et foyer pour la diminution de la formation de NOx dans des chauffages au charbon pulvérisé, particulièrement dans des foyers à cendres fondues
EP0182063A2 (fr) * 1984-11-15 1986-05-28 L. &amp; C. Steinmüller GmbH Procédé de réduction de la teneur en oxydes d'azote dans les gaz de combustion
US4779545A (en) * 1988-02-24 1988-10-25 Consolidated Natural Gas Service Company Apparatus and method of reducing nitrogen oxide emissions
EP0512156A1 (fr) * 1991-05-07 1992-11-11 Ente Nazionale Per L'energia Elettrica - (Enel) Procédé pour réduire les oxides d'azote dans un gaz fumée
US5181475A (en) * 1992-02-03 1993-01-26 Consolidated Natural Gas Service Company, Inc. Apparatus and process for control of nitric oxide emissions from combustion devices using vortex rings and the like
JPH0727313A (ja) * 1992-08-27 1995-01-27 Tokyo Gas Co Ltd 高温炉装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 9, no. 29 (M - 356) 7 February 1985 (1985-02-07) *
PATENT ABSTRACTS OF JAPAN vol. 95, no. 001 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999008045A1 (fr) * 1997-08-08 1999-02-18 Gas Research Institute Reduction de l'oxyde d'azote au moyen de l'injection de combustible gazeux dans un gaz de combustion a basse temperature pauvre en combustible
FR2834774A1 (fr) * 2002-01-16 2003-07-18 Saint Gobain Emballage BRULEUR ET PROCEDE POUR LA REDUCTION DE L'EMISSION DES NOx DANS UN FOUR DE VERRERIE
NL2001797C2 (nl) * 2008-07-14 2010-01-18 Essent En Produktie B V Werkwijze voor het verbranden van een tweede vaste brandstof in combinatie met een eerste vaste brandstof.
WO2010008280A1 (fr) * 2008-07-14 2010-01-21 Essent Energie Productie B.V. Procédé de combustion d'un second combustible solide en combinaison avec un premier combustible solide

Also Published As

Publication number Publication date
PL320054A1 (en) 1997-11-24
DE69702950T2 (de) 2001-03-29
CZ135297A3 (en) 1997-12-17
FR2749066B1 (fr) 1998-08-21
SK55397A3 (en) 1998-01-14
ES2152070T3 (es) 2001-01-16
DE69702950D1 (de) 2000-10-05
ATE195999T1 (de) 2000-09-15
HUP9700845A1 (hu) 2000-05-28
PT809067E (pt) 2001-02-28
FR2749066A1 (fr) 1997-11-28
SI0809067T1 (en) 2001-04-30
EP0809067B1 (fr) 2000-08-30
HU9700845D0 (en) 1997-06-30

Similar Documents

Publication Publication Date Title
EP2153130B1 (fr) Procede de combustion a bas nox pour la fusion du verre et injecteur mixte
EP1144915B1 (fr) Appareil de type torchere et procede pour la combustion de gaz
RU2007115729A (ru) Узелок горелок с ультранизкой эмиссией nox
FR2488678A1 (fr) Procede et appareil de combustion pour diminuer sensiblement l&#39;emission de composes de l&#39;azote formes pendant la combustion
FR2927148A1 (fr) Procede de combustion et injecteur de combustible gazeux a jets peripheriques basse pression convergeant vers un jet central haute pression, a faible emission de nox.
FR2458748A1 (fr) Procede de combustion d&#39;un carburant avec faible emission d&#39;oxydes d&#39;azote
NO20051955L (no) Fremgangsmate og apparat for varmebehandling
CN1443275A (zh) 使燃料和稀释剂均匀以减少燃烧***中释放物的方法和设备
JP2020112280A (ja) アンモニアを混焼できるボイラ装置及び火力発電設備
EP3359502B1 (fr) Procédé de calcination de roche minérale dans un four droit vertical à flux parallèles régénératif et four mis en oeuvre
FR2959298A1 (fr) Four a flamme et procede de regulation de la combustion dans un four a flamme
EP1913321B1 (fr) Procede de calcination d&#39;un materiau a faible emission de nox
WO2013027589A1 (fr) Dispositif de désintoxification par combustion
EP0809067B1 (fr) Procédé de réduction, par recombustion des oxydes d&#39;azote contenus dans les fumées issues d&#39;une combustion primaire réalisée dans un four, et installation pour sa mise en oeuvre.
CN111664461A (zh) 一种有机废气高效处理***及方法
JP3460122B2 (ja) 燃焼式除害装置及び燃焼式除害装置用バーナー
WO2004094902A1 (fr) Procede de combustion etagee d&#39;un combustible liquide et d&#39;un oxydant dans un four
US5242295A (en) Combustion method for simultaneous control of nitrogen oxides and products of incomplete combustion
FR2640728A1 (fr) Procede et appareil de reduction de la formation d&#39;oxydes d&#39;azote pendant une combustion
CA2813667C (fr) Procede de denitrification des fumees produites par un four de combustion, et installation pour la mise en oeuvre de ce procede
EP2784387A2 (fr) Chambre de combustion pour le traitement thermique d&#39;au moins un effluent comportant des polluants combustibles
CA2113108A1 (fr) Procede d&#39;incineration de dechets organiques
KR100395647B1 (ko) 연소 장치 및 그 연소 방법
CN117588762A (zh) 一种低浓度有机废气维持自持燃烧的蓄热式焚烧炉方法
MX2008002067A (es) Metodos y sistemas para remover mercurio del gas de chimenea de combustion.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: SI PAYMENT 970529

17P Request for examination filed

Effective date: 19971114

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19991207

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: SI PAYMENT 19970529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20000830

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000830

REF Corresponds to:

Ref document number: 195999

Country of ref document: AT

Date of ref document: 20000915

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 69702950

Country of ref document: DE

Date of ref document: 20001005

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20001130

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20001130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20001201

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20001129

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2152070

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20001128

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MC

Payment date: 20010323

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20010329

Year of fee payment: 5

Ref country code: CH

Payment date: 20010329

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010419

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SI

Ref legal event code: IF

REG Reference to a national code

Ref country code: SI

Ref legal event code: SP73

Owner name: GDF SUEZ SOCIETE ANONYME; FR

Effective date: 20090601

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: GDF SUEZ

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: GDF SUEZ

Effective date: 20110616

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69702950

Country of ref document: DE

Representative=s name: RECHTS- UND PATENTANWAELTE LORENZ SEIDLER GOSS, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69702950

Country of ref document: DE

Representative=s name: LORENZ SEIDLER GOSSEL RECHTSANWAELTE PATENTANW, DE

Effective date: 20111028

Ref country code: DE

Ref legal event code: R082

Ref document number: 69702950

Country of ref document: DE

Representative=s name: RECHTS- UND PATENTANWAELTE LORENZ SEIDLER GOSS, DE

Effective date: 20111028

Ref country code: DE

Ref legal event code: R081

Ref document number: 69702950

Country of ref document: DE

Owner name: GDF SUEZ S.A., FR

Free format text: FORMER OWNER: GAZ DE FRANCE, PARIS, FR

Effective date: 20111028

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 195999

Country of ref document: AT

Kind code of ref document: T

Owner name: GDF SUEZ, FR

Effective date: 20130328

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20160321

Year of fee payment: 20

Ref country code: LU

Payment date: 20160324

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160324

Year of fee payment: 20

Ref country code: BE

Payment date: 20160323

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160321

Year of fee payment: 20

Ref country code: ES

Payment date: 20160408

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20160323

Year of fee payment: 20

Ref country code: IT

Payment date: 20160324

Year of fee payment: 20

Ref country code: PT

Payment date: 20160401

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69702950

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20170429

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20170429

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 195999

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170511

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170501