EP0791131B1 - Resonanz-schalldämpfer - Google Patents

Resonanz-schalldämpfer Download PDF

Info

Publication number
EP0791131B1
EP0791131B1 EP95935283A EP95935283A EP0791131B1 EP 0791131 B1 EP0791131 B1 EP 0791131B1 EP 95935283 A EP95935283 A EP 95935283A EP 95935283 A EP95935283 A EP 95935283A EP 0791131 B1 EP0791131 B1 EP 0791131B1
Authority
EP
European Patent Office
Prior art keywords
resonator
section
fact
muffler
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95935283A
Other languages
English (en)
French (fr)
Other versions
EP0791131A1 (de
Inventor
Leopold Habsburg Lothringen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0791131A1 publication Critical patent/EP0791131A1/de
Application granted granted Critical
Publication of EP0791131B1 publication Critical patent/EP0791131B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/08Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling
    • F01N1/12Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling using spirally or helically shaped channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/34Ultra-small engines, e.g. for driving models

Definitions

  • the invention relates to a combined resonator and Silencer system for 2-stroke internal combustion engines, with a resonator with a rotationally symmetrical housing, into which an inlet connection flows into a silencer containing outlet pipe opens, the resonator housing a diverging one after the other in the direction of flow Diffuser section, optionally an intermediate section constant flow cross-section, as well as a converging reflector section limited.
  • Resonance silencer systems of this type are e.g. in the F. Laimböck, "Analysis of tax times, time cross sections and Exhaust systems of modern two-stroke two-wheel engines ", conference report Graz two-wheel conference November 7, 1984, Graz University of Technology.
  • the basic characteristics of resonator systems are a precisely defined diffuser section with a defined cross-sectional expansion, Diffuser slope and length in relation to the total resonator length, if necessary an intermediate section constant cross-section (usually 5 to 15% of the total length), and a precisely defined reflector section, usually a counter cone with a length of 15 to 25% of the total length.
  • the inlet port opens in the axial direction into the diffuser section of the resonator housing, so that it flows axially, and on the outlet section closes the reflector section in the axial direction with the silencer as a separate component.
  • the opposing diverging and converging Sections in the resonator housing are formed for each injected exhaust gas pressure wave a returning vacuum wave from which the emptying of the cylinder of the internal combustion engine supported and overall better Combustion, exhaust gas reduction and performance increase leads.
  • the Downstream silencer is required because of the resonator housing itself has no sound absorbing effect.
  • the overall length of both the resonator and the subsequent silencer is inversely proportional to Speed of the internal combustion engine.
  • 2-stroke internal combustion engines with a small cubic capacity e.g. for the Model flying, for brushcutters or chainsaws
  • Noise protection reasons resorted to ever lower operating speeds.
  • a resonance silencer of conventional construction has an overall installation length of over 1 m, what in the mentioned applications is not portable. In these cases, so far the advantages of a resonance silencer are dispensed with, and compact silencers were used, which none Have resonance effect and therefore uneconomical and polluting work.
  • the aim of the invention is a resonance silencer with extremely compact dimensions, so that the advantages of the principle of resonance also small 2-stroke internal combustion engines, such as engines for Aircraft models, lawn mowers, chainsaws, brushcutters etc., let take advantage.
  • the silencer which is in the outlet pipe is arranged entirely in the interior of the resonator housing relocated, as it were, as the core of the interior of the housing enforced.
  • the overall length of the resonator drastically shortened because of the tangential flow Exhaust the resonator housing helically around the core flow through so that the effective flow path inside the Resonator housing a multiple of the overall length of the Resonator housing is.
  • the diffuser section can expediently provide support by continuously increasing the diameter of the Resonator housing and / or the reflector section by a continuous reduction in the diameter of the Resonator housing can be reinforced in its effect.
  • the pitch of the helical guide wall can be, for example are kept constant, and the diffuser section and the Reflector sections are only described above Diameter changes of the resonator housing reached.
  • the pitch of the helical Guide wall is varied accordingly, and preferably the Diffuser section through a continuous or - purpose Manufacturing simplification - gradual increase in pitch the helical conductor wall is formed.
  • the reflector section can preferably by the The helical guide wall runs onto a radial one End wall of the resonator housing are formed.
  • the helical guide wall is a helical one acoustic silencing chamber to which the outlet pipe arranged over a multitude with variable step size Exhaust openings opens.
