EP0787217B1 - METHOD FOR MAKING AlSiMgCu ALLOY PRODUCTS HAVING ENHANCED INTERCRYSTALLINE CORROSION RESISTANCE - Google Patents

METHOD FOR MAKING AlSiMgCu ALLOY PRODUCTS HAVING ENHANCED INTERCRYSTALLINE CORROSION RESISTANCE Download PDF

Info

Publication number
EP0787217B1
EP0787217B1 EP95936606A EP95936606A EP0787217B1 EP 0787217 B1 EP0787217 B1 EP 0787217B1 EP 95936606 A EP95936606 A EP 95936606A EP 95936606 A EP95936606 A EP 95936606A EP 0787217 B1 EP0787217 B1 EP 0787217B1
Authority
EP
European Patent Office
Prior art keywords
range
process according
ageing
rolled
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP95936606A
Other languages
German (de)
French (fr)
Other versions
EP0787217A1 (en
Inventor
Denis Bechet
Timothy Warner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Issoire SAS
Original Assignee
Pechiney Rhenalu SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9468402&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0787217(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Pechiney Rhenalu SAS filed Critical Pechiney Rhenalu SAS
Publication of EP0787217A1 publication Critical patent/EP0787217A1/en
Application granted granted Critical
Publication of EP0787217B1 publication Critical patent/EP0787217B1/en
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent

Definitions

  • the invention relates to the field of alloy products high-strength aluminum AlSiMgCu, belonging to the 6000 series according to the international aluminum nomenclature Association in the United States, and intended for applications structural, in particular in aeronautical construction.
  • US patent 4082578 of ALCOA describes two families of alloys, subsequently registered with the Aluminum Association under the numbers 6009 and 6010, the first favoring formability and the second mechanical strength. These alloys have good resistance to indentation, stress corrosion and exfoliating corrosion, as well as good spot welding ability, which makes them particularly suitable for automobile construction (bodywork and bumpers). These alloys have the following composition (by weight): Yes 0.4 - 1.2% Mg 0.4 - 1.1% Cu 0.1 - 0.6% Mn 0.2 - 0.8% Fe 0.05 - 0.35% In certain cases, one can exceed in state T6 (according to the designation of the Aluminum Association) 400 MPa for the breaking strength R m and 370 MPa for the elastic limit at 0.2% R 0.2 .
  • ALCAN patent US 4,614,552 covers aluminum alloy sheets, also intended for automobile bodywork, of composition: Yes 0.60 - 1.0% Mg 0.62 - 0.82% Cu 0.65 - 0.79% Mn 0.10 - 0.50% Fe ⁇ 0.40% Ti ⁇ 0.10% other ⁇ 0.05% each and ⁇ 0.15% in total.
  • This alloy was subsequently registered under the designation AA 6111. Like the alloys 6009 and 6010 mentioned above, it does not exhibit good resistance to intercrystalline corrosion in the T6 state.
  • the US patent 4589932 of ALCOA proposes for the automobile, railway, naval or aeronautical construction, an alloy, subsequently registered under the designation AA 6013, of composition: Yes 0.4 - 1.2% and preferably 0.6 - 1% Mg 0.5 - 1.3% " 0.8 - 1.2% Cu 0.6 - 1.1% Mn 0.1 - 1% " 0.2 - 0.8% Fe ⁇ 0.5% Cr ⁇ 0.10% Ti ⁇ 0.10% Zn around 0.25%
  • the alloy undergoes dissolution between 549 and 582 ° C, this temperature being close to the temperature of the solidus.
  • the sheets obtained compare very favorably, in terms of elastic limit and toughness, to the plated alloy 2024 commonly used for the fuselage of aircraft, and, moreover, the manufacturing cost is lower.
  • Patent EP 173632 of the applicant relates to extruded or stamped alloy products of composition: Yes 0.9 - 1.3% and preferably 1 - 1.15% Mg 0.7 - 1.1% " 0.8 - 1% Cu 0.3 - 1.1% " 0.8 - 1% Mn 0.5 - 0.7% Zr 0.07 - 0.2% " 0.08 - 0.12% Fe ⁇ 0.30% Zn ⁇ 0.7% " 0.3 - 0.6% having an essentially non-recrystallized structure.
  • This alloy subsequently registered under the designation AA 6056, has very high mechanical characteristics, both in strength and in ductility: R m > 420 MPa R 0.2 > 380 MPa A> 10%
  • the applicant's studies show that this alloy is also sensitive to intercrystalline corrosion in the T6 state, with results similar to those of 6013 (cf. M. REBOUL et al. "Stress Corrosion cracking of high strength Al alloys" in ICAA3 Trondheim 1992, p. 455).
  • the subject of the invention is also a laminated product or aluminum alloy spun of the above-mentioned composition, desensitized to intercrystalline corrosion (in the sense of the US Department of Defense standard MIL-H-6088) and having, in this desensitized state, a conductivity at least 0.5 MS / m higher than that measured at state T6.
  • It also relates to a fuselage element airplane or structural element of a road vehicle or rail made from products according to the invention or of products produced according to the process of the invention.
  • the alloys according to the invention having an Mg / Si ratio ⁇ 1 have a rather higher silicon content, since the Mg composition ranges are typical of alloys 6000 series. Surprisingly better resistance to intercrystalline corrosion by increasing the Si content, while this is deemed to act in the sense opposite.
  • Kemal NISANCIOGLU in the SINTEF Report A 820/3 du 23/8/1982 "Intercrystalline, stress and exfoliation corrosion of AlMgSi alloys. A litterature survey. "ISBN n ° 82-0595-2860-6, p.7, mentions that "the susceptibility to intercrystalline corrosion (in state T6) increases with the Si content, especially for alloys where Si is in excess over stoichiometric content ".
  • the alloys according to the invention having a Mg / Si ratio ⁇ 1 and desensitized to intercrystalline corrosion, numerous intergranular precipitates in the form of planchettes, whereas these are rather in the form of needles with state T6. At least some of these board-shaped precipitates contain AlMgSiCu quaternary compounds. Furthermore, the desensitized alloys according to the invention have a higher electrical conductivity of at least 0.5 MS / m compared to the electrical conductivity in the T6 state when the income applied is of the two-bearing type and of 1 MS / m in the case of single income.
  • the Cu content must be> 0.5% to have both sufficient mechanical characteristics and good stability thermal of the alloy. Beyond 1.1%, we risk seeing problems of stress corrosion and exfoliating corrosion, as well as a decrease in the tenacity to because of primary copper particles.
  • An addition of Zn at a content between 0.15 and 1% has, for an identical composition and income, an influence positive on the resistance to intercrystalline corrosion.
  • an addition of around 0.5% Ag allows improve mechanical characteristics.
  • the products according to the invention can be sheets rolled or extruded sections.
  • the alloy is cast in plates (for sheets) or in billets (for profiles) and its transformation range is relatively classic up to final income. Homogenization takes place between 480 and 570 ° C for a period between 5 and 50h. We then proceed to working by hot rolling or spinning, then, in the case sheets, cold rolling to a thickness included between 0.5 and 15 mm. We then perform a solution thrust at a temperature close to solidus, between 540 and 575 ° C, then water quenching with a speed of cooling dependent on the thickness of the product.
  • This treatment can either be a treatment single-bearing at a temperature between 150 and 250 ° C, and preferably between 165 and 220 ° C, or a two-bearing treatment, one of the bearings being at a temperature between 150 and 250 ° C (preferably 165 and 220 ° C) and the other at a higher temperature, between 170 and 270 ° C.
  • Q 145000 J / mol and R is the constant of ideal gases.
  • partial desensitization is meant the absence of intercrystalline ramifications of length greater than 20 microns, on a polished section produced following the test according to the American military standard MIL-H-6088. Desensitization is considered complete in the absence of ramifications larger than 5 microns. It is not recommended to exceed an equivalent time of 120 h, because there is then a too significant degradation of the elastic limit which falls clearly below 300 MPa.
  • the optimum desensitization range is between 70 and 120 h for two-bearing treatments and between 150 and 250 h for single-bearing treatments. Following this income, it can be seen that the difference in conductivity with state T6 is always greater than 0.5 MS / m.
  • This equivalent duration is preferably between 150 and 250 h.
  • the deviation in conductivity from the T6 state is at least 1 MS / m.
  • the products produced according to the invention have a good elastic modulus and an excellent specific modulus (quotient of the modulus by density) taking into account their lower density than that of alloys 2000 for example.
  • a module of 71 GPa was measured, barely less than the module of sheets of the same thickness in bare 2024 alloy, and clearly greater than that of the plated 2024 usually used for fuselage commercial aircraft.
  • These products also exhibit, thanks to the high temperature tempering, good thermal stability which makes them suitable, for example, for use in the fuselage of supersonic aircraft.

