EP0745807B1 - Dampferzeuger - Google Patents

Dampferzeuger Download PDF

Info

Publication number
EP0745807B1
EP0745807B1 EP95810358A EP95810358A EP0745807B1 EP 0745807 B1 EP0745807 B1 EP 0745807B1 EP 95810358 A EP95810358 A EP 95810358A EP 95810358 A EP95810358 A EP 95810358A EP 0745807 B1 EP0745807 B1 EP 0745807B1
Authority
EP
European Patent Office
Prior art keywords
catalyst
economizer
steam generator
temperature
shut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95810358A
Other languages
English (en)
French (fr)
Other versions
EP0745807A1 (de
Inventor
Georg Ziegler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Martin GmbH fuer Umwelt und Energietechnik
Original Assignee
ABB Asea Brown Boveri Ltd
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Asea Brown Boveri Ltd, Asea Brown Boveri AB filed Critical ABB Asea Brown Boveri Ltd
Priority to AT95810358T priority Critical patent/ATE182207T1/de
Priority to ES95810358T priority patent/ES2136267T3/es
Priority to DE59506386T priority patent/DE59506386D1/de
Priority to EP95810358A priority patent/EP0745807B1/de
Priority to DK95810358T priority patent/DK0745807T3/da
Priority to US08/621,643 priority patent/US5775266A/en
Priority to PL96314258A priority patent/PL181254B1/pl
Priority to JP8128681A priority patent/JPH08327009A/ja
Priority to CZ961537A priority patent/CZ153796A3/cs
Priority to AU54593/96A priority patent/AU704982B2/en
Publication of EP0745807A1 publication Critical patent/EP0745807A1/de
Application granted granted Critical
Publication of EP0745807B1 publication Critical patent/EP0745807B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/008Adaptations for flue gas purification in steam generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/006Layout of treatment plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/10Nitrogen; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2217/00Intercepting solids
    • F23J2217/10Intercepting solids by filters
    • F23J2217/102Intercepting solids by filters electrostatic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/10Catalytic reduction devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/80Quenching