  • the helical chamber is in this case the outlet pipe connected in parallel and the variable pitch serves to form variable elementary silencing chambers, around a whole range of sound frequencies to be able to absorb or compensate.
  • the inlet port under a acute angle to the longitudinal axis of the resonator housing in this leads to what is a smooth transition into the helical Flow allows.
  • a particularly advantageous constructive solution is characterized in that the outlet pipe with radial openings communicates with the reflector section.
  • the end of the outlet pipe can be in this area on the front wall of the resonator housing be attached, and the flow connection takes place via the radial openings mentioned.
  • a tail pipe coaxially inserted which the reflector-side end wall of the resonator housing interspersed and at a distance from the diffuser end wall of the resonator housing ends.
  • the inside of the outlet pipe and the outside of the tail pipe be provided with a sound-absorbing covering.
  • Exhaust gas catalytic converter can be arranged without the installation length of the Enlarge resonance silencer.
  • the resonance silencer shown in FIGS. 1 to 3 has a cylindrical resonator housing 1, the on one side through a dome-shaped front wall 2 and on completed on the other side by a radial end wall 3 is.
  • An outlet pipe extends inside the resonator housing 1 4 coaxially from the front wall 2 to the front wall 3.
  • Das Outlet pipe 4 is near the end wall 3 with radial Provide openings 5.
  • Exhaust pipe 4 directly the end wall 2 to form an exhaust enforce, but is preferred - as in the illustrated Embodiment - to form a silencer inside the outlet pipe 4 created a further flow deflection, by using a tail pipe 6 coaxially, which the end wall 3 penetrates to form an exhaust and in a distance from the end wall 2 ends.
  • the inside of the Outlet pipe 4 and the outside of the end pipe 6 are with provided a sound-absorbing covering 7.
  • the inlet port 8 opens tangentially (see Fig. 2) and preferably at an acute angle to the longitudinal axis of the resonator housing 1 (see Fig. 3) in the annular space between Resonator housing 1 and outlet tube 4.
  • a helical baffle 10 Fig. 1 arranged, the themselves - in the flow direction from the inlet port 8 to the Openings 5 of the outlet pipe 4 seen - counterclockwise winds around the outlet pipe 4.
  • the inlet port 8 opens directly into the first thread 11. Between this and the End wall 2 is an unused dead space 12. At the the openings 5 of the outlet pipe 4 facing the end Guide wall 10 on the end wall 3 at an angle.
  • the pitch h of the helical guide wall 10 increases in a first axial section 13 continuously from the inlet port 8 away, remains constant in a second axial section 14 and decreases in a third axial section 15 inevitably by running onto the front wall 3 the effective flow cross section expands continuously in section 13, remains constant and reduced in section 14 again in section 15.
  • Sections 13 to 15 therefore correspond to the diffuser section, intermediate section and Reflector section with conventional resonance silencers axial flow, but require significantly less installation length, because they are helically wrapped around the outlet pipe are.
  • section 14 can be omitted and / or Pitch h in section 15 even before it hits the End wall gradually reduced.
  • Support can be given in Section 13 also the outer diameter D of the resonator housing be progressively increased as in the embodiment 4, and / or progressing in section 15 be reduced.
  • the pitch h and the diameter D are two Parameters for influencing the flow cross section in the Sections 13, 14 and 15 available, etc. the pitch h and the diameter D.
  • the diffuser section is formed only by the transition from a first (short) section with a constant, small pitch h 1 to a second section with a large pitch h 2 (not shown), and here the diffuser section arises in the course of a Helical revolution in the area of the transition stage.
  • the first (short) section before the gradual transition can be regarded as a mere extension of the tangentially opening inlet connector and can therefore be counted among them.
  • FIG. 5 shows an embodiment for vertical installation, for example below the engine of a brushcutter short overall length and large outside diameter.
  • the annular space between the outlet pipe 4 and resonator housing 1 in the drawing from right to flows through on the left is based on the double deflection inside of the outlet pipe 4 is omitted, so that space for installation a conventional catalyst 16 in the outlet pipe 4 between the openings 5 and the tail pipe 6 is created.
  • This embodiment without a helical guide wall 10 is particularly suitable for 2-stroke engines with revs from 15,000 to 30,000 rpm, whereas for lower speeds the embodiment with baffle is preferable.
  • the presented can Construction the installation length of a resonance silencer more conventional at least 1/3 to about 1/10 of the length Resonance silencer with axial flow reduced (see e.g. Fig. 5).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Silencers (AREA)
  • Pipe Accessories (AREA)
  • Surgical Instruments (AREA)
  • Characterised By The Charging Evacuation (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Compressor (AREA)