Description

Domaine techniqueTechnical area

L'invention concerne le domaine des produits en alliage d'aluminium à haute résistance AlSiMgCu, appartenant à la série 6000 selon la nomenclature internationale de l'Aluminum Association aux Etats-Unis, et destinées aux applications structurales, notamment à la construction aéronautique. The invention relates to the field of alloy products high-strength aluminum AlSiMgCu, belonging to the 6000 series according to the international aluminum nomenclature Association in the United States, and intended for applications structural, in particular in aeronautical construction.

Etat de la techniqueState of the art

Parmi les alliages de la série 6000, certains présentent des caractéristiques élevées qui les rendent aptes aux applications structurales les plus exigeantes. Among the 6000 series alloys, some have high characteristics which make them suitable for the most demanding structural applications.

Ainsi, le brevet US 4082578 d'ALCOA décrit deux familles d'alliages, enregistrées ultérieurement à l'Aluminum Association sous les n° 6009 et 6010, la première privilégiant la formabilité et la seconde la résistance mécanique. Ces alliages présentent une bonne résistance à l'indentation, à la corrosion sous contrainte et à la corrosion exfoliante, ainsi qu'une bonne aptitude au soudage par points, ce qui les destine particulièrement à la construction automobile (carrosserie et pare-chocs).
Ces alliages ont la composition suivante (en poids): Si 0,4 - 1,2% Mg 0,4 - 1,1% Cu 0,1 - 0,6% Mn 0,2 - 0,8% Fe 0,05 - 0,35% Dans certains cas, on peut dépasser à l'état T6 (selon la désignation de l'Aluminum Association) 400 MPa pour la résistance à la rupture Rm et 370 MPa pour la limite élastique à 0,2% R0,2.
Thus, US patent 4082578 of ALCOA describes two families of alloys, subsequently registered with the Aluminum Association under the numbers 6009 and 6010, the first favoring formability and the second mechanical strength. These alloys have good resistance to indentation, stress corrosion and exfoliating corrosion, as well as good spot welding ability, which makes them particularly suitable for automobile construction (bodywork and bumpers).
These alloys have the following composition (by weight): Yes 0.4 - 1.2% Mg 0.4 - 1.1% Cu 0.1 - 0.6% Mn 0.2 - 0.8% Fe 0.05 - 0.35% In certain cases, one can exceed in state T6 (according to the designation of the Aluminum Association) 400 MPa for the breaking strength R m and 370 MPa for the elastic limit at 0.2% R 0.2 .

Le brevet US 4614552 d'ALCAN couvre des tôles d'alliage d'aluminium, destinées également à la carrosserie automobile, de composition: Si 0,60 - 1,0% Mg 0,62 - 0,82% Cu 0,65 - 0,79% Mn 0,10 - 0,50% Fe < 0,40% Ti < 0,10% autres < 0,05% chacun et < 0,15% au total. Cet alliage a été enregistré ultérieurement sous la désignation AA 6111. Comme les alliages 6009 et 6010 mentionnés plus haut, il ne présente pas une bonne résistance à la corrosion intercristalline à l'état T6. ALCAN patent US 4,614,552 covers aluminum alloy sheets, also intended for automobile bodywork, of composition: Yes 0.60 - 1.0% Mg 0.62 - 0.82% Cu 0.65 - 0.79% Mn 0.10 - 0.50% Fe <0.40% Ti <0.10% other <0.05% each and <0.15% in total. This alloy was subsequently registered under the designation AA 6111. Like the alloys 6009 and 6010 mentioned above, it does not exhibit good resistance to intercrystalline corrosion in the T6 state.

Le brevet US 4589932 d'ALCOA propose pour la construction automobile, ferroviaire, navale ou aéronautique, un alliage, enregistré ultérieurement sous la désignation AA 6013, de composition: Si 0,4 - 1,2% et de préférence 0,6 - 1% Mg 0,5 - 1,3% " 0,8 - 1,2% Cu 0,6 - 1,1% Mn 0,1 - 1% " 0,2 - 0,8% Fe < 0,5% Cr < 0,10% Ti < 0,10% Zn autour de 0,25% L'alliage subit une mise en solution entre 549 et 582°C, cette température étant voisine de la température du solidus.
Les tôles obtenues se comparent très favorablement, en matière de limite élastique et de tenacité, à l'alliage 2024 plaqué utilisé couramment pour le fuselage des avions, et, de plus, le coût de fabrication est plus faible.
Cependant, un certain nombre d'études publiées dans la presse scientifique montrent une forte sensibilité à la corrosion intercristalline de cet alliage à l'état T6 (cf. T.D. BURLEIGH "Microscopic investigation of the intergranular corrosion of 6013-T6" in ICAA3 Trondheim 1992, p. 435).
The US patent 4589932 of ALCOA proposes for the automobile, railway, naval or aeronautical construction, an alloy, subsequently registered under the designation AA 6013, of composition: Yes 0.4 - 1.2% and preferably 0.6 - 1% Mg 0.5 - 1.3% " 0.8 - 1.2% Cu 0.6 - 1.1% Mn 0.1 - 1% " 0.2 - 0.8% Fe <0.5% Cr <0.10% Ti <0.10% Zn around 0.25% The alloy undergoes dissolution between 549 and 582 ° C, this temperature being close to the temperature of the solidus.
The sheets obtained compare very favorably, in terms of elastic limit and toughness, to the plated alloy 2024 commonly used for the fuselage of aircraft, and, moreover, the manufacturing cost is lower.
However, a certain number of studies published in the scientific press show a high sensitivity to intercrystalline corrosion of this alloy in the T6 state (cf. TD BURLEIGH "Microscopic investigation of the intergranular corrosion of 6013-T6" in ICAA3 Trondheim 1992 , p. 435).

Le brevet EP 173632 de la demanderesse est relatif à des produits filés ou matricés en alliage de composition: Si 0,9 - 1,3% et de préférence 1 - 1,15% Mg 0,7 - 1,1% " 0,8 - 1% Cu 0,3 - 1,1% " 0,8 - 1% Mn 0,5 - 0,7% Zr 0,07 - 0,2% " 0,08 - 0,12% Fe < 0,30% Zn < 0,7% " 0,3 - 0,6% présentant une structure essentiellement non recristallisée. Cet alliage, enregistré ultérieurement sous la désignation AA 6056, présente des caractéristiques mécaniques très élevées, aussi bien en résistance qu'en ductilité:
   Rm > 420 MPa   R0,2 > 380 MPa   A > 10%
Les études de la demanderesse montrent que cet alliage est également sensible à la corrosion intercristalline à l'état T6, avec des résultats analogues à ceux du 6013 (cf. M. REBOUL et al. "Stress Corrosion cracking of high strength Al alloys" in ICAA3 Trondheim 1992, p. 455).
Patent EP 173632 of the applicant relates to extruded or stamped alloy products of composition: Yes 0.9 - 1.3% and preferably 1 - 1.15% Mg 0.7 - 1.1% " 0.8 - 1% Cu 0.3 - 1.1% " 0.8 - 1% Mn 0.5 - 0.7% Zr 0.07 - 0.2% " 0.08 - 0.12% Fe <0.30% Zn <0.7% " 0.3 - 0.6% having an essentially non-recrystallized structure. This alloy, subsequently registered under the designation AA 6056, has very high mechanical characteristics, both in strength and in ductility:
R m > 420 MPa R 0.2 > 380 MPa A> 10%
The applicant's studies show that this alloy is also sensitive to intercrystalline corrosion in the T6 state, with results similar to those of 6013 (cf. M. REBOUL et al. "Stress Corrosion cracking of high strength Al alloys" in ICAA3 Trondheim 1992, p. 455).