Definitions

  • the invention relates to a steam generator with a Furnace downstream radiation part and one adjoining convective part, the latter essentially Consisting of cascaded flue gas side Touch heat exchanger, superheater and economizer, which for direct selective catalytic reduction (SCR process) of nitrogen oxides (NOx) in the waste gas from waste incineration plants (KVA) is used, the NOx catalyst is fed directly with the hot smoke gases, so is arranged in the circuit before the scrubber.
  • SCR process selective catalytic reduction
  • NOx emissions from thermal waste incineration plants must not exceed legally prescribed values.
  • NOx emissions which are generally between 300 and 450 mg / m 3 .
  • primary firing measures and / or more effective exhaust-side secondary measures are used, the secondary measures being the SNCR process (selective non-catalytic reduction) and the SCR -Procedures (selective catalytic reduction) are available.
  • the NOx reduction takes place thermally by the reducing agent (ammonia or urea) in one Temperature range from about 900 to 1100 ° C in the furnace or Boiler part is injected.
  • the reducing agent ammonia or urea
  • the NOx catalyst is provided in front of the scrubber in newer circuits. It is then fed directly with the hot flue gases, so that the exhaust gas does not have to be reheated after washing.
  • the catalytic converters With prior dedusting ("direct low dust” switching) to residual dust contents below 10 mg / Nm 3 , the catalytic converters achieve a service life similar to that in the switching systems after exhaust gas scrubbing.
  • the electric filter (e-filter) for dedusting can also be arranged after the NOx catalyst ("direct high dust" circuit).
  • the gas temperature in front of the NOx catalytic converter as constant as possible on a predetermined one Value, for example 350 ° C.
  • the optimal operating temperature the catalyst is at 320 to 350 ° C. (K.J. Thomé-Kozmiensky: Thermal waste treatment. EF publishing house für Energy- undmaschinetechnik GmbH, 2nd edition, 1994, p. 555-557). This bandwidth can be used depending on the Catalyst even larger, e.g. is one at one Operating temperature of 280 ° C working catalyst in one Waste incinerator known.
  • the gas temperature in a conventional KVA boiler has the following values in two different operating cases: Operating case Gas temperature in ° C after Superheater Evaporator Economizer Dirty at full load 461 343 237 Part load clean 370 290 190
  • Control devices are also from the prior art known, with which an almost constant Gas temperature can be reached.
  • DE 42 18 016 A1 for example, a multi-part economizer described, the Heating surfaces are connected in series, and the shut-off devices which has water side at the entrance of the individual switchable heating surfaces are arranged. The heating surfaces water flows through one after the other.
  • this device it is possible to lower the flue gas temperature safe at a minimum value at the outlet of the steam generator to avoid.
  • a disadvantage of this device is that the Water at low temperatures flows through heat exchanger surfaces become. The flue gas temperature is therefore in the control heating surface necessarily less than the evaporation temperature of the water, evaporation of the water is not possible (Water hammer).
  • a steam generator is known from US 4 160 009, in which a catalyst is arranged between two economizers is. These economizers each have constant, unchangeable heating surfaces. To control the flue gas temperature a gas bypass is used in front of the NOx catalytic converter, which is relatively expensive.
  • the invention tries to avoid all these disadvantages. you is based on the task of developing a steam generator, for SCR process circuits in which the NOx catalyst in front of the washer directly with the hot smoke gases is loaded, can be used, with relatively little effort the gas temperature in front of the catalyst on an approximate constant, predetermined value can be kept.
  • this is according to a steam generator Preamble of claim 1 achieved in that the in the flow direction of the gas in front of the catalytic converter is divided into at least two sections, which on the one hand one after the other on the flue gas side and on the other hand from Work equipment to be heated flows in parallel, whereby at least one section over a line with the Drum is connected and the other section (s) Can be optionally locked from the water circuit via lockable lines are.
  • this is the case with a method of operation of the steam generator in that the temperature of the Flue gases immediately before they enter the NOx catalytic converter is measured and a dependent on the level of this temperature Number of lines (11b) that can be shut off from the water circuit is completed. This creates one or more sections of the economizer completed before the catalyst from the water cycle and part of the heating surface becomes inactive.
  • the advantages of the invention include that regulating the gas temperature upstream of the NOx catalyst is relatively easy to use and is guaranteed an approximately constant admission temperature of the NOx catalytic converter works optimally and has a long service life.
  • the invention can be used both in "direct-low dust" direct high dust circuits are also used, i.e. the e-filter can be arranged either before or after the economizer be.
  • the economizer in the boiler components upstream of the catalytic converter are designed so that during operation "Part load clean" the inlet temperature of the flue gas in the economizer upstream of the catalytic converter greater than / equal to the operating temperature of the catalyst.
  • Exemplary embodiments of the invention are shown in the drawing of a boiler for a waste incineration plant.
  • Fig. 1 three SCR circuits known from the prior art that which can be achieved after the individual treatment steps Temperature level of the gas shown.
  • Part I shows a circuit in which the apparatus boiler 1 / economizer 2, e-filter 3, scrubber 4, NOx catalyst 5 and cooler 6 in the Order of their flow are arranged, because of the low temperature of the flue gas after the scrubber 4 (e.g. 70 ° C) the gas before entering the NOx catalyst 5 must be heated again (e.g. to 350 ° C).
  • the inventive Solution of which an embodiment variant in Fig. 2 and 3 is applied.
  • the basis is that the Steam generator 1 has a two-part economizer 2. This consists of part 2a, which is on the gas side in front of the NOx catalyst 5 is arranged and a part 2b, which is arranged after the NOx catalyst 5. According to circuit arrangement 2 are then in the order of A filter 3 and then a scrubber flow through the gases 4 arranged.
  • the temperature in front of the NOx catalytic converter is approximately constant for different operating states (in Embodiment shown 350 ° C), it can be +/- 10 ° C differ.
  • Fig. 3 shows a more detailed schematic representation of the Steam generator according to the invention, as in the high dust circuit 2 is used. Above a firebox 7, two vertical empty trains 8 are arranged, which Form the radiation part of the steam generator. In the following horizontal part of the steam generator are in a superheater 9 and a in the order of their flow economizer 2 divided into two main parts 2a and 2b, with the NOx catalyst between the two parts 2a, 2b 5, which is used for the selective catalytic reduction of the Nitrogen oxides is needed is housed.
  • the economizer in front of the NOx catalyst 2a is divided into several Sections 10 (here 4 sections) divided, the gas side are flowed through one after the other while they are i.e. water parallel from bottom to top be flowed through. These parallel connecting lines 11 finally open into a line 12 with the drum 13 communicates.
  • all are parallel switched lines 11 a shut-off device 14, for example a valve, according to the individual sections 10 of the Economizers arranged in front of the NOx catalytic converter 2a so that these sections are optionally completed by the water cycle can be seen during a section 10 of the economizer the catalyst in any case, i.e. also when shutting off all other sections 10, is connected to the drum 13.
  • the economizer in front of the catalytic converter 2a is designed in such a way that Partial evaporation can occur. It’s so big that in the "full load dirty" operating condition the inlet temperature of the flue gas 19 in the catalytic converter 5 is less than or equal to is the operating temperature of the catalyst 5.
  • the economizer in front of the catalytic converter 2a in the steam generator 1 upstream components, such as superheater 9, contact heat generator 18 ("protective bundle", which is first acted upon by the flue gas 19 ), empty trains 8, are designed so that during operation "Part load clean" the inlet temperature of the Flue gas 19 in the economizer in front of the catalyst greater than / equal is the operating temperature of the catalyst.
  • a Temperature measuring element 15 After the last section 10 in the gas flow direction is a Temperature measuring element 15 arranged.
  • the gas side after the second part of the economizer 2b located on the catalytic converter 5 is essentially realized in countercurrent circuit.
  • a Pump 16 pumps water via line 17 into part 2b of the Economizers, which is arranged after the NOx catalyst 5.
  • the water cools the denoxified smoke gases 19 from the catalytic converter 5 emerge further before they are not shown here Filter 3 dedusted and fed to the scrubber 4 become.
  • the water then passes parallel to the catalyst 5 passed into the sections 10, which flows from bottom to top be taking another heat exchange with here even hotter flue gas 19 takes place.
  • the invention is not limited to that just described Embodiment limited.
  • it can even in a steam generator with a vertical convective train can be realized.
  • FIG. 4 schematically shows a steam generator according to the invention shown for the SCR low dust process.
  • the difference 3 is here between the economizer before Catalyst 2a and the NOx catalyst 5 an E-filter 3 arranged.
  • this embodiment shows that the economizer after the catalyst 2b also with vertical Gas flow can be carried out.
  • Variant is the economizer after the catalyst 2b even at a greater spatial distance from the NOx catalyst arranged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chimneys And Flues (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Detergent Compositions (AREA)