Description

Die Erfindung betrifft eine kombinierte Resonator- und Schalldämpferanlage für 2-Takt-Verbrennungskraftmaschinen, mit einem Resonator mit drehsymmetrischem Gehäuse, in das ein Einlaßstutzen mündet und das seinerseits in ein einen Schalldämpfer enthaltendes Auslaßrohr mündet, wobei das Resonatorgehäuse in Strömungsrichtung aufeinanderfolgend einen divergierenden Diffusorabschnitt, gegebenenfalls einen Zwischenabschnitt gleichbleibenden Strömungsquerschnittes, sowie einen konvergierenden Reflektorabschnitt begrenzt.
Die Theorie und Konstruktion leistungssteigernder Resonanz-Schalldämpferanlagen dieser Art sind z.B. im F. Laimböck, "Analyse der Steuerzeiten, Zeitquerschnitte und Auspuffanlagen neuzeitlicher Zweitakt-Zweiradmotoren", Tagungsbericht Grazer Zweiradtagung 7. November 1984, TU Graz, beschrieben. Die grundlegenden Merkmale von Resonatoranlagen sind ein genau definierter Diffusorabschnitt mit definierter Querschnittserweiterung, Diffusorsteigung und Länge im Verhältnis zur Gesamtresonatorlänge, gegebenenfalls ein Zwischenabschnitt gleichbleibenden Querschnittes (in der Regel 5 bis 15% der Gesamtlänge), und ein ebenfalls genau definierter Reflektorabschnitt, in der Regel ein Gegenkonus mit einer Länge von 15 bis 25% der Gesamtlänge.
Bei den bekannten Resonanz-Schalldämpfern mündet der Einlaßstutzen in axialer Richtung in den Diffusorabschnitt des Resonatorgehäuses, so daß dieses axial durchströmt wird, und an den Reflektorabschnitt schließt in axialer Richtung das Auslaßrohr mit dem Schalldämpfer als gesonderter Bauteil an. Auf Grund der einander gegenüberliegenden divergierenden und konvergierenden Abschnitte im Resonatorgehäuse bildet sich für jede eingespeiste Abgas-Druckwelle eine rücklaufende Unterdruckwelle aus, welche die Entleerung des Zylinders der Verbrennungskraftmaschine unterstützt und insgesamt zu einer besseren Verbrennung, Abgasreduktion und Leistungssteigerung führt. Der nachgeschaltete Schalldämpfer ist erforderlich, weil das Resonatorgehäuse selbst keine schalldämpfende Wirkung hat.
Die Baulänge sowohl des Resonatorgehäuses als auch des anschließenden Schalldämpfers ist umgekehrt proportional zur Drehzahl der Verbrennungskraftmaschine. Speziell bei 2-Takt-Verbrennungskraftmaschinen mit kleinem Hubraum, z.B. für den Modellflugsport, für Motorsensen oder Kettensägen, wird aus Lärmschutzgründen zu immer niedrigeren Betriebsdrehzahlen gegriffen. Bei einer Betriebsdrehzahl von 6.000 U/min hat jedoch ein Resonanz-Schalldämpfer herkömmlicher Konstruktion eine Gesamt-Einbaulänge von über 1 m, was in den genannten Anwendungsfällen nicht tragbar ist. In diesen Fällen mußte bisher auf die Vorteile eines Resonanz-Schalldämpfers verzichtet werden, und es wurden Kompakt-Schalldämpfer eingesetzt, die keine Resonanzwirkung besitzen und daher unwirtschaftlich und umweltbelastend arbeiten. Einerseits verbleiben größere Mengen verbrannter Gase beim Spülprozeß im Zylinder, was die Verbrennung verschlechtert, anderseits gelangen größere Mengen unverbrannten Gemisches in das Abgas. Beide Effekte bewirken einen etwa 35 %-igen Leistungsabfall gegenüber einem Resonanz-Schalldämpfer.
Die Erfindung setzt sich zum Ziel, einen Resonanz-Schalldämpfer mit äußerst kompakten Abmessungen zu schaffen, so daß sich die Vorteile des Resonanzprinzipes auch bei kleinen 2-Takt-Verbrennungskraftmaschinen, wie Motoren für Flugmodelle, Rasenmäher, Kettensägen, Motorsensen etc., ausnützen lassen.
Dieses Ziel wird mit einem Resonanz-Schalldämpfer der einleitend genannten Art erreicht, der sich erfindungsgemäß dadurch auszeichnet, daß das Auslaßrohr das Resonatorgehäuse koaxial durchsetzt und der Einlaßstutzen tangential in den Diffusorabschnitt mündet.
Auf diese Weise wird eine zweifache Platzeinsparung erzielt. Einerseits wird der Schalldämpfer, welcher im Auslaßrohr angeordnet ist, zur Gänze in das Innere des Resonatorgehäuses verlagert, indem er gleichsam als Kern das Innere des Gehäuses durchsetzt. Anderseits wird die Baulänge des Resonators drastisch verkürzt, weil durch die tangentiale Anströmung die Abgase das Resonatorgehäuse wendelförmig um den Kern herum durchströmen, so daß der effektive Strömungsweg im Inneren des Resonatorgehäuses ein Vielfaches der Baulänge des Resonatorgehäuses beträgt. Die für das geschilderte Resonanzprinzip erforderliche anfängliche Vergrößerung des Strömungsquerschnittes und anschließende Verkleinerung des Strömungsquerschnittes ergibt sich dabei von selbst, weil sich die Ganghöhe der wendelförmigen Strömung durch die anfängliche Umlenkung von der tangentialen Einspeisung zur wendelförmigen Durchströmung fortschreitend erhöht, was einem divergierenden Abschnitt entspricht, und beim Auflaufen der wendelförmigen Strömung auf das andere Ende des Resonatorgehäuses wieder verringert, was einem konvergierenden Abschnitt entspricht.