Objet de l'inventionSubject of the invention

La demanderesse s'est aperçue que l'utilisation d'un domaine particulier à l'intérieur du domaine de composition des alliages 6000 chargés en Si, Mg et Cu, associée à un traitement particulier de désensibilisation à la corrosion intercristalline, permettait d'obtenir à la fois des caractéristiques mécaniques équivalentes à celles de l'alliage 2024 à l'état T3 et une résistance à la corrosion intercristalline à l'état non plaqué nettement améliorée, ce qui rend les alliages de ce type ainsi traités particulièrement appropriés à la réalisation de fuselages d'avions et, plus généralement, aux applications structurales à haute résistance. The Applicant has noticed that the use of a particular domain within the composition domain 6000 alloys loaded with Si, Mg and Cu, associated with a special treatment for corrosion desensitization intercrystalline, allowed to obtain both mechanical properties equivalent to those of the alloy 2024 in T3 state and corrosion resistance significantly improved intercrystalline in the unplated state, which makes alloys of this type thus treated particularly suitable for making fuselages aircraft and, more generally, for structural applications   high resistance.

L'invention a ainsi pour objet un procédé de fabrication de produits corroyés en alliage d'aluminium AlSiMgCu à haute résistance mécanique et présentant une bonne résistance à la corrosion intercristalline, comprenant les étapes suivantes:

  • coulée d'une plaque ou billette de composition (en poids): Si 0,7 - 1,3% Mg 0,6 - 1,1% Cu 0,5 - 1,1% Mn 0,3 - 0,8% Zr < 0,20% Fe < 0,30% Zn < 1% Cr < 0,25% Ag < 1% autres éléments < 0,05% chacun et < 0,15% au total reste aluminium.
    avec:   Mg/Si < 1
  • homogénéisation de cette plaque ou billette à une température comprise entre 470 et 570°C
  • corroyage à chaud et éventuellement à froid
  • mise en solution à une température comprise entre 540 et 570°C
  • trempe
  • revenu comportant au moins un palier à une température comprise entre 150 et 250°C, et de préférence entre 165 et 220°C, et d'une durée comprise entre 30h et 300h, de préférence entre 70 et 120h en durée équivalente à 175°C.
    Le revenu comporte, de préférence, un autre palier à température plus élevée comprise entre 185 et 250°C, la durée équivalente à 175°C étant toujours, pour l'ensemble des 2 paliers, comprise entre 30 et 300h.
The subject of the invention is therefore a method of manufacturing wrought products of AlSiMgCu aluminum alloy with high mechanical strength and having good resistance to intercrystalline corrosion, comprising the following steps:
  • pouring a composition plate or billet (by weight): Yes 0.7 - 1.3% Mg 0.6 - 1.1% Cu 0.5 - 1.1% Mn 0.3 - 0.8% Zr <0.20% Fe <0.30% Zn <1% Cr <0.25% Ag <1% other elements <0.05% each and <0.15% in total remains aluminum.
    with: Mg / Si <1
  • homogenization of this plate or billet at a temperature between 470 and 570 ° C
  • hot and possibly cold working
  • dissolved at a temperature between 540 and 570 ° C
  • quenching
  • tempering comprising at least one level at a temperature between 150 and 250 ° C, and preferably between 165 and 220 ° C, and with a duration between 30h and 300h, preferably between 70 and 120h in duration equivalent to 175 ° vs.
    The tempering preferably comprises another level at a higher temperature between 185 and 250 ° C, the duration equivalent to 175 ° C being always, for all 2 levels, between 30 and 300 hours.

L'invention a également pour objet un produit laminé ou filé en alliage d'aluminium de la composition mentionnée ci-dessus, désensibilisé à la corrosion intercristalline(au sens de la norme MIL-H-6088 du Département de la Défense des USA) et présentant, à cet état désensibilisé, une conductivité électrique supérieure d'au moins 0,5 MS/m à celle mesurée à l'état T6. The subject of the invention is also a laminated product or aluminum alloy spun of the above-mentioned composition,   desensitized to intercrystalline corrosion (in the sense of the US Department of Defense standard MIL-H-6088) and having, in this desensitized state, a conductivity at least 0.5 MS / m higher than that measured at state T6.

Elle a également pour objet un élément de fuselage d'avion ou un élément structural de véhicule routier ou ferroviaire réalisé à partir de produits selon l'invention ou de produits élaborés selon le procédé de l'invention. It also relates to a fuselage element airplane or structural element of a road vehicle or rail made from products according to the invention or of products produced according to the process of the invention.

Description de l'inventionDescription of the invention

Les alliages selon l'invention ayant un rapport Mg/Si < 1 ont une teneur en silicium plutôt plus élevée, puisque les fourchettes de composition de Mg sont typiques des alliages de la série 6000. Il est surprenant d'obtenir une meilleure résistance à la corrosion intercristalline en augmentant la teneur en Si, alors que celle-ci est réputée agir dans le sens contraire. Ainsi, Kemal NISANCIOGLU dans le SINTEF Report A 820/3 du 23/8/1982 "Intercrystalline, stress and exfoliation corrosion of AlMgSi alloys. A litterature survey." ISBN n° 82-0595-2860-6, p.7, mentionne que "la susceptibilité à la corrosion intercristalline (à l'état T6) augmente avec la teneur en Si, spécialement pour les alliages où Si est en excès par rapport à la teneur stoechiométrique". The alloys according to the invention having an Mg / Si ratio <1 have a rather higher silicon content, since the Mg composition ranges are typical of alloys 6000 series. Surprisingly better resistance to intercrystalline corrosion by increasing the Si content, while this is deemed to act in the sense opposite. Thus, Kemal NISANCIOGLU in the SINTEF Report A 820/3 du 23/8/1982 "Intercrystalline, stress and exfoliation corrosion of AlMgSi alloys. A litterature survey. "ISBN n ° 82-0595-2860-6, p.7, mentions that "the susceptibility to intercrystalline corrosion (in state T6) increases with the Si content, especially for alloys where Si is in excess over stoichiometric content ".

On constate qu'avec des alliages situés dans les mêmes fourchettes de composition, mais avec un rapport Mg/Si > 1, le revenu particulier ne permet pas d'obtenir une désensibilisation satisfaisante à la corrosion intercristalline. On observe en effet localement des traces d'attaque intercristalline. La désensibilisation pourrait sans doute être obtenue, mais au prix d'une dégradation inacceptable des caractéristiques mécaniques. It can be seen that with alloys located in the same composition ranges, but with an Mg / Si ratio> 1, the particular income does not provide a satisfactory desensitization to corrosion intercrystalline. There are indeed traces locally of intercrystalline attack. Desensitization could without doubt be obtained, but at the cost of degradation unacceptable mechanical characteristics.

On observe également, pour les alliages selon l'invention ayant un rapport Mg/Si < 1 et désensibilisés à la corrosion intercristalline, de nombreux précipités intergranulaires en forme de planchettes, alors que ceux-ci sont plutôt en forme d'aiguilles à l'état T6. Au moins certains de ces précipités en forme de planchettes contiennent des composés quaternaires AlMgSiCu.
Par ailleurs, les alliages désensibilisés selon l'invention présentent une conductivité éléctrique plus élevée d'au moins 0,5 MS/m par rapport à la conductivité électrique à l'état T6 lorsque le revenu pratiqué est de type bipalier et de 1 MS/m dans le cas d'un revenu monopalier.
We also observe, for the alloys according to the invention having a Mg / Si ratio <1 and desensitized to intercrystalline corrosion, numerous intergranular precipitates in the form of planchettes, whereas these are rather in the form of needles with state T6. At least some of these board-shaped precipitates contain AlMgSiCu quaternary compounds.
Furthermore, the desensitized alloys according to the invention have a higher electrical conductivity of at least 0.5 MS / m compared to the electrical conductivity in the T6 state when the income applied is of the two-bearing type and of 1 MS / m in the case of single income.

La teneur en Cu doit être > 0,5% pour avoir à la fois des caractéristiques mécaniques suffisantes et une bonne stabilité thermique de l'alliage. Au delà de 1,1%, on risque de voir apparaítre des problèmes de corrosion sous contrainte et de corrosion exfoliante, ainsi qu'une baisse de la tenacité à cause de particules primaires au cuivre. The Cu content must be> 0.5% to have both sufficient mechanical characteristics and good stability thermal of the alloy. Beyond 1.1%, we risk seeing problems of stress corrosion and exfoliating corrosion, as well as a decrease in the tenacity to because of primary copper particles.