Description

Technisches Gebiet
Die Erfindung betrifft einen Dampferzeuger mit einem dem Feuerraum nachaeschalteten Strahlungsteil und einem sich daran anschliessenden konvektiven Teil, letzterer im wesentlichen bestehend aus rauchgasseitig hintereinandergeschalteten Berührungswärmetauscher, Überhitzer und Economizer, welcher zur direkten selektiven katalytischen Reduktion (SCR-Verfahren) von Stickoxiden (NOx) im Abgas von Kehrrichtverbrennungsanlagen (KVA) eingesetzt wird, wobei der NOx-Katalysator direkt mit den heissen Rauchgasen beschickt wird, also in der Schaltung vor dem Wäscher angeordnet ist.
Stand der Technik
Die NOx-Emissionen aus thermischen Abfallverbrennungsanlagen dürfen gesetzlich vorgegebene Werte nicht überschreiten. Zur Minderung der NOx-Emissionen, die im allgemeinen zwischen 300 und 450 mg/m3 liegen, werden bekanntermassen feuerungstechnische Primärmassnahmen und/oder effektiver wirkende abgasseitige Sekundärmassnahmen eingesetzt, wobei als Sekundärmassnahmen das SNCR-Verfahren (selective non-catalytic reduction) und das SCR-Verfahren (selective catalytic reduction) zur Verfügung stehen.
Beim SNCR-Verfahren erfolgt die NOx-Reduktion thermisch, indem das Reduktionsmittel (Ammoniak bzw. Harnstoff) in einem Temperaturbereich von etwa 900 bis 1100°C in den Feuerungsoder Kesselteil eingedüst wird.
Beim SCR-Verfahren werden dagegen bei wesentlich niedrigeren Temperaturen die Stickoxide unter Zugabe von Ammoniakwasser an einem Katalysator zu Stickstoff und Wasserdampf umgesetzt. Nach dem derzeitigen Stand der Technik ist es nur mit einem katalytischen Verfahren möglich, die NOx-Emissionen auf Werte < 100 mg/m3 zu senken.
Für die Schaltung der Katalysatorstufe bestehen nach dem bekannten Stand der Technik verschiedene Möglichkeiten. So werden z.B. Kessel für Kehrrichtverbrennungsanlagen mit NOx-Katalysatoren ausgerüstet, die üblicherweise nach dem Wäscher eingesetzt werden. Dies hat zwar einerseits den Vorteil, dass die Gefahr einer Katalysatorvergiftung oder Blockierung durch Staub und Schwefeldioxid reduziert ist, andererseits aber den Nachteil, dass die Rauchgase vor Eintritt in den Katalysator wieder aufgeheizt werden müssen.
Deshalb ist bei neueren Schaltungen der NOx-Katalysator vor dem Wäscher vorgesehen. Er wird dann direkt mit den heissen Rauchgasen beschickt, so dass die Wiedererwärmung des Abgases nach der Wäsche entfällt. Bei vorheriger Entstaubung ("direkt-low dust"-Schaltung) auf Reststaubgehalte unter 10 mg/Nm3 erreichen die Katalysatoren ähnliche Standzeiten wie in den Schaltungen nach der Abgaswäsche. Der Elektro-Filter (E-Filter) zur Entstaubung kann aber auch nach dem NOx-Katalysator angeordnet sein ("direkt-high dust"-Schaltung).
Für ein optimales Arbeiten des Katalysators und eine möglichst lange Lebensdauer ist es notwendig, die Gastemperatur vor dem NOx-Katalysator möglichst konstant auf einem vorgegebenen Wert, beispielsweise 350°C, zu halten. Die optimale Betriebstemperatur des Katalysators liegt bei 320 bis 350°C (K.J. Thomé-Kozmiensky: Thermische Abfallbehandlung. EF-Verlag für Energie- und Umwelttechnik GmbH, 2.Auflage, 1994, S. 555-557). Diese Bandbreite kann in Abhängigkeit vom eingesetzten Katalysator noch grösser sein, z.B. ist ein bei einer Betriebstemperatur von 280°C arbeitender Katalysator in einer Kehrrichtverbrennungsanlage bekannt.
Ohne Regelungsvorrichtung ist aber eine annähernd konstante Gastemperatur bei den verschiedenen Betriebszuständen nicht möglich (s. U. Leibacher und R. Walder: "NOx-Elimination nach dem SCR-Verfahren in Rohgasschaltung bei der Kehrichtverbrennung", MÜLL und ABFALL 1995 (9), S. 619-625). So hat beispielsweise die Gastemperatur in einem konventionellen KVA-Kessel bei zwei unterschiedlichen Betriebsfällen folgende Werte:
Betriebsfall Gastemperatur in °C nach
Überhitzer Verdampfer Economizer
Vollast verschmutzt 461 343 237
Teillast sauber 370 290 190
Es ergeben sich also beträchtliche Unterschiede in der Höhe der Rauchgastemperatur (hier ca. 50°C nach dem Economizer), was sich bei einer direkten Beschickung des NOx-Katalysators mit den heissen Rauchgasen ungünstig auswirkt.
Weiterhin sind aus dem Stand der Technik Regelungsvorrichtungen bekannt, mit denen eine annähernd gleichbleibende Gastemperatur erreicht werden kann. In DE 42 18 016 A1 wird beispielsweise ein mehrteiliger Economizer beschrieben, dessen Heizflächen in Reihe geschaltet sind, und der Absperrorgane aufweist, welche wasserseitig am Eintritt der einzelnen abschaltbaren Heizflächen angeordnet sind. Die Heizflächen werden nacheinander vom Wasser durchströmt. Mit dieser Vorrichtung ist es möglich, die Absenkung der Rauchgastemperatur am Austritt des Dampferzeugers unter einen Minimalwert sicher zu vermeiden. Nachteilig bei dieser Vorrichtung ist, dass die Wärmetauscherflächen von Wasser mit tiefer Temperatur durchströmt werden. Somit ist die Rauchgastemperatur in der Regelheizfläche zwingend kleiner als die Verdampfungstemperatur des Wassers, eine Verdampfung des Wassers ist nicht möglich (Wasserschläge).
Bei dem in DE 33 44 712 C1 offenbarten Dampferzeuger, bei dem ein Dreiwegeventil in der zu einem Eintrittssammler des Speisewasservorwärmers führenden Speisewasserleitung angeordnet ist, wird die Temperatur der Rauchgase vor deren Eintritt in den Katalysator auf einen schmalen Temperaturbereich begrenzt. Der Regelwärmetauscher ist bei dieser Lösung immer mit Wasser durchströmt und produziert heisses Wasser, Wasser/Dampf-Gemisch oder Überhitzerdampf.