Zweckmäßigerweise kann unterstützend der Diffusorabschnitt durch eine kontinuierliche Vergrößerung des Durchmessers des Resonatorgehäuses und/oder der Reflektorabschnitt durch eine kontinuierliche Verringerung des Durchmessers des Resonatorgehäuses in seiner Wirkung verstärkt werden. Gemäß einer besonders bevorzugten Ausführungsform der Erfindung wird jedoch alternativ oder zusätzlich zwischen Auslaßrohr und Resonatorgehäuse eine wendelförmige Leitwand angeordnet. Die Ganghöhe der wendelförmigen Leitwand kann beispielsweise konstant gehalten werden, und der Diffusorabschnitt und der Reflektorabschnitt werden lediglich über die geschilderten Durchmesseränderungen des Resonatorgehäuses erreicht. Besonders vorteilhaft ist es aber, wenn die Ganghöhe der wendelförmigen Leitwand entsprechend variiert wird, und bevorzugt der Diffusorabschnitt durch eine kontinuierliche oder - zwecks Fertigungsvereinfachung - stufenweise Vergrößerung der Ganghöhe der wendelförmigen Leiterwand gebildet wird. Nach dem gleichen Prinzip kann bevorzugt der Reflektorabschnitt durch das Auflaufen der wendelförmigen Leitwand auf eine radiale Stirnwand des Resonatorgehäuses gebildet werden.
An dieser Stelle sei erwähnt, daß aus der US-PS 4 683 978 die Verwendung eines wendelförmigen Leitbleches in einem Schalldämpfer an sich bekannt ist. Das dort beschriebene Leitblech besitzt eine konstante Ganghöhe und wird ausschließlich zur Schalldämmung und nicht zur Bildung der Diffusor- und Reflektorabschnitte des Resonatorgehäuses eines Resonanz-Schalldämpfers verwendet. Ferner ist auch aus der CH 199 018 eine wendelförmige Leitwand variabler Ganghöhe zwischen einem Auslaßrohr und einem Außengehäuse bekannt, allerdings für einen gänzlich anderen Zweck, und zwar für einen Nur-Schalldämpfer ohne Resonatorabschnitt, d.h. nicht für einen kombinierten Resonanz-Schalldämpfer, welcher eine leistungssteigernde Resonanzanlage aus Diffusorabschnitt, gegebenenfalls Zwischenabschnitt und Reflektorabschnitt aufweist. Im einzelnen bildet bei der CH 199 018 die wendelförmige Leitwand eine wendelförmige akustische Schalldämpfungskammer, zu welcher sich das Auslaßrohr über eine Vielzahl mit variabler Schrittweite angeordneter Auslaßöffnungen hin öffnet. Die wendelförmige Kammer ist in diesem Fall dem Auslaßrohr parallel geschaltet und die variable Ganghöhe dient zur Bildung variabler Elementar-Schalldämpfungskammern, um einen ganzen Bereich von Schallfrequenzen absorbieren bzw. kompensieren zu können.
In jedem Fall besteht eine weitere vorteilhafte Ausführungsform der Erfindung darin, daß der Einlaßstutzen unter einem spitzen Winkel zu der Längsachse des Resonatorgehäuses in dieses mündet, was einen gleitenden Übergang in die wendelförmige Strömung ermöglicht.
Eine konstruktiv besonders vorteilhafte Lösung zeichnet sich dadurch aus, daß das Auslaßrohr über radiale Öffnungen mit dem Reflektorabschnitt in Verbindung steht. Das Ende des Auslaßrohres kann in diesem Bereich an der Stirnwand des Resonatorgehäuses befestigt werden, und die Strömungsverbindung erfolgt über die genannten radialen Öffnungen.
Zur Ausbildung des Schalldämpfers im Auslaßrohr wird bevorzugt in das Auslaßrohr ein Endrohr koaxial eingesetzt, welches die reflektorseitige Stirnwand des Resonatorgehäuses durchsetzt und in einem Abstand von der diffusorseitigen Stirnwand des Resonatorgehäuses endet. In diesem Fall ist es besonders günstig, wenn gemäß einem weiteren Merkmal der Erfindung die Innenseite des Auslaßrohres und die Außenseite des Endrohres mit einem schalldämmenden Belag versehen werden.
Ferner kann in jedem Fall im Inneren des Auslaßrohres ein Abgas-Katalysator angeordnet werden, ohne die Einbaulänge des Resonanz-Schalldämpfers zu vergrößern.
Schließlich ist es besonders vorteilhaft, wenn der Einlaßstutzen als direkt an die Zylinderauslaßöffnung der Verbrennungskraftmaschine anflanschbarer Rohrkrümmer ausgebildet ist. Dadurch läßt sich der Resonanz-Schalldämpfer in einfacher Weise gegen herkömmliche Kompakt-Schalldämpfer austauschen.
Die Erfindung wird nachstehend an Hand von in den Zeichnungen dargestellten Ausführungsbeispielen näher erläutert. In den Zeichnungen zeigt
  • Fig. 1 eine erste Ausführungsform des Resonanz-Schalldämpfers der Erfindung im Längsschnitt,
  • Fig. 2 in der Stirnansicht und
  • Fig. 3 in der Draufsicht,
  • die Fig. 4 bis 6 Längsschnitte durch drei weitere Ausführungsformen von erfindungsgemäßen Resonanz-Schalldämpfern, und
  • die Fig. 7 und 8 eine weitere alternative Ausführungsform des Resonanz-Schalldämpfers der Erfindung in der Stirnansicht bzw. im Längsschnitt.
  • Der in den Fig. 1 bis 3 dargestellte Resonanz-Schalldämpfer weist ein zylinderförmiges Resonatorgehäuse 1 auf, das auf einer Seite durch eine kuppelförmige Stirnwand 2 und auf der anderen Seite durch eine radiale Stirnwand 3 abgeschlossen ist. Im Inneren des Resonatorgehäuses 1 erstreckt sich ein Auslaßrohr 4 koaxial von der Stirnwand 2 bis zur Stirnwand 3. Das Auslaßrohr 4 ist in der Nähe der Stirnwand 3 mit radialen Öffnungen 5 versehen. Am gegenüberliegenden Ende kann das Auslaßrohr 4 die Stirnwand 2 zur Bildung eines Auspuffs direkt durchsetzen, bevorzugt wird jedoch - wie bei der dargestellten Ausführungsform - zur Ausbildung eines Schalldämpfers im Inneren des Auslaßrohres 4 eine weitere Strömungsumlenkung geschaffen, indem ein Endrohr 6 koaxial eingesetzt wird, welches die Stirnwand 3 zur Bildung eines Auspuffs durchsetzt und in einem Abstand von der Stirnwand 2 endet. Die Innenseite des Auslaßrohres 4 und die Außenseite des Endrohres 6 sind mit einem schalldämmenden Belag 7 versehen.