Une addition de Zn à une teneur comprise entre 0,15 et 1% a, pour une composition et un revenu identiques, une influence positive sur la résistance à la corrosion intercristalline. Par ailleurs, une addition de l'ordre de 0,5% d'Ag permet d'améliorer les caractéristiques mécaniques. An addition of Zn at a content between 0.15 and 1% has, for an identical composition and income, an influence positive on the resistance to intercrystalline corrosion. In addition, an addition of around 0.5% Ag allows improve mechanical characteristics.

Les produits selon l'invention peuvent être des tôles laminées ou des profilés filés. L'alliage est coulé en plaques (pour les tôles) ou en billettes (pour les profilés) et sa gamme de transformation est relativement classique jusqu'au revenu final. L'homogénéisation se fait entre 480 et 570°C pendant une durée comprise entre 5 et 50h. On procède ensuite au corroyage par laminage à chaud ou filage, puis, dans le cas des tôles, au laminage à froid jusqu'à une épaisseur comprise entre 0,5 et 15 mm. On effectue ensuite une mise en solution poussée à une température proche du solidus, comprise entre 540 et 575°C, puis une trempe à l'eau avec une vitesse de refroidissement dépendant de l'épaisseur du produit. The products according to the invention can be sheets rolled or extruded sections. The alloy is cast in plates (for sheets) or in billets (for profiles) and its transformation range is relatively classic up to final income. Homogenization takes place between 480 and 570 ° C for a period between 5 and 50h. We then proceed to working by hot rolling or spinning, then, in the case sheets, cold rolling to a thickness included between 0.5 and 15 mm. We then perform a solution thrust at a temperature close to solidus, between 540 and 575 ° C, then water quenching with a speed of cooling dependent on the thickness of the product.  

Le revenu est un traitement thermique particulier qui permet à la fois d'obtenir les caractéristiques mécaniques requises tout en désensibilisant l'alliage à la corrosion intercristalline. Ce traitement peut être soit un traitement monopalier à une température comprise entre 150 et 250°C, et de préférence entre 165 et 220°C, soit un traitement bipalier, l'un des paliers étant à une température comprise entre 150 et 250°C (de préférence 165 et 220°C) et l'autre à une température plus élevée, comprise entre 170 et 270°C. Income is a special heat treatment which allows both to obtain the mechanical characteristics required while desensitizing the alloy to corrosion intercrystalline. This treatment can either be a treatment single-bearing at a temperature between 150 and 250 ° C, and preferably between 165 and 220 ° C, or a two-bearing treatment, one of the bearings being at a temperature between 150 and 250 ° C (preferably 165 and 220 ° C) and the other at a higher temperature, between 170 and 270 ° C.

Le temps de traitement dépend de la température. On peut ramener cette durée à un temps équivalent à 175°C teq, lié à la température T du palier en °K et à la durée t de traitement à cette température (la durée de montée en température étant prise en compte dans le calcul du temps équivalent) par la relation: (teq/448) exp(-Q/448R) = t/T exp(-Q/RT) dans laquelle Q = 145000 J/mol et R est la constante des gaz parfaits.
Pour les traitements bipalier, on constate qu'on obtient une désensibilisation partielle à la corrosion intercristalline pour teq > 30 h et une désensibilisation totale pour teq > 70 h. On entend par désensibilisation partielle l'absence de ramifications intercristallines de longueur supérieure à 20 microns, sur une coupe polie réalisée à la suite de l'essai selon la norme militaire américaine MIL-H-6088. La désensibilisation est considérée comme totale en l'absence de ramifications de taille supérieure à 5 microns.
Il n'est pas recommandé de dépasser un temps équivalent de 120 h, car on a alors une dégradation trop importante de la limite élastique qui chute nettement en dessous de 300 MPa. L'optimum de la plage de désensibilisation se situe entre 70 et 120 h pour les traitements bipalier et entre 150 et 250 h pour les traitements monopalier. A la suite de ce revenu, on constate que la différence de conductivité avec l'état T6 est toujours supérieure à 0,5 MS/m.
On peut aussi pratiquer un traitement thermique monopalier, mais, pour être efficace, il doit avoir une durée équivalente supérieure à celle d'un traitement bipalier, ce qui conduit généralement à des caractéristiques mécaniques inférieures. Cette durée équivalente est comprise de préférence entre 150 et 250 h. Dans ce cas, l'écart de conductivité par rapport à l'état T6 est d'au moins 1 MS/m.
Les produits réalisés selon l'invention présentent un bon module d'élasticité et un excellent module spécifique (quotient du module par la densité) compte-tenu de leur densité plus faible que celle des alliages 2000 par exemple. Ainsi, pour des tôles d'épaisseur 1,6 mm, on a mesuré un module de 71 GPa, à peine inférieur au module de tôles de même épaisseur en alliage 2024 nu, et nettement supérieur à celui du 2024 plaqué utilisé habituellement pour le fuselage des avions commerciaux.
Ces produits présentent également, grâce au revenu à haute température, une bonne stabilité thermique qui les rend aptes, par exemple, à être utilisés pour le fuselage d'avions supersoniques.
The processing time depends on the temperature. We can reduce this duration to a time equivalent to 175 ° C t eq , linked to the temperature T of the plateau in ° K and to the duration t of treatment at this temperature (the duration of temperature rise being taken into account in the calculation equivalent time) by the relation: (t eq / 448) exp (-Q / 448R) = t / T exp (-Q / RT) in which Q = 145000 J / mol and R is the constant of ideal gases.
For the two-bearing treatments, it is found that partial desensitization to intercrystalline corrosion is obtained for t eq > 30 h and a total desensitization for t eq > 70 h. By partial desensitization is meant the absence of intercrystalline ramifications of length greater than 20 microns, on a polished section produced following the test according to the American military standard MIL-H-6088. Desensitization is considered complete in the absence of ramifications larger than 5 microns.
It is not recommended to exceed an equivalent time of 120 h, because there is then a too significant degradation of the elastic limit which falls clearly below 300 MPa. The optimum desensitization range is between 70 and 120 h for two-bearing treatments and between 150 and 250 h for single-bearing treatments. Following this income, it can be seen that the difference in conductivity with state T6 is always greater than 0.5 MS / m.
One can also practice a single-bearing treatment, but, to be effective, it must have an equivalent duration greater than that of a two-bearing treatment, which generally leads to lower mechanical characteristics. This equivalent duration is preferably between 150 and 250 h. In this case, the deviation in conductivity from the T6 state is at least 1 MS / m.
The products produced according to the invention have a good elastic modulus and an excellent specific modulus (quotient of the modulus by density) taking into account their lower density than that of alloys 2000 for example. Thus, for sheets of 1.6 mm thickness, a module of 71 GPa was measured, barely less than the module of sheets of the same thickness in bare 2024 alloy, and clearly greater than that of the plated 2024 usually used for fuselage commercial aircraft.
These products also exhibit, thanks to the high temperature tempering, good thermal stability which makes them suitable, for example, for use in the fuselage of supersonic aircraft.