Aus US 4 160 009 ist schliesslich ein Dampferzeuger bekannt, bei welchem zwischen zwei Economizern ein Katalysator angeordnet ist. Diese Economizers besitzen jeweils konstante, nicht veränderbare Heizflächen. Zur Regelung der Rauchgastemperatur vor dem NOx-Katalysator wird ein Gasbypass benutzt, der relativ aufwendig ist.
Darstellung der Erfindung
Die Erfindung versucht, all diese Nachteile zu vermeiden. Ihr liegt die Aufgabe zugrunde, einen Dampferzeuger zu entwikkeln, der für SCR-Verfahrensschaltungen, bei denen der NOx-Katalysator vor dem Wäscher direkt mit den heissen Rauchgasen beschickt wird, einsetzbar ist, wobei mit relativ wenig Aufwand die Gastemperatur vor dem Katalysator auf einem annähernd konstanten, vorgegebenen Wert gehalten werden kann.
Erfindungsgemäss wird dies bei einem Dampferzeuger gemäss Oberbegriff des Patentanspruches 1 dadurch erreicht, dass der in Strömungsrichtung des Gases vor dem Katalysator angeordnete Economizer in mindestens zwei Sektionen unterteilt ist, welche einerseits rauchgasseitig nacheinander und andererseits vom aufzuheizenden Arbeitsmittel parallel durchströmt sind, wobei mindestens eine Sektion über eine Leitung ständig mit der Trommel in Verbindung steht und die andere(n) Sektion(en) über absperrbare Leitungen wahlweise vom Wasserkreislauf abschliessbar sind.
Erfindungsgemäss wird dies bei einem Verfahren zum Betrieb des Dampferzeugers dadurch erreicht, dass die Temperatur der Rauchgase unmittelbar vor ihrem Eintritt in den NOx-Katalysator gemessen wird und eine von der Höhe dieser Temperatur abhängige Anzahl der absperrbaren Leitungen (11b) vom Wasserkreislauf abgeschlossen wird. Dadurch werden eine bzw. mehrere Sektionen des Economizers vor dem Katalysator vom Wasserkreislauf abgeschlossen und ein Teil der Heizfläche wird inaktiv.
Die Vorteile der Erfindung sind unter anderem darin zu sehen, dass die Regelung der Gastemperatur vor dem NOx-Katalysator relativ einfach zu handhaben ist und durch die Gewährleistung einer annähernd konstanten Beaufschlagungstemperatur der NOx-Katalysator optimal arbeitet und eine lange Lebensdauer aufweist. Die Erfindung kann sowohl bei "direkt-low dust"- als auch "direkt-high dust"-Schaltungen angewendet werden, d.h. der E-Filter kann entweder vor oder nach dem Economizer angeordnet sein.
Es ist besonders zweckmässig, wenn der Economizer vor dem Katalysator so gross ausgelegt ist, dass im Betriebsfall "Volllast verschmutzt" die Eintrittstemperatur des Rauchgases in den Katalysator kleiner/gleich der Betriebstemperatur des Katalysators ist.
Ferner ist es vorteilhaft, wenn die im Kessel dem Economizer vor dem Katalysator vorgelagerten Bauteile, wie Überhitzer, Schutzbündel, Leerzüge, so ausgelegt sind, dass im Betriebsfall "Teillast sauber" die Eintrittstemperatur des Rauchgases in den Economizer vor dem Katalysator grösser/gleich der Betriebstemperatur des Katalysators ist.
Kurze Beschreibung der Zeichnung
In der Zeichnung sind Ausführungsbeispiele der Erfindung anhand eines Kessels für eine Kehrrichtverbrennungsanlage dargestellt.
Es zeigen:
Fig. 1
drei Schaltungssschemata von Kehrrichtverbrennungsanlagen mit SCR-Verfahren nach dem Stand der Technik
  • I: konventionell
  • II: direkt-low dust
  • III: direkt-high dust;
Fig. 2
das erfindungsgemässe Schaltungsschema einer Kehrrichtverbrennungsanlage mit SCR-Verfahren (direkt-high dust);
Fig. 3
eine detailliertere Darstellung eines Teils von Fig. 2 im Bereich des Kessels, des NOx-Katalysators und des Economizers;
Fig. 4
eine schematische Darstellung der Erfindung im Bereich des Kessels, des E-Filters, des NOx-Katalysators und des Economizers (direkt-low dust-SCR-Verfahren).
Es sind nur die für das Verständnis der Erfindung wesentlichen Elemente gezeigt. Nicht dargestellt sind von der Anlage beispielsweise die Beschickung des Kessels, die Feuerungsanlage und die Nasswäscheanlage. Die Strömungsrichtung der Arbeitsmittel ist mit Pfeilen bezeichnet.
Weg zur Ausführung der Erfindung
Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen und der Figuren 1 bis 4 näher erläutert.
Zum besseren Verständnis der Erfindung sind zunächst in Fig. 1 drei aus dem Stand der Technik bekannte SCR-Schaltungen mit dem nach den einzelnen Behandlungsschritten jeweils erreichbaren Temperaturniveau des Gases dargestellt. Teil I zeigt eine Schaltung, in der die Apparate Kessel 1/Economizer 2, E-Filter 3, Wäscher 4, NOx-Katalysator 5 und Abkühler 6 in der Reihenfolge ihrer Durchströmung angeordnet sind, wobei wegen der geringen Temperatur des Rauchgases nach dem Wäscher 4 (z.B. 70°C) das Gas vor Eintritt in den NOx-Katalysator 5 nochmals aufgeheizt werden muss (z.B. auf 350°C). Diese Aufheizung entfällt bei der in Teil II dargestellten "low dust"-Schaltung, bei der die Aggregate in der Reihenfolge Kessel 1, Elektro-Filter 3, NOx-Katalysator 5, Economizer 2 und Wäscher 4 angeordnet sind, ebenso wie bei der in Teil III gezeigten "high dust"-Schaltung mit einer Anordnung in der Reihenfolge Kessel 1, NOx-Katalysator 5, Economizer 2, E-Filter 3 und Wäscher 4.