    In der Nähe der Stirnwand 2 mündet in das Resonatorgehäuse 1 ein Einlaßstutzen 8, der an seinem freien Ende mit einem Flansch 9 zum direkten Anflanschen an die (nicht dargestellte) Zylinderauslaßöffnung einer 2-Takt-Verbrennungskraftmaschine ausgestattet ist. Der Einlaßstutzen 8 mündet tangential (siehe Fig. 2) und bevorzugt unter einem spitzen Winkel zur Längsachse des Resonatorgehäuses 1 (siehe Fig. 3) in den Ringraum zwischen Resonatorgehäuse 1 und Auslaßrohr 4. In diesem Ringraum ist eine wendelförmige Leitwand 10 (Fig. 1) angeordnet, die sich - in Strömungsrichtung vom Einlaßstutzen 8 bis zu den Öffnungen 5 des Auslaßrohres 4 gesehen - gegen den Uhrzeigersinn um das Auslaßrohr 4 windet. Der Einlaßstutzen 8 mündet direkt in den ersten Gewindegang 11. Zwischen diesem und der Stirnwand 2 befindet sich ein unbenützter Totraum 12. An dem den Öffnungen 5 des Auslaßrohres 4 zugewandten Ende läuft die Leitwand 10 unter einem Winkel auf die Stirnwand 3 auf.
    Die Ganghöhe h der wendelförmigen Leitwand 10 erhöht sich in einem ersten Axialabschnitt 13 kontinuierlich vom Einlaßstutzen 8 weg, bleibt in einem zweiten Axialabschnitt 14 konstant und verringert sich in einem dritten Axialabschnitt 15 zwangsläufig durch das Auflaufen auf die Stirnwand 3. Dadurch erweitert sich der wirksame Strömungsquerschnitt kontinuierlich im Abschnitt 13, bleibt im Abschnitt 14 konstant und verringert sich wieder im Abschnitt 15. Die Abschnitte 13 bis 15 entsprechen daher dem Diffusorabschnitt, Zwischenabschnitt und Reflektorabschnitt herkömmlicher Resonanz-Schalldämpfer mit axialer Durchströmung, benötigen aber wesentlich weniger Einbaulänge, weil sie wendelförmig um das Auslaßrohr gewickelt sind.
    Alternativ kann der Abschnitt 14 entfallen und/oder die Ganghöhe h im Abschnitt 15 bereits vor dem Auflaufen auf die Stirnwand allmählich verringert werden. Unterstützend kann im Abschnitt 13 zusätzlich der Außendurchmesser D des Resonatorgehäuses fortschreitend erhöht werden, wie es in der Ausführungsform der Fig. 4 dargestellt ist, und/oder im Abschnitt 15 fortschreitend verringert werden. Allgemein gesprochen stehen zwei Parameter zur Beeinflussung des Strömungsquerschnittes in den Abschnitten 13, 14 und 15 zur Verfügung, u.zw. die Ganghöhe h und der Durchmesser D.
    Als weitere Alternative kann anstelle einer kontinuierlichen Vergrößerung der Ganghöhe h im Abschnitt 13 eine stufenweise Vergrößerung der Ganghöhe h vorgesehen werden, was Vereinfachungen in der Fertigung bringt. Im einfachsten Fall wird der Diffusorabschnitt nur durch den Übergang von einem ersten (kurzen) Abschnitt mit einer konstanten, kleinen Ganghöhe h1 zu einem zweiten Abschnitt mit einer großen Ganghöhe h2 gebildet (nicht dargestellt), und zwar entsteht der Diffusorabschnitt hier im Verlauf einer Wendelumdrehung im Bereich der Übergangsstufe. Der erste (kurze) Abschnitt vor dem stufenweisen Übergang (dem Diffusorabschnitt) kann in diesem Fall als bloße Verlängerung des tangential einmündenden Einlaßstutzens angesehen und somit zu diesem gezählt werden.
    Fig. 5 zeigt eine Ausführungsform für den vertikalen Einbau, beispielsweise unterhalb des Motors einer Motorsense, mit kurzer Baulänge und großem Außendurchmesser. Bei der Ausführungsform der Fig. 6, bei welcher der Ringraum zwischen Auslaßrohr 4 und Resonatorgehäuse 1 in der Zeichnung von rechts nach links durchströmt wird, wird auf die zweifache Umlenkung im Inneren des Auslaßrohres 4 verzichtet, so daß Raum für den Einbau eines herkömmlichen Katalysators 16 im Auslaßrohr 4 zwischen den Öffnungen 5 und dem Endrohr 6 geschaffen wird.
    In den Fig. 7 und 8 ist eine alternative Ausführungsform speziell für hochdrehende Motoren dargestellt, für welche auf die ausdrückliche Anordnung einer Leitwand 10 verzichtet werden kann, wobei das Funktionsprinzip aber unverändert bleibt. Durch die tangentiale Anordnung des Einlaßstutzens 8 und die koaxiale, das Resonatorgehäuse 1 durchsetzende Anordnung des Auslaßrohres 4 stellt sich zwangsläufig eine wendelförmige Strömung der Abgase um das Auslaßrohr 4 in Richtung auf die Öffnungen 5 ein. Die Erweiterung des Strömungsquerschnittes im Abschnitt 13 und die Verringerung im Abschnitt 15 wird durch eine entsprechende Erweiterung bzw. Verringerung des Außendurchmessers D des Resonatorgehäuses unterstützt. Es ist aber zu beachten, daß diese Maßnahme nur unterstützend und nicht zwingend ist, weil sich durch die allmähliche Umlenkung der im wesentlichen kreisförmigen Strömung im Einspeisebereich des Einlaßstutzens 8 zu der im wesentlichen wendelförmigen Strömung im Zwischenabschnitt 14 von selbst eine Vergrößerung des effektiven Strömungsquerschnittes im Abschnitt 13 ergibt, und umgekehrt im Bereich des Auflaufens der wendelförmigen Strömung auf die Stirnwand 3 eine entsprechende Verringerung. Wird auf die Außendurchmesserveränderung verzichtet, beträgt der Resonanz) effekt immer noch ca. 65%, wenn der Resonanzeffekt der optimalen Bauform mit 100% angesetzt wird.
    Diese Ausführungsform ohne wendelförmige Leitwand 10 eignet sich vor allem für 2-Takt-Motoren mit Umdrehungszahlen von 15.000 bis 30.000 U/min, wogegen für geringere Drehzahlen die Ausführungsform mit Leitwand vorzuziehen ist.
    Bei einer gegebenen Betriebsdrehzahl kann mit der vorgestellten Konstruktion die Einbaulänge eines Resonanz-Schalldämpfers auf mindestens 1/3 bis ca. 1/10 der Länge herkömmlicher Resonanz-Schalldämpfer mit axialer Durchströmung reduziert werden (siehe z.B. Fig. 5).