ExemplesExamples Exemple 1Example 1

On a élaboré sous forme de plaque un alliage de composition: Si 0,79% Mg 0,94% Cu 1,0% Mn 0,58% Fe 0,22% Zn 0,15% avec donc un rapport Mg/Si = 1,2.
La plaque a été homogénéisée 21h à 530°C, écroutée, puis laminée à chaud et à froid jusqu'à une épaisseur de 1,6 mm. La mise en solution a été effectuée à 550°C pendant 1h.
Le revenu standard pour un tel alliage, conduisant à l'état T6, serait de 8h à 175°C et les caractéristiques mécaniques dans le sens travers obtenues dans ce cas sont:

  • limite élastique R0,2 = 375 MPa
  • résistance à la rupture Rm = 417 MPa
  • allongement A = 14%
  • Sa conductivité électrique est de 24,0 MS/m.
    Différents traitements thermiques ont été effectués sur ces tôles pour essayer de les désensibiliser à la corrosion intercristalline. On a utilisé, pour qualifier cette sensibilité, soit un test nommé "Interneutre", correspondant à la norme militaire américaine MIL-H-6088, soit un test interne nommé "Interano", consistant en une attaque anodique de l'échantillon, pendant 6h, en milieu chlorures - perchlorates et sous une densité de courant de 1 mA/cm2, suivie d'un examen en coupe micrographique.
    Les températures équivalentes de revenu ainsi que les résultats en matière de caractéristiques mécaniques dans le sens travers et corrosion intercristalline sont rassemblés dans le tableau 1. An alloy of composition has been developed in the form of a plate: Yes 0.79% Mg 0.94% Cu 1.0% Mn 0.58% Fe 0.22% Zn 0.15% therefore with an Mg / Si ratio = 1.2.
    The plate was homogenized 21 h at 530 ° C, peeled, then hot and cold rolled to a thickness of 1.6 mm. The solution was carried out at 550 ° C for 1 hour.
    The standard income for such an alloy, leading to the T6 state, would be 8 hours at 175 ° C. and the transverse mechanical characteristics obtained in this case are:
  • elastic limit R 0.2 = 375 MPa
  • breaking strength R m = 417 MPa
  • elongation A = 14%
  • Its electrical conductivity is 24.0 MS / m.
    Various heat treatments have been carried out on these sheets to try to desensitize them to intercrystalline corrosion. To qualify this sensitivity, we used either a test called "Interneutre", corresponding to the US military standard MIL-H-6088, or an internal test called "Interano", consisting of an anodic attack on the sample, for 6h , in chlorides - perchlorates medium and at a current density of 1 mA / cm 2 , followed by an examination in micrographic section.
    The equivalent tempering temperatures as well as the results in terms of mechanical characteristics in the cross direction and intercrystalline corrosion are collated in Table 1.

    Exemple 2Example 2

    On a élaboré sous forme de plaque deux alliages A et B de composition suivante: A B Si 0,95 0,82 Mg 0,87 0,80 Cu 0,80 1,0 Mn 0,63 0,58 Fe 0,20 0,21 Mg/Si 0,91 0,98 Les plaques ont été homogénéisées 21h à 530°C, écroutées, puis laminées à chaud et à froid jusqu'à une épaisseur de 1,6 mm. La mise en solution a été effectuée à 550°C pendant 1h pour l'alliage A et à 570°C pendant 1h pour l'alliage B. Le revenu standard pour conduire à l'état T6 est de 8h à 175°C et les caractéristiques mécaniques dans le sens travers sont alors:

  • pour A    R0,2 = 350 MPa Rm = 380 MPa A = 13%
  • pour B   R0,2 = 363 MPa Rm = 400 MPa A = 14%
  • Les conductivités à l'état T6 des alliages A et B sont respectivement de 24,3 et 24,7 MS/m.
    Différents traitements thermiques de revenu ont été effectués sur ces tôles pour essayer de les désensibiliser à la corrosion intercristalline, qui a été qualifiée par des tests accélérés "Interneutre" et "Interano".
    Les temps équivalents à 175°C, les caractéristiques mécaniques dans le sens travers, la conductivité électrique et la sensibilité à la corrosion intercristalline ont été rassemblés dans les tableaux 2 (pour l'alliage A) et 3 (pour l'alliage B). Two alloys A and B of the following composition were produced in the form of a plate: AT B Yes 0.95 0.82 Mg 0.87 0.80 Cu 0.80 1.0 Mn 0.63 0.58 Fe 0.20 0.21 Mg / Si 0.91 0.98 The plates were homogenized 21 h at 530 ° C, peeled, then hot and cold rolled to a thickness of 1.6 mm. The dissolution was carried out at 550 ° C for 1 hour for alloy A and at 570 ° C for 1 hour for alloy B. The standard tempering to lead to state T6 is 8 hours at 175 ° C and the mechanical characteristics in the cross direction are then:
  • for A R 0.2 = 350 MPa R m = 380 MPa A = 13%
  • for B R 0.2 = 363 MPa R m = 400 MPa A = 14%
  • The conductivities in the T6 state of the alloys A and B are respectively 24.3 and 24.7 MS / m.
    Various tempering heat treatments have been carried out on these sheets in an attempt to desensitize them to intercrystalline corrosion, which has been qualified by accelerated "Interneutre" and "Interano" tests.
    The times equivalent to 175 ° C., the mechanical characteristics in the transverse direction, the electrical conductivity and the sensitivity to intercrystalline corrosion have been collated in Tables 2 (for alloy A) and 3 (for alloy B).

    Exemple 3Example 3

    On a élaboré sous forme de plaque un alliage de composition: Si 0,924 Mg 0,860 Cu 0,869 Mn 0,550 Fe 0,192 Zn 0,152 Zr 0,103 Ni 0,017 Ti 0,020 Cr 0,004 avec donc un rapport Mg/Si = 0,93
    La plaque a été homogénéisée à 530°C, ecroutée, laminée à chaud à une épaisseur de 35 mm, mise en solution à 550°C et trempée. On a comparé des échantillons ayant subi un revenu classique correspondant à un état T6 à des échantillons ayant subi un traitement de désensibilisation à la corrosion intercristalline selon l'invention, avec un revenu à double palier de 6 h à 175°C + 2 h à 220°C.
    Les caractéristiques mécaniques mesurées dans le sens long et travers-long sont les suivantes: sens L sens T-L R0,2 Rm A R0,2 Rm A MPa MPa % MPa MPa % état T6 368 380 13,0 356 394 9,6 selon invention 315 344 11,5 316 349 9,0 Les echantillons traités selon l'invention présentent aux tests "Interano" et "Interneutre" une absence de sensibilité à la corrosion intercristalline, contrairement aux échantillons T6.
    An alloy of composition has been developed in the form of a plate: Yes 0.924 Mg 0.860 Cu 0.869 Mn 0.550 Fe 0.192 Zn 0.152 Zr 0.103 Or 0.017 Ti 0.020 Cr 0.004 therefore with a Mg / Si ratio = 0.93
    The plate was homogenized at 530 ° C, peeled, hot rolled to a thickness of 35 mm, dissolved in 550 ° C and quenched. We compared samples having undergone a conventional tempering corresponding to a T6 state with samples having undergone a desensitization treatment to intercrystalline corrosion according to the invention, with a double-stage tempering of 6 h at 175 ° C. + 2 h at 220 ° C.
    The mechanical characteristics measured in the long and cross-long direction are as follows: sense L sense TL R 0.2 R m AT R 0.2 R m AT MPa MPa % MPa MPa % state T6 368 380 13.0 356 394 9.6 according to invention 315 344 11.5 316 349 9.0 The samples treated according to the invention show in the "Interano" and "Interneutre" tests an absence of sensitivity to intercrystalline corrosion, unlike the T6 samples.