Da in den beiden zuletzt genannten Fällen für unterschiedliche Betriebszustände keine konstante Gastemperatur vor dem NOx-Katalysator 5 gewährleistet werden kann, wird die erfindungsgemässe Lösung, von der eine Ausführungsvariante in Fig. 2 und 3 dargestellt ist, angewendet. Grundlage ist, dass der Dampferzeuger 1 einen zweiteiligen Economizer 2 aufweist. Dieser besteht aus einem Teil 2a, welcher gasseitig vor dem NOx-Katalysator 5 angeordnet ist und einem Teil 2b, welcher nach dem NOx-Katalysator 5 angeordnet ist. Gemäss Schaltungsanordnung nach Fig. 2 sind danach in der Reihenfolge der Durchströmung der Gase ein Filter 3 und anschliessend ein Wäscher 4 angeordnet. Die Temperatur vor dem NOx-Katalysator ist für verschiedene Betriebszustände annähernd konstant (im gezeigten Ausführungsbeispiel 350°C), sie kann um +/-10°C differieren.
Fig. 3 zeigt eine detailliertere schematische Darstellung des erfindungsgemässen Dampferzeugers, wie er in der high dust-Schaltung nach Fig. 2 eingesetzt wird. Oberhalb eines Feuerraumes 7 sind zwei vertikale Leerzüge 8 angeordnet, die den Strahlungsteil des Dampferzeugers bilden. Im sich daran anschliessenden horizontalen Teil des Dampferzeugers sind in der Reihenfolge ihrer Durchströmung ein Überhitzer 9 und ein in zwei Hauptteile 2a und 2b unterteilter Economizer 2 angeordnet, wobei zwischen den beiden Teilen 2a, 2b der NOx-Katalysator 5, der für die selektive katalytische Reduktion der Stickoxide benötigt wird, untergebracht ist.
Der Economizer vor dem NOx-Katalysator 2a ist in mehrere getrennte Sektionen 10 (hier 4 Sektionen) unterteilt, die gasseitig nacheinander durchströmt werden, während sie vom Arbeitsmittel, d.h. wassermässig parallel von unten nach oben durchströmt werden. Diese parallelen Verbindungsleitungen 11 münden schliesslich in eine Leitung 12, die mit der Trommel 13 in Verbindung steht. Mit einer Ausnahme ist in allen parallel geschalteten Leitungen 11 ein Absperrorgan 14, beispielsweise ein Ventil, nach den einzelnen Sektionen 10 des Economizers vor dem NOx-Katalysator 2a angeordnet, so dass diese Sektionen wahlweise vom Wasserkreislauf abgeschlossen werden können, während eine Sektion 10 des Economizers vor dem Katalysator in jedem Falle, d.h. auch beim Absperren aller anderen Sektionen 10, mit der Trommel 13 verbunden ist.
Der Economizer vor dem Katalysator 2a ist so ausgelegt, dass Teilverdampfung auftreten kann. Er ist so gross ausgelegt, dass im Betriebsfall "Vollast verschmutzt" die Eintrittstemperatur des Rauchgases 19 in den Katalysator 5 kleiner/gleich der Betriebstemperatur des Katalysators 5 ist.
Die im Dampferzeuger 1 dem Economizer vor dem Katalysator 2a vorgelagerten Bauteile, wie Überhitzer 9, Berührungswärmeerzeuger 18 ("Schutzbündel", die zuerst vom Rauchgas 19 beaufschlagt werden), Leerzüge 8, sind so ausgelegt, dass im Betriebsfall "Teillast sauber" die Eintrittstemperatur des Rauchgases 19 in den Economizer vor dem Katalysator grösser/gleich der Betriebstemperatur des Katalysators ist.
Nach der in Gasströmungsrichtung letzten Sektion 10 ist ein Temperaturmessorgan 15 angeordnet. Der sich gasseitig nach dem Katalysator 5 befindende zweite Teil des Economizers 2b ist im wesentlichen in Gegenstromschaltung realisiert. Eine Pumpe 16 pumpt über die Leitung 17 Wasser in den Teil 2b des Economizers, der nach dem NOx-Katalysator 5 angeordnet ist. Das Wasser kühlt die entstickten Rauchgase 19 die aus dem Katalysator 5 austreten weiter ab, bevor diese im hier nicht dargestellten Filter 3 entstaubt und dem Wäscher 4 zugeführt werden. Das Wasser wird dann am Katalysator 5 vorbei parallel in die Sektionen 10 geleitet, die von unten nach oben durchströmt werden, wobei ein weiterer Wärmeaustausch mit hier noch heisserem Rauchgas 19 stattfindet. Um eine annähernd konstante Eintrittstemperatur der Rauchgase 19 in den NOx-Katalysator zu gewährleisten, wird mittels des Temperaturmessorgans 15 die Rauchgastemperatur gemessen. In Abhängigkeit von der Höhe dieser Temperatur kann die Rauchgastemperatur beeinflusst werden, indem durch Schliessen oder Öffnen der jeweiligen Absperrorgane 14 einzelne Sektionen 10 des Economizers vor dem Katalysator 2a vom Wasserkreislauf abgeschlossen bzw. wieder angeschlossen werden. Dies bewirkt eine Veränderung der aktiven Heizfläche. Das SCR-Verfahren selbst läuft dann nach dem bekannten Stand der Technik ab.
Selbstverständlich ist die Erfindung nicht auf das eben beschriebene Ausführungsbeispiel beschränkt. Sie kann beispielsweise auch in einem Dampferzeuger mit einem vertikalen konvektiven Zug realisiert werden.
In Fig. 4 ist schematisch ein erfindungsgemässer Dampferzeuger für das SCR-low dust-Verfahren dargestellt. Im Unterschied zu Fig. 3 ist hier zwischen dem Economizer vor dem Katalysator 2a und dem NOx-Katalysator 5 ein E-Filter 3 angeordnet. Ausserdem zeigt dieses Ausführungsbeispiel, dass der Economizer nach dem Katalysator 2b auch mit senkrechtem Gasfluss ausgeführt sein kann. In einer weiteren nicht dargestellten Variante ist der Economizer nach dem Katalysator 2b auch in einer grösseren räumlichen Entfernung vom NOx-Katalysator angeordnet.
Bezugszeichenliste
1
Kessel
2
Economizer
2a
Teil des Economizers vor dem NOx-Katalysator
2b
Teil des Economizers nach dem NOx-Katalysator
3
E-Filter
4
Wäscher
5
NOx-Katalysator
6
Abkühler
7
Feuerraum
8
Leerzug
9
Überhitzer
10
Sektionen von Pos. 2a
10a
nicht vom Wasserkreislauf abschliessbare Sektion
10b
vom Wasserkreislauf abschliessbare Sektion
11
parallele Verbindungsleitungen
11a
Verbindungsleitung ohne Absperrorgan
11b
Verbindungsleitung mit Absperrorgan
12
Leitung
13
Trommel
14
Absperrorgan
15
Temperaturmessorgan
16
Pumpe
17
Leitung
18
Berührungswärmeerzeuger
19
Rauchgas