    Claims (11)

    1. Kombinierte Resonator- und Schalldämpferanlage für 2-Takt-Verbrennungskraftmaschinen, mit einem Resonator mit drehsymmetrischem Gehäuse (1), in das ein Einlaßstutzen (8) mündet und das seinerseits in ein einen Schalldämpfer enthaltendes Auslaßrohr (4) mündet, wobei das Resonatorgehäuse (1) in Strömungsrichtung aufeinanderfolgend einen divergierenden Diffusorabschnitt (13), gegebenenfalls einen Zwischenabschnitt (14) gleichbleibenden Strömungsquerschnittes, sowie einen konvergierenden Reflektorabschnitt (15) begrenzt, dadurch gekennzeichnet, daß das Auslaßrohr (4) das Resonatorgehäuse (1) koaxial durchsetzt und der Einlaßstutzen (8) tangential in den Diffusorabschnitt (13) mündet.
    2. Kombinierte Resonator- und Schalldämpferanlage nach Anspruch 1, dadurch gekennzeichnet, daß in dem Ringraum, welcher durch die koaxiale Anordnung des Auslaßrohres (4) im Resonatorgehäuse (1) zwischen diesen ausgebildet ist, eine vom Einlaßstutzen (8) bis zum Anfang des Auslaßrohres (4) verlaufende wendelförmige Leitwand (10) angeordnet ist.
    3. Kombinierte Resonator- und Schalldämpferanlage nach Anspruch 2, dadurch gekennzeichnet, daß der Diffusorabschnitt (13) durch eine kontinuierliche Vergrößerung der Ganghöhe (h) der wendelförmigen Leitwand (10) gebildet ist.
    4. Kombinierte Resonator- und Schalldämpferanlage nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß der Reflektorabschnitt (15) durch das Auflaufen der wendelförmigen Leitwand (10) auf eine radiale Stirnwand (3) des Resonatorgehäuses (1) gebildet ist.
    5. Kombinierte Resonator- und Schalldämpferanlage nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Einlaßstutzen (8) unter einem spitzen Winkel zu der Längsachse des Resonatorgehäuses (1) in dieses mündet.
    6. Kombinierte Resonator- und Schalldämpferanlage nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Auslaßrohr (4) über radiale Öffnungen (5) mit dem Reflektorabschnitt (15) in Verbindung steht.
    7. Kombinierte Resonator- und Schalldämpferanlage nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß in das Auslaßrohr (4) ein Endrohr (6) koaxial eingesetzt ist, welches eine Stirnwand (3) des Resonatorgehäuses (1) durchsetzt und in einem Abstand von der gegenüberliegenden Stirnwand (2) des Resonatorgehäuses (1) endet.
    8. Kombinierte Resonator- und Schalldämpferanlage nach Anspruch 7, dadurch gekennzeichnet, daß die Innenseite des Auslaßrohres (4) und die Außenseite des Endrohres (6) mit einem schalldämmenden Belag (7) versehen sind.
    9. Kombinierte Resonator- und Schalldämpferanlage nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß im Inneren des Auslaßrohres (4) ein Abgas-Katalysator (16) angeordnet ist.
    10. Kombinierte Resonator- und Schalldämpferanlage nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß der Einlaßstutzen (8) als direkt an die Zylinderauslaßöffnung der Verbrennungskraftmaschine anflanschbarer Rohrkrümmer ausgebildet ist.
    11. Kombinierte Resonator- und Schalldämpferanlage nach Anspruch 2, dadurch gekennzeichnet, daß der Diffusorabschnitt durch eine stufenweise Vergrößerung der Ganghöhe (h1-h2) der wendelförmigen Leitwand (10) gebildet ist.
    EP95935283A 1994-11-08 1995-10-13 Resonanz-schalldämpfer Expired - Lifetime EP0791131B1 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    AT2068/94 1994-11-08
    AT0206894A AT407772B (de) 1994-11-08 1994-11-08 Kombinierte resonator- und schalldämpferanlage
    PCT/AT1995/000202 WO1996014497A1 (de) 1994-11-08 1995-10-13 Resonanz-schalldämpfer