    Les produits laminés ou filés et désensibilisés à la corrosion intercristalline selon l'invention sont particulièrement bien adaptés à la réalisation de pièces structurales pour l'aéronautique, en particulier des fuselages, et pour des véhicules routiers et ferroviaires. TRAITEMENT THERMIQUE téq (h) R0,2 (MPa) RM (MPa) A (%) SENSIBILITE CI 6h 175°C + 30 min 200°C 9,7 367 396 12,7 oui 6h 175°C + 2h 200°C 20,8 363 386 11,9 oui 6h 175°C + 8h 200°C 65,2 330 371 11,5 oui 6h 175°C + 30 min 220°C 21,8 326 379 11,8 oui 6 h 175°C + 2h 220°C 69,3 314 363 11,8 oui 6 h 175°C + 30 min 250°C 119,4 304 348 11,3 partielle 6 h 175°C + 2h 250°C 459,5 277 328 10,7 partielle 100 h à 175°C 100 351 380 13 oui 8h à 185°C 18,3 360 398 6,7 oui 8h à 220°C 253,3 290 343 6 oui TRAITEMENT THERMIQUE téq (h) R0,2 (MPa) RM (MPa) A (%) SENSIBILITE CI J MS/m 6h 175°C + 4h 200°C 35,6 322 370 11,4 oui 24.6 6h 175°C + 8h 200°C 65,2 319 361 10 partielle 24.7 6h 175°C + 30 min 220°C 21,8 338 376 11,4 oui 24.5 6h 175°C + 2h 220°C 69,3 310 349 10,1 non 25.1 6h 175°C + 30 min 250°C 119,4 288 331 10,1 non 25.8 6h 175°C + 2h 250°C 459,5 241 300 10,2 non 26.7 8h à 185°C 18,3 349 388 11,1 oui 24.3 8h à 200°C 59,2 322 353 10,3 partielle 24.7 8h à 220°C 253,3 272 323 9,5 non 25.8 TRAITEMENT THERMIQUE téq (h) R0,2 (MPa) RM (MPa) A (%) SENSIBILTE CI J MS/m 6h 175°C + 2h 220°C 69,3 313 374 11 partielle 25.1 6h 175°C + 30 min à 250°C 119.4 282 345 11 non 25.4 The rolled or extruded products and desensitized to intercrystalline corrosion according to the invention are particularly well suited to the production of structural parts for aeronautics, in particular fuselages, and for road and rail vehicles. HEAT TREATMENT t eq (h) R0.2 (MPa) RM (MPa) AT (%) CI SENSITIVITY 6h 175 ° C + 30 min 200 ° C 9.7 367 396 12.7 Yes 6h 175 ° C + 2h 200 ° C 20.8 363 386 11.9 Yes 6h 175 ° C + 8h 200 ° C 65.2 330 371 11.5 Yes 6h 175 ° C + 30 min 220 ° C 21.8 326 379 11.8 Yes 6 h 175 ° C + 2 h 220 ° C 69.3 314 363 11.8 Yes 6 h 175 ° C + 30 min 250 ° C 119.4 304 348 11.3 partial 6 h 175 ° C + 2 h 250 ° C 459.5 277 328 10.7 partial 100 h at 175 ° C 100 351 380 13 Yes 8h at 185 ° C 18.3 360 398 6.7 Yes 8h at 220 ° C 253.3 290 343 6 Yes HEAT TREATMENT t eq (h) R0.2 (MPa) RM (MPa) AT (%) CI SENSITIVITY J MS / m 6h 175 ° C + 4h 200 ° C 35.6 322 370 11.4 Yes 24.6 6h 175 ° C + 8h 200 ° C 65.2 319 361 10 partial 24.7 6h 175 ° C + 30 min 220 ° C 21.8 338 376 11.4 Yes 24.5 6h 175 ° C + 2h 220 ° C 69.3 310 349 10.1 no 25.1 6h 175 ° C + 30 min 250 ° C 119.4 288 331 10.1 no 25.8 6h 175 ° C + 2h 250 ° C 459.5 241 300 10.2 no 26.7 8h at 185 ° C 18.3 349 388 11.1 Yes 24.3 8h at 200 ° C 59.2 322 353 10.3 partial 24.7 8h at 220 ° C 253.3 272 323 9.5 no 25.8 HEAT TREATMENT t eq (h) R0.2 (MPa) RM (MPa) AT (%) SENSITIVITY CI J MS / m 6h 175 ° C + 2h 220 ° C 69.3 313 374 11 partial 25.1 6h 175 ° C + 30 min at 250 ° C 119.4 282 345 11 no 25.4

    Claims (11)

    1. A process for the production of high strength AlSiMgCu aluminium alloy products with good intergranular corrosion resistance, comprising the following steps:
      casting a plate or billet with the following composition (by weight): Si 0.7 - 1.3% Mg 0.6 - 1.1% Cu 0.5 - 1.1% Mn 0.3 - 0.8% Zr < 0.20% Fe < 0.30% Zn < 1% Ag < 1% Cr < 0.25% other elements < 0.05% each and < 0.15% in total
      remainder: aluminium;
      with: Mg/Si < 1
      homogenising in the range 470°C to 570°C;
      hot working, and optionally cold working;
      solution heat treating in the range 540°C to 570°C;
      quenching;
      ageing, comprising at least one temperature plateau in the range 150°C to 250°C preferably in the range 165°C to 220°C, the total period, measured as the equivalent period at 175°C, being in the range 30 h to 300 h.
    2. A process according to claim 1, characterized in that the Zn content is in the range 0.15% to 1%.
    3. A process according to claim 1 or claim 2, characterized in that the ageing comprises a plateau at a temperature which is in the range 150°C to 250°C, preferably in the range 165°C to 220°C, and a further plateau at a higher temperature which is in the range 170°C to 270°C.
    4. A process according to claim 3, characterized in that the equivalent period at 175°C for ageing is in the range 30 h to 120 h.
    5. A process according to claim 4, characterized in that the equivalent period at 175°C for ageing is in the range 70 h to 120 h.
    6. A process according to claim 1 or claim 2, characterized in that the ageing comprises a single plateau and its equivalent period at 175°C is in the range 150 h to 250 h.
    7. A rolled or extruded product of high strength AlSiMgCu aluminium with the following composition (by weight): Si 0.7 - 1.3% Mg 0.6 - 1.1% Cu 0.5 - 1.1% Mn 0.3 - 0.8% Zr < 0.20% Fe < 0.30% Zn < 1% Ag < 1% Cr < 0.25% other elements < 0.05% each and < 0.15% in total
      with: Mg/Si < 1, which has been desensitised to intercrystalline corrosion within the meaning of standard MIL-H-6088, and in the desensitised temper has an electrical conductivity which is at least 0.5 MS/m higher than that measured in the T6 temper.
    8. An aircraft fuselage element formed from rolled or extruded products produced by a process according to any one of claims 1 to 6.
    9. An aircraft fuselage element formed from rolled or extruded products according to claim 7.
    10. A structural element for a rail or road vehicle produced from rolled or extruded products produced by the process of any one of claims 1 to 6.
    11. A structural element for a rail or road vehicle formed from products according to claim 7.
    EP95936606A 1994-10-25 1995-10-24 METHOD FOR MAKING AlSiMgCu ALLOY PRODUCTS HAVING ENHANCED INTERCRYSTALLINE CORROSION RESISTANCE Revoked EP0787217B1 (en)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    FR9413047 1994-10-25
    FR9413047A FR2726007B1 (en) 1994-10-25 1994-10-25 PROCESS FOR PRODUCING ALSIMGCU ALLOY PRODUCTS WITH IMPROVED INTERCRYSTALLINE CORROSION RESISTANCE
    PCT/FR1995/001412 WO1996012829A1 (en) 1994-10-25 1995-10-24 METHOD FOR MAKING AlSiMgCu ALLOY PRODUCTS HAVING ENHANCED INTERCRYSTALLINE CORROSION RESISTANCE

    Publications (2)

    Publication Number Publication Date
    EP0787217A1 EP0787217A1 (en) 1997-08-06
    EP0787217B1 true EP0787217B1 (en) 1998-05-13

    Family

    ID=9468402

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP95936606A Revoked EP0787217B1 (en) 1994-10-25 1995-10-24 METHOD FOR MAKING AlSiMgCu ALLOY PRODUCTS HAVING ENHANCED INTERCRYSTALLINE CORROSION RESISTANCE

    Country Status (8)

    Country Link
    US (1) US5858134A (en)
    EP (1) EP0787217B1 (en)
    JP (1) JPH10512924A (en)
    KR (1) KR970707314A (en)
    CA (1) CA2202184A1 (en)
    DE (1) DE69502508T2 (en)
    FR (1) FR2726007B1 (en)
    WO (1) WO1996012829A1 (en)

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP0902842B2 (en) 1996-05-22 2007-06-06 Alcan Technology & Management AG Method of producing a component
    EP2789707A1 (en) 2013-04-08 2014-10-15 Benteler Automobiltechnik GmbH Method for producing a motor vehicle chassis component