Claims (9)

  1. Dampferzeuger (1) mit einem dem Feuerraum (7) nachgeschalteten Strahlungsteil und einem sich daran anschliessenden konvektiven Teil, letzterer im wesentlichen bestehend aus rauchgasseitig hintereinandergeschalteten Berührungswärmetauscher (18), Überhitzer (9) und Economizer (2), wobei der Dampferzeuger (1) in einer Schaltung für die direkte selektive katalytische Reduktion (SCR-Verfahren) der Stickoxide im Rauchgas (19) eingesetzt wird, wobei der Economizer (2) zweiteilig ausgeführt ist und zwischen den beiden Teilen (2a, 2b) ein NOx-Katalysator (5) angeordnet ist, dadurch gekennzeichnet, dass der in Strömungsrichtung des Rauchgases (19) vor dem Katalysator (5) angeordnete Economizer (2a) in mindestens zwei Sektionen (10a, 10b) unterteilt ist, welche einerseits rauchgasseitig nacheinander und andererseits vom aufzuheizenden Arbeitsmittel parallel durchströmt sind, wobei mindestens eine Sektion (10a) über eine Leitung (11a, 12) ständig mit der Trommel (13) in Verbindung steht und die andere(n) Sektion(en) (10b) über absperrbare Leitungen (11b) wahlweise vom Wasserkreislauf abschliessbar sind.
  2. Dampferzeuger nach Anspruch 1, dadurch gekennzeichnet, dass in den Leitungen (11b), welche von den Sektionen (10b) des Economizers vor dem Katalvsator (2a), die vom Wasserkreislauf abschliessbar sind, in die Leitung (12) zur Trommel führen, jeweils ein Absperrorgan (14) angeordnet ist.
  3. Dampferzeuger nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Economizer vor dem Katalysator (2b) so gross ausgelegt ist, dass im Betriebsfall "Vollast verschmutzt" die Eintrittstemperatur des Rauchgases (19) in den Katalysator (5) kleiner/gleich der Betriebstemperatur des Katalysators (5) ist.
  4. Dampferzeuger nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die im Dampferzeuger (1) dem Economizer vor dem Katalysator (2a) vorgelagerten Bauteile, wie Überhitzer (9), Berührungswärmeerzeuger (18), Leerzüge (8), so ausgelegt sind, dass im Betriebsfall "Teillast sauber" die Eintrittstemperatur des Rauchgases (19) in den Economizer vor dem Katalysator (2a) grösser/gleich der Betriebstemperatur des Katalysators (5) ist.
  5. Dampferzeuger nach Anspruch 1, dadurch gekennzeichnet, dass zwischen dem Economizer vor dem Katalysator (2a) und dem NOx-Katalysator (5) ein E-Filter (3) angeordnet ist.
  6. Dampferzeuger nach Anspruch 1, dadurch gekennzeichnet, dass der Economizer nach dem Katalysator (2b) im wesentlichen in Gegenstromschaltung durchströmt ist.
  7. Dampferzeuger nach Anspruch 1, dadurch gekennzeichnet, dass der Economizer nach dem Katalysator (2b) vertikal vom Rauchgas (19) durchströmt ist.
  8. Dampferzeuger nach Anspruch 1, 6 oder 7, dadurch gekennzeichnet, dass der Economizer nach dem NOx-Katalysator (2b) räumlich entfernt vom NOx-Katalysator (5) angeordnet ist.
  9. Verfahren zum Betrieb eines Dampferzeugers nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Temperatur der Rauchgase (19) unmittelbar vor ihrem Eintritt in den NOx-Katalysator (5) gemessen wird und eine von der Höhe dieser Temperatur abhängige Anzahl der absperrbaren Leitungen (11b) vom Wasserkreislauf abgeschlossen wird.
EP95810358A 1995-05-31 1995-05-31 Dampferzeuger Expired - Lifetime EP0745807B1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
AT95810358T ATE182207T1 (de) 1995-05-31 1995-05-31 Dampferzeuger
ES95810358T ES2136267T3 (es) 1995-05-31 1995-05-31 Generador de vapor.
DE59506386T DE59506386D1 (de) 1995-05-31 1995-05-31 Dampferzeuger
EP95810358A EP0745807B1 (de) 1995-05-31 1995-05-31 Dampferzeuger
DK95810358T DK0745807T3 (da) 1995-05-31 1995-05-31 Dampgenerator
US08/621,643 US5775266A (en) 1995-05-31 1996-03-26 Steam generator
PL96314258A PL181254B1 (pl) 1995-05-31 1996-05-15 Wytwornica pary oraz sposób regulacji temperatury gazu spalania w wytwornicy pary
JP8128681A JPH08327009A (ja) 1995-05-31 1996-05-23 蒸気発生器
CZ961537A CZ153796A3 (en) 1995-05-31 1996-05-28 Steam producer and method of operation thereof
AU54593/96A AU704982B2 (en) 1995-05-31 1996-05-29 Steam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP95810358A EP0745807B1 (de) 1995-05-31 1995-05-31 Dampferzeuger