    Publications (2)

    Publication Number Publication Date
    EP0791131A1 EP0791131A1 (de) 1997-08-27
    EP0791131B1 true EP0791131B1 (de) 1998-08-26

    Family

    ID=3527094

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP95935283A Expired - Lifetime EP0791131B1 (de) 1994-11-08 1995-10-13 Resonanz-schalldämpfer

    Country Status (10)

    Country Link
    US (1) US5844178A (de)
    EP (1) EP0791131B1 (de)
    JP (1) JPH10508356A (de)
    CN (1) CN1078927C (de)
    AT (2) AT407772B (de)
    AU (1) AU3736495A (de)
    CA (1) CA2204611C (de)
    DE (1) DE59503380D1 (de)
    ES (1) ES2120236T3 (de)
    WO (1) WO1996014497A1 (de)

    Families Citing this family (24)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2001071169A1 (en) * 2000-03-21 2001-09-27 Silentor Holding A/S A silencer containing one or more porous bodies
    AUPR982302A0 (en) 2002-01-03 2002-01-31 Pax Fluid Systems Inc. A fluid flow controller
    AUPR982502A0 (en) 2002-01-03 2002-01-31 Pax Fluid Systems Inc. A heat exchanger
    CN1612979B (zh) 2002-01-03 2011-11-23 百思科技公司 涡环发生器
    US6959782B2 (en) * 2002-03-22 2005-11-01 Tecumseh Products Company Tuned exhaust system for small engines
    US6913112B2 (en) * 2003-02-05 2005-07-05 Arvin Technologies, Inc. Noise attenuation assembly
    US20040245044A1 (en) * 2003-04-18 2004-12-09 Gabriella Cerrato-Jay Tuned muffler for small internal combustion engines
    US6892853B2 (en) * 2003-05-01 2005-05-17 Agency For Science Technology And Research High performance muffler
    AU2003903386A0 (en) 2003-07-02 2003-07-17 Pax Scientific, Inc Fluid flow control device
    EA008030B1 (ru) 2003-11-04 2007-02-27 Пакс Сайентифик, Инк. Устройство для циркуляции текучей среды
    KR20070012357A (ko) 2004-01-30 2007-01-25 팍스 싸이언티픽 인코퍼레이션 원심 팬, 펌프 또는 터빈용 하우징
    JP4586513B2 (ja) * 2004-11-29 2010-11-24 日産自動車株式会社 消音器構造
    US7472774B1 (en) * 2006-01-27 2009-01-06 Lockheed Martin Corporation Versatile engine muffling system
    WO2008042251A2 (en) * 2006-09-29 2008-04-10 Pax Streamline, Inc. Axial flow fan
    US7762374B2 (en) * 2006-11-22 2010-07-27 Honeywell International Inc. Turbine engine diffusing exhaust muffler
    US7681690B2 (en) * 2007-07-13 2010-03-23 Longyear Tm, Inc. Noise abatement device for a pneumatic tool
    JP4993755B2 (ja) * 2008-03-18 2012-08-08 日産自動車株式会社 吸気音発生装置
    US7735603B2 (en) * 2008-05-28 2010-06-15 Longyear Tm, Inc. Noise reducing device for a pneumatic tool
    US8181671B2 (en) * 2009-09-15 2012-05-22 Butler Boyd L Anti-resonant pulse diffuser
    US8215449B2 (en) * 2009-12-02 2012-07-10 Longyear Tm, Inc. Muffler system for noise abatement and ice control
    US11187136B2 (en) * 2017-12-19 2021-11-30 The United States Of America As Represented By The Secretary Of The Army Vorticity based noise abatement
    CN109204850B (zh) * 2018-09-07 2020-11-06 观典防务技术股份有限公司 一种无人机发动机进行气流整流机构
    US11867102B2 (en) * 2019-08-28 2024-01-09 Snap-On Incorporated Pneumatic tool exhaust muffler
    CN113404579A (zh) * 2020-11-18 2021-09-17 哈尔滨工业大学(威海) 机动车复合排气***