    Families Citing this family (47)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO1999007906A1 (en) * 1997-08-04 1999-02-18 Hoogovens Aluminium Walzprodukte Gmbh HIGH STRENGTH Al-Mg-Zn-Si ALLOY FOR WELDED STRUCTURES AND BRAZING APPLICATION
    AUPQ485399A0 (en) * 1999-12-23 2000-02-03 Commonwealth Scientific And Industrial Research Organisation Heat treatment of age-hardenable aluminium alloys
    AU766929B2 (en) * 1999-12-23 2003-10-23 Commonwealth Scientific And Industrial Research Organisation Heat treatment of age-hardenable aluminium alloys
    FR2807449B1 (en) * 2000-04-07 2002-10-18 Pechiney Rhenalu METHOD FOR MANUFACTURING STRUCTURAL ELEMENTS OF ALUMINUM ALLOY AIRCRAFT AL-SI-MG
    AU2001286386A1 (en) * 2000-06-01 2001-12-11 Alcoa Inc. Corrosion resistant 6000 series alloy suitable for aerospace applications
    FR2811337B1 (en) * 2000-07-05 2002-08-30 Pechiney Rhenalu PLATED ALUMINUM ALLOY SHEETS FOR AIRCRAFT STRUCTURAL ELEMENTS
    FR2807448B1 (en) * 2000-09-19 2002-08-09 Pechiney Rhenalu METHOD FOR MANUFACTURING STRUCTURAL ELEMENTS OF ALUMINUM ALLOY AIRCRAFT AL-SI-MG
    AUPR360801A0 (en) * 2001-03-08 2001-04-05 Commonwealth Scientific And Industrial Research Organisation Heat treatment of age-hardenable aluminium alloys utilising secondary precipitation
    US6613167B2 (en) * 2001-06-01 2003-09-02 Alcoa Inc. Process to improve 6XXX alloys by reducing altered density sites
    ES2238584T3 (en) * 2001-07-09 2005-09-01 Corus Aluminium Walzprodukte Gmbh HIGH-RESISTANCE AL-MG-SI ALLOY.
    JP4101749B2 (en) * 2001-07-23 2008-06-18 コラス・アルミニウム・バルツプロドウクテ・ゲーエムベーハー Weldable high strength Al-Mg-Si alloy
    US6925352B2 (en) * 2001-08-17 2005-08-02 National Research Council Of Canada Method and system for prediction of precipitation kinetics in precipitation-hardenable aluminum alloys
    AU2003240727A1 (en) 2002-06-24 2004-01-06 Corus Aluminium Walzprodukte Gmbh Method of producing high strength balanced al-mg-si alloy and a weldable product of that alloy
    ES2203334B1 (en) * 2002-09-05 2005-03-16 Universidad Complutense De Madrid MANUFACTURING AND SUPERPLASTIC CONFORMING PROCEDURE OF ALLOYS ZN-AL-AG.
    US20050034794A1 (en) * 2003-04-10 2005-02-17 Rinze Benedictus High strength Al-Zn alloy and method for producing such an alloy product
    CN100547098C (en) 2003-04-10 2009-10-07 克里斯铝轧制品有限公司 A kind of Al-zn-mg-cu alloy
    US7666267B2 (en) * 2003-04-10 2010-02-23 Aleris Aluminum Koblenz Gmbh Al-Zn-Mg-Cu alloy with improved damage tolerance-strength combination properties
    FR2856368B1 (en) * 2003-06-18 2005-07-22 Pechiney Rhenalu BODY PIECE OF AUTOMOBILE BODY IN ALLOY SHEET AI-SI-MG FIXED ON STRUCTURE STEEL
    US20060032560A1 (en) * 2003-10-29 2006-02-16 Corus Aluminium Walzprodukte Gmbh Method for producing a high damage tolerant aluminium alloy
    US7883591B2 (en) * 2004-10-05 2011-02-08 Aleris Aluminum Koblenz Gmbh High-strength, high toughness Al-Zn alloy product and method for producing such product
    US20060070686A1 (en) * 2004-10-05 2006-04-06 Corus Aluminium Walzprodukte Gmbh High hardness moulding plate and method for producing said plate
    EP3461635A1 (en) * 2004-11-16 2019-04-03 Aleris Aluminum Duffel BVBA Aluminium composite sheet material
    DE102005015880B4 (en) * 2005-04-06 2010-07-22 Airbus Deutschland Gmbh Extruded profile for aircraft and apparatus for differential heat treatment of such a profile
    JP4815531B2 (en) * 2006-04-13 2011-11-16 エアバス オペラツィオンス ゲゼルシャフト ミット ベシュレンクテル ハフツング Heat treatment method for molded product, heat treatment apparatus for molded product, and molded product
    EP1852250A1 (en) * 2006-05-02 2007-11-07 Aleris Aluminum Duffel BVBA Clad sheet product
    FR2902442B1 (en) * 2006-06-16 2010-09-03 Aleris Aluminum Koblenz Gmbh ALLOY OF AA6XXX SERIES WITH HIGH DAMAGE TO AEROSPACE INDUSTRY
    US8178138B2 (en) * 2006-06-23 2012-05-15 Church & Dwight Co., Inc. Ruminant feedstock dietary supplement
    US8182851B2 (en) * 2006-06-23 2012-05-22 Church & Dwight Co., Inc. Ruminant feedstock dietary supplement
    US7939117B2 (en) * 2006-06-23 2011-05-10 Church & Dwight Co., Inc. Ruminant feedstock dietary supplement
    US8608876B2 (en) * 2006-07-07 2013-12-17 Aleris Aluminum Koblenz Gmbh AA7000-series aluminum alloy products and a method of manufacturing thereof
    FR2907467B1 (en) * 2006-07-07 2011-06-10 Aleris Aluminum Koblenz Gmbh PROCESS FOR MANUFACTURING ALUMINUM ALLOY PRODUCTS OF THE AA2000 SERIES AND PRODUCTS MANUFACTURED THEREBY
    JP5495183B2 (en) 2010-03-15 2014-05-21 日産自動車株式会社 Aluminum alloy and high strength bolt made of aluminum alloy
    JP5925667B2 (en) * 2012-11-19 2016-05-25 株式会社神戸製鋼所 Aluminum alloy material for high-pressure hydrogen gas container and manufacturing method thereof
    CN105401013A (en) * 2015-11-10 2016-03-16 苏州三基铸造装备股份有限公司 Cast aluminum alloy for automotive structural parts and preparation method thereof
    SI24911A (en) 2016-03-04 2016-07-29 Impol 2000, d.d. High-strength aluminum alloy Al-Mg-Si and procedure for its manufacture
    CA3064022C (en) * 2017-05-26 2023-06-27 Novelis Inc. High-strength corrosion-resistant 6xxx series aluminum alloys and methods of making the same
    US10030295B1 (en) 2017-06-29 2018-07-24 Arconic Inc. 6xxx aluminum alloy sheet products and methods for making the same
    JP6964552B2 (en) * 2018-04-24 2021-11-10 株式会社神戸製鋼所 Aluminum alloy and clad material made of aluminum alloy
    CN109055698B (en) * 2018-09-28 2020-04-28 中南大学 6XXX aluminum alloy suitable for automobile body and preparation process of automobile body plate
    CN109355533A (en) * 2018-12-13 2019-02-19 徐州宁铝业科技有限公司 A kind of fire resistant aluminum alloy and preparation method thereof
    CN110172653B (en) * 2019-01-31 2022-02-18 苏州铭恒金属科技有限公司 Homogenizing method for improving conductivity of aluminum alloy ingot and aluminum alloy ingot prepared by homogenizing method
    CN112122882A (en) * 2019-06-25 2020-12-25 西南铝业(集团)有限责任公司 Production process of pure aluminum alloy O-state plate
    CN111705243A (en) * 2020-06-12 2020-09-25 包头常铝北方铝业有限责任公司 Aluminum alloy strip for hollow glass aluminum parting strip and preparation method thereof
    CN111961928A (en) * 2020-09-07 2020-11-20 四川三星新材料科技股份有限公司 Production process method of high-silicon aluminum alloy section for automobile
    CN112626386B (en) * 2020-11-04 2022-08-16 佛山科学技术学院 High-strength corrosion-resistant Al-Mg-Si-Cu aluminum alloy and preparation method and application thereof
    CN113215451B (en) * 2021-05-13 2022-04-22 中南大学 High-strength Al-Mg-Si-Cu aluminum alloy and preparation method thereof
    CN113564433B (en) * 2021-08-10 2022-06-03 江苏亚太航空科技有限公司 Corrosion-resistant 6082 aluminum alloy material and casting process thereof

    Family Cites Families (14)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4082578A (en) * 1976-08-05 1978-04-04 Aluminum Company Of America Aluminum structural members for vehicles
    US4424084A (en) * 1980-08-22 1984-01-03 Reynolds Metals Company Aluminum alloy
    FR2524908A1 (en) * 1982-04-13 1983-10-14 Pechiney Aluminium PROCESS FOR THE PRODUCTION OF MATRIX OR FORGED ALUMINUM ALLOY PARTS
    US4711762A (en) * 1982-09-22 1987-12-08 Aluminum Company Of America Aluminum base alloys of the A1-Cu-Mg-Zn type
    US4589932A (en) * 1983-02-03 1986-05-20 Aluminum Company Of America Aluminum 6XXX alloy products of high strength and toughness having stable response to high temperature artificial aging treatments and method for producing
    US4614552A (en) * 1983-10-06 1986-09-30 Alcan International Limited Aluminum alloy sheet product
    JPS6082643A (en) * 1983-10-07 1985-05-10 Showa Alum Corp Corrosion resistant aluminum alloy having high strength and superior ductility
    FR2568590B1 (en) * 1984-07-31 1987-02-27 Cegedur HIGH-STRENGTH TYPE A-SG ALUMINUM ALLOY FOR SPINNED OR DIE PRODUCTS
    JPH0570907A (en) * 1991-04-30 1993-03-23 Sumitomo Light Metal Ind Ltd Manufacture of aluminum alloy material for forming
    FR2683828B1 (en) * 1991-11-18 1994-08-26 Cezus Cie Europ Zirconium PROCESS FOR THE MANUFACTURE OF SHEETS WITH A HOMOGENEOUS STRUCTURE IN ZIRCALOY 2 OR ZIRCALOY 4.
    JPH06136478A (en) * 1992-10-23 1994-05-17 Kobe Steel Ltd Baking hardening type al alloy sheet excellent in formability and its production
    US5616189A (en) * 1993-07-28 1997-04-01 Alcan International Limited Aluminum alloys and process for making aluminum alloy sheet
    FR2710657B1 (en) * 1993-09-28 1995-11-10 Pechiney Rhenalu Desensitization process for intercrystalline corrosion of Al alloys 2000 and 6000 series and corresponding products.
    US5503690A (en) * 1994-03-30 1996-04-02 Reynolds Metals Company Method of extruding a 6000-series aluminum alloy and an extruded product therefrom

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP0902842B2 (en) 1996-05-22 2007-06-06 Alcan Technology & Management AG Method of producing a component
    EP2789707A1 (en) 2013-04-08 2014-10-15 Benteler Automobiltechnik GmbH Method for producing a motor vehicle chassis component

    Also Published As

    Publication number Publication date
    DE69502508D1 (en) 1998-06-18
    KR970707314A (en) 1997-12-01
    JPH10512924A (en) 1998-12-08
    WO1996012829A1 (en) 1996-05-02
    CA2202184A1 (en) 1996-05-02
    FR2726007A1 (en) 1996-04-26
    US5858134A (en) 1999-01-12
    FR2726007B1 (en) 1996-12-13
    DE69502508T2 (en) 1998-09-10
    EP0787217A1 (en) 1997-08-06

    Similar Documents

    Publication Publication Date Title
    EP0787217B1 (en) METHOD FOR MAKING AlSiMgCu ALLOY PRODUCTS HAVING ENHANCED INTERCRYSTALLINE CORROSION RESISTANCE
    EP1114877B1 (en) Al-Cu-Mg alloy aircraft structural element
    EP2811042B1 (en) ALUMINiUM ALLOY forged MATERIAL AND METHOD FOR manufacturING the SAME
    EP1170118B1 (en) Aluminium alloy plated sheets for structural aircraft elements
    US6994760B2 (en) Method of producing a high strength balanced Al-Mg-Si alloy and a weldable product of that alloy
    JP2018513270A (en) High strength 7XXX aluminum alloy and manufacturing method thereof
    EP1382698B1 (en) Wrought product in Al-Cu-Mg alloy for aircraft structural element
    FR2843754A1 (en) Balanced aluminum-copper-magnesium-silicon alloy product for fuselage sheet or lower-wing sheet of aircraft, contains copper, silicon, magnesium, manganese, zirconium, chromium, iron, and aluminum and incidental elements and impurities
    EP0162096B1 (en) Aluminium alloys containing lithium, magnesium and copper
    FR2900663A1 (en) ALUMINUM COMPOSITE
    FR2902442A1 (en) ALLOY OF AA6XXX SERIES WITH HIGH DAMAGE TO AEROSPACE INDUSTRY
    EP1231290A1 (en) Method for making a high strength, wrought AlZnMgCu alloy product
    EP0756017B1 (en) Aluminium-copper-magnesium alloy with high creep resistance
    EP3526358B1 (en) Thin sheets made of an aluminium-magnesium-scandium alloy for aerospace applications
    EP1544315B1 (en) Wrought product in the form of a rolled plate and structural part for aircraft in Al-Zn-Cu-Mg alloy
    EP1143027B1 (en) Process for making avionic structural elements from an Al-Si-Mg alloy
    EP0227563B1 (en) Process od desensitization to exfoliating corrosion of lithium-containing aluminium alloys, resulting simultaneously in a high mechanical resistance and in good damage limitation
    US3414406A (en) Aluminium alloys and articles made therefrom
    CA1333232C (en) Alloy product containing li, which is resistant to corrosion under stress, and process for its preparation
    FR2646172A1 (en) AL-LI-CU-MG ALLOY HAS GOOD DEFORMABILITY TO COLD AND GOOD RESISTANCE TO DAMAGE
    EP0375572A1 (en) Aluminium alloy for cupping, containing silicon, magnesium and copper
    CA3203686A1 (en) Wrought products made of 2xxx alloy having an optimized corrosion resistance, and method for obtaining same
    FR2807448A1 (en) Aircraft fuselage structural elements production from a tempered rolled, spun or forged aluminum-silicon-magnesium alloy

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19970421

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE FR GB

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    17Q First examination report despatched

    Effective date: 19971008

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19980513

    REF Corresponds to:

    Ref document number: 69502508

    Country of ref document: DE

    Date of ref document: 19980618

    PLBQ Unpublished change to opponent data

    Free format text: ORIGINAL CODE: EPIDOS OPPO

    PLBI Opposition filed

    Free format text: ORIGINAL CODE: 0009260

    PLBF Reply of patent proprietor to notice(s) of opposition

    Free format text: ORIGINAL CODE: EPIDOS OBSO

    26 Opposition filed

    Opponent name: HOOGOVENS ALUMINIUM WALZPRODUKTE GMBH

    Effective date: 19990211

    PLBF Reply of patent proprietor to notice(s) of opposition

    Free format text: ORIGINAL CODE: EPIDOS OBSO

    PLBF Reply of patent proprietor to notice(s) of opposition

    Free format text: ORIGINAL CODE: EPIDOS OBSO

    PLBQ Unpublished change to opponent data

    Free format text: ORIGINAL CODE: EPIDOS OPPO

    PLAB Opposition data, opponent's data or that of the opponent's representative modified

    Free format text: ORIGINAL CODE: 0009299OPPO

    R26 Opposition filed (corrected)

    Opponent name: HOOGOVENS ALUMINIUM WALZPRODUKTE GMBH

    Effective date: 19990211

    PLAW Interlocutory decision in opposition

    Free format text: ORIGINAL CODE: EPIDOS IDOP

    APAC Appeal dossier modified

    Free format text: ORIGINAL CODE: EPIDOS NOAPO

    APAE Appeal reference modified

    Free format text: ORIGINAL CODE: EPIDOS REFNO

    APAC Appeal dossier modified

    Free format text: ORIGINAL CODE: EPIDOS NOAPO

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20020916

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20020918

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20021014

    Year of fee payment: 8

    APAC Appeal dossier modified

    Free format text: ORIGINAL CODE: EPIDOS NOAPO

    RDAH Patent revoked

    Free format text: ORIGINAL CODE: EPIDOS REVO

    RDAG Patent revoked

    Free format text: ORIGINAL CODE: 0009271

    RDAC Information related to revocation of patent modified

    Free format text: ORIGINAL CODE: 0009299REVO

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: PATENT REVOKED

    27W Patent revoked

    Effective date: 20030214

    GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

    Free format text: 20030214

    R27W Patent revoked (corrected)

    Effective date: 20030224

    APAH Appeal reference modified

    Free format text: ORIGINAL CODE: EPIDOSCREFNO