Publications (2)

Publication Number Publication Date
EP0745807A1 EP0745807A1 (de) 1996-12-04
EP0745807B1 true EP0745807B1 (de) 1999-07-14

Family

ID=8221748

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95810358A Expired - Lifetime EP0745807B1 (de) 1995-05-31 1995-05-31 Dampferzeuger

Country Status (10)

Country Link
US (1) US5775266A (de)
EP (1) EP0745807B1 (de)
JP (1) JPH08327009A (de)
AT (1) ATE182207T1 (de)
AU (1) AU704982B2 (de)
CZ (1) CZ153796A3 (de)
DE (1) DE59506386D1 (de)
DK (1) DK0745807T3 (de)
ES (1) ES2136267T3 (de)
PL (1) PL181254B1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10004187C5 (de) * 2000-02-01 2013-06-06 Siemens Aktiengesellschaft Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage sowie danach arbeitende Anlage
DE102012112645B4 (de) 2012-12-19 2018-05-09 Erk Eckrohrkessel Gmbh Kesselanlage und Verfahren zur Erwärmung eines Wärmeübertragungsfluides

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19651678A1 (de) * 1996-12-12 1998-06-25 Siemens Ag Dampferzeuger
US6092490A (en) * 1998-04-03 2000-07-25 Combustion Engineering, Inc. Heat recovery steam generator
DE19929088C1 (de) 1999-06-24 2000-08-24 Siemens Ag Fossilbeheizter Dampferzeuger mit einer Entstickungseinrichtung für Heizgas
DE19959342A1 (de) * 1999-12-09 2001-06-13 Abb Alstom Power Ch Ag Abhitzedampferzeuger
DE10001997A1 (de) * 2000-01-19 2001-07-26 Alstom Power Schweiz Ag Baden Verbund-Kraftwerk sowie Verfahren zum Betrieb eines solchen Verbund-Kraftwerkes
US7504260B1 (en) * 2000-05-16 2009-03-17 Lang Fred D Method and apparatus for controlling gas temperatures associated with pollution reduction processes
JP4284171B2 (ja) 2001-05-29 2009-06-24 アンドリツ オサケユキチュア パルプ・ミルで電気エネルギーを生産する方法および装置
FI114737B (fi) * 2002-04-24 2004-12-15 Tom Blomberg Menetelmä biomassaa polttavien höyrykattiloiden höyrytulistimien asettelemiseksi ja höyrykattila
US7021248B2 (en) 2002-09-06 2006-04-04 The Babcock & Wilcox Company Passive system for optimal NOx reduction via selective catalytic reduction with variable boiler load
US7118721B2 (en) 2002-11-26 2006-10-10 Alstom Technology Ltd Method for treating emissions
US7056478B1 (en) 2002-11-26 2006-06-06 Alstom Technology Ltd Emission treatment system
EP1820560A1 (de) * 2006-02-16 2007-08-22 Siemens Aktiengesellschaft Dampferzeuger mit katalytischer Beschichtung von Wärmetauscheroberflächen zur Abgasreinigung
US7637233B2 (en) 2006-05-09 2009-12-29 Babcock & Wilcox Power Generation Group, Inc. Multiple pass economizer and method for SCR temperature control
US7578265B2 (en) * 2006-05-09 2009-08-25 Babcock & Wilcox Power Generation Group, Inc. Multiple pass economizer and method for SCR temperature control
US8042497B2 (en) * 2007-04-12 2011-10-25 Babcock & Wilcox Power Generation Group, Inc. Steam generator arrangement
EP2161525B8 (de) * 2008-09-08 2016-06-08 Balcke-Dürr GmbH Wärmetauscher in Modulbauweise
DE102009012320A1 (de) * 2009-03-09 2010-09-16 Siemens Aktiengesellschaft Durchlaufverdampfer
US7914747B1 (en) * 2010-04-23 2011-03-29 General Electric Company System and method for controlling and reducing NOx emissions
CN102062395B (zh) * 2010-12-05 2012-09-05 王森 循环流化床锅炉气固分离器及含有该气固分离器的锅炉
EP2541144A1 (de) * 2011-07-01 2013-01-02 Tecnoborgo S.p.A. Verbrennungsofen, insbesondere für Müllverbrennungsanlagen zur Energieerzeugung
US20140311125A1 (en) * 2011-07-01 2014-10-23 Sigan Peng Method, apparatus, and system used for purifying and silencing exhaust of internal combustion engine
US9388978B1 (en) 2012-12-21 2016-07-12 Mitsubishi Hitachi Power Systems Americas, Inc. Methods and systems for controlling gas temperatures
US9739478B2 (en) 2013-02-05 2017-08-22 General Electric Company System and method for heat recovery steam generators
US9097418B2 (en) * 2013-02-05 2015-08-04 General Electric Company System and method for heat recovery steam generators
CN103900072A (zh) * 2014-03-05 2014-07-02 东南大学 一种提高scr***入口烟气温度的省煤器
US9657943B2 (en) * 2014-12-16 2017-05-23 Great River Energy Method and system for reheating flue gas using waste heat to maintain dry chimney stack operation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1092910A (en) * 1976-07-27 1981-01-06 Ko'hei Hamabe Boiler apparatus containing denitrator
JPS6017967B2 (ja) * 1978-01-18 1985-05-08 株式会社日立製作所 排熱回収ボイラ装置
DE3344712C1 (de) * 1983-12-10 1985-04-18 Balcke-Dürr AG, 4030 Ratingen Dampferzeuger
DE4218016A1 (de) * 1992-06-01 1993-12-02 Siemens Ag Verfahren und Vorrichtung zur Regelung der Rauchgastemperatur am Austritt eines Dampferzeugers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10004187C5 (de) * 2000-02-01 2013-06-06 Siemens Aktiengesellschaft Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage sowie danach arbeitende Anlage
DE102012112645B4 (de) 2012-12-19 2018-05-09 Erk Eckrohrkessel Gmbh Kesselanlage und Verfahren zur Erwärmung eines Wärmeübertragungsfluides