    Family Cites Families (16)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US1505893A (en) * 1920-03-06 1924-08-19 Hunter William Silencer for internal-combustion engines
    GB345895A (en) * 1930-06-23 1931-04-02 Carl Axel Skaerlund Improvements relating to silencers for internal combustion engines
    CH199018A (fr) * 1934-07-19 1938-07-31 Zygmunt Wilman Silencieux spécialement pour moteurs à explosions et procédé pour sa fabrication.
    US2173550A (en) * 1936-07-17 1939-09-19 Coanda Henri Exhaust of gases from engines
    US2494947A (en) * 1946-11-16 1950-01-17 Fairbanks Morse & Co Engine manifold construction
    US3888331A (en) * 1974-05-03 1975-06-10 Gen Motors Corp Power tuned wave interference silencer
    US3913703A (en) * 1974-05-03 1975-10-21 Gen Motors Corp Single inner assembly wave interference silencer
    DE2519690A1 (de) * 1974-05-03 1975-11-13 Gen Motors Corp Geraeuschdaempfer
    US3941206A (en) * 1974-05-08 1976-03-02 Burgess Industries Incorporated Noise attenuating snubber
    JPS5236219A (en) * 1975-09-13 1977-03-19 Teruo Kashiwara Exhaust equipment for internal combustion engine
    US4129196A (en) * 1977-09-29 1978-12-12 Everett Wilhelm S Fluid acoustic silencer
    DE3246218A1 (de) * 1982-12-14 1984-06-14 Kaari, Kauko, Dipl.-Ing., 00270 Helsinki Verfahren und vorrichtung zum verbessern des leistungsvermoegens und des wirkungsgrads eines verbrennungsmotors sowie zum verringern der von ihm bewirkten verschmutzungslast
    US4679597A (en) * 1985-12-20 1987-07-14 Kim Hotstart Mfg. Co., Inc. Liquid pulsation dampening device
    US4792014A (en) * 1987-12-24 1988-12-20 Shin Seng Lin Tail pipe for drafting engine exhaust gas
    FR2642470A1 (fr) * 1989-01-27 1990-08-03 Glaenzer Spicer Sa Silencieux pour gaz d'echappement et partie de ligne d'echappement comportant un tel silencieux
    DE4020867C1 (en) * 1990-06-29 1992-01-02 Mercedes-Benz Aktiengesellschaft, 7000 Stuttgart, De IC-engine exhaust housing - has exhaust guides sited between cleaner and housing wall

    Also Published As

    Publication number Publication date
    US5844178A (en) 1998-12-01
    CA2204611A1 (en) 1996-05-17
    ES2120236T3 (es) 1998-10-16
    EP0791131A1 (de) 1997-08-27
    ATE170260T1 (de) 1998-09-15
    CN1078927C (zh) 2002-02-06
    CA2204611C (en) 2005-08-23
    AU3736495A (en) 1996-05-31
    AT407772B (de) 2001-06-25
    JPH10508356A (ja) 1998-08-18
    WO1996014497A1 (de) 1996-05-17
    DE59503380D1 (de) 1998-10-01
    CN1163652A (zh) 1997-10-29
    ATA206894A (de) 2000-10-15

    Similar Documents

    Publication Publication Date Title
    EP0791131B1 (de) Resonanz-schalldämpfer
    EP2955344B1 (de) Schalldämpfer
    DE2404001C2 (de) Schallunterdrückungsverkleidung für Strömungskanäle von Gasturbinentriebwerken
    DE2822971C2 (de) Auspuffvorrichtung für Verbrennungsmotoren
    DE3431759C2 (de)
    DE2545757A1 (de) Schalldaempfer fuer eine brennkraftmaschine
    DE2706957C2 (de) Abgasschalldämpfer
    DE2908506C2 (de) Schalldämpfer für Verbrennungskraftmaschinen
    DE102010022780B4 (de) Breitbanddämpfer
    EP1051562B1 (de) Schalldämpfer mit einem nebenschlussresonator
    DE7600607U1 (de) Schalldaempfer auf der ansaugseite eines verdichters mit mehreren daempfungselementen
    DE7307335U (de) Abgasschalldaempfer fuer zweitakt- motore
    EP1321639A2 (de) Schalldämpfungseinrichtung
    DE69401264T2 (de) Schalldämpfer
    DE2461085A1 (de) Auspuffanlage fuer einen verbrennungsmotor
    DE2907755C2 (de) Schalldämpfer für Brennkraftmaschinen
    DE10103739B4 (de) Schalldämpfer
    DE3836589C2 (de) Kompaktschalldämpfer für Nutzfahrzeuge
    DE2257852C2 (de) Abgasschalldämpfer für mehrzylindrige Brennkraftmaschinen
    EP3734033B1 (de) Abgasschalldämpfer für eine abgasanlage einer brennkraftmaschine
    DE19849698A1 (de) Schalldämpfer
    DE3712495A1 (de) Schalldaempfer fuer die abgase von brennkraftmaschinen
    DE884434C (de) Schalldaempfer, insbesondere fuer Brennkraftmaschinen
    DE2852348C2 (de) Druckluft-Vibrator
    DE2115240A1 (de) Schalldampfer

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19970411

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT DE ES FR GB IT SE

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    17Q First examination report despatched

    Effective date: 19971002

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT DE ES FR GB IT SE

    REF Corresponds to:

    Ref document number: 170260

    Country of ref document: AT

    Date of ref document: 19980915

    Kind code of ref document: T

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19980827

    REF Corresponds to:

    Ref document number: 59503380

    Country of ref document: DE

    Date of ref document: 19981001

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2120236

    Country of ref document: ES

    Kind code of ref document: T3

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: TP

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20040928

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20041001

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20041012

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20041013

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20041018

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20041025

    Year of fee payment: 10

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20051013

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20051013

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20051013

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20051014

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20051014

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060503

    EUG Se: european patent has lapsed
    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20051013

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060630

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20060630

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20051014