Also Published As

Publication number Publication date
ES2136267T3 (es) 1999-11-16
EP0745807A1 (de) 1996-12-04
ATE182207T1 (de) 1999-07-15
CZ153796A3 (en) 1996-12-11
PL181254B1 (pl) 2001-06-29
PL314258A1 (en) 1996-12-09
AU704982B2 (en) 1999-05-13
JPH08327009A (ja) 1996-12-10
AU5459396A (en) 1996-12-12
DE59506386D1 (de) 1999-08-19
US5775266A (en) 1998-07-07
DK0745807T3 (da) 2000-02-21

Similar Documents

Publication Publication Date Title
EP0745807B1 (de) Dampferzeuger
DE2733408C3 (de) Rauchgaszug einer Kesselanlage
DE3532281C2 (de) Verfahren und anlage zur beeinflussung der abgase eines wirbelbettkessels
DE3614385A1 (de) Verfahren und vorrichtung zum reinigen von abgasen
EP0148741B1 (de) Verfahren und Vorrichtung zur thermischen Behandlung von Rauchgasen aus einem Kesselsystem
AT399296B (de) Verfahren und vorrichtung zur entstickung und entschwefelung von heissen abgasen, insbesondere aus feuerungen
EP0155262A1 (de) Verfahren und vorrichtung zum wiederaufheizen entschwefelter rauchgase.
DE3335917A1 (de) Vorrichtung nach art eines luftvorwaermers zur vorwaermung der verbrennungsluft fuer einen verbrennungsprozess mit gleichzeitiger verminderung des in den rauchgasen enthaltenen no(pfeil abwaerts)x(pfeil abwaerts)&#34;
EP0562278B2 (de) Verfahren und Vorrichtung zur Nutzung der Restwärme von Rauchgas
DE3344712C1 (de) Dampferzeuger
DE2900275C2 (de)
EP0806236B1 (de) Verfahren zur Stickoxidminderung von Verbrennungsabgasen und Anlage zur Durchführung des Verfahrens
DE3136480A1 (de) Verfahren und anordnung zum wiederaufheizen von nassentschwefelten rauchgasen
EP0643816B2 (de) Verfahren und vorrichtung zur einstellung der rauchgastemperatur am austritt eines dampferzeugers
DE3804228C2 (de)
EP0197023A2 (de) Verfahren und Vorrichtung zur Reinigung von Gas/Gas-Wärmetauschern
DE3021865C2 (de) Vorrichtung zum Verbrennen von Salzlösungen
DE4127999C2 (de) Verfahren und Anlage zur Durchführung des Verfahrens zum Betreiben eines Dampferzeugers
CH673594A5 (de)
AT386273B (de) Vorrichtung zur wiederaufheizung von rauchgasen
DE3402063C1 (de) Verfahren und Vorrichtung zur Reinigung von Rauchgasen
DE3932540A1 (de) Verfahren und anlage zur rauchgasreinigung
EP0183891A1 (de) Vorrichtung zur Wiederaufheizung von Rauchgasen
AT400816B (de) Verfahren zur abtrennung von schwefeltrioxid und stickoxiden aus rauchgasen
DE2232258B2 (de) Verfahren zur behandlung von schaedliche bestandteile enthaltenden abgasen aus industrieanlagen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ASEA BROWN BOVERI AG

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL PT SE

17P Request for examination filed

Effective date: 19970506

17Q First examination report despatched

Effective date: 19980115

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL PT SE

REF Corresponds to:

Ref document number: 182207

Country of ref document: AT

Date of ref document: 19990715

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59506386

Country of ref document: DE

Date of ref document: 19990819

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ABB BUSINESS SERVICES LTD INTELLECTUAL PROPERTY (S

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990920

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2136267

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 19991011

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

NLS Nl: assignments of ep-patents

Owner name: ALSTOM

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: ASEA BROWN BOVERI AG TRANSFER- ALSTOM

Ref country code: CH

Ref legal event code: NV

Representative=s name: GIACOMO BOLIS C/O ALSTOM (SWITZERLAND) LTD

REG Reference to a national code

Ref country code: PT

Ref legal event code: PC4A

Free format text: ALSTOM FR

Effective date: 20011109

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

BECH Be: change of holder

Free format text: 20020130 *ALSTOM

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: MARTIN GMBH FUER UMWELT- UND ENERGIETECHNIK

Free format text: ALSTOM#25, AVENUE KLEBER#75116 PARIS (FR) -TRANSFER TO- MARTIN GMBH FUER UMWELT- UND ENERGIETECHNIK#LEOPOLDSTRASSE 248#80807 MUENCHEN (DE)

Ref country code: CH

Ref legal event code: NV

Representative=s name: ZIMMERLI, WAGNER & PARTNER AG

NLS Nl: assignments of ep-patents

Owner name: MARTIN GMBH FUER UMWELT- UND ENERGIETECHNIK

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: PT

Ref legal event code: PC4A

Free format text: MARTIN GMBH FUR UMWELT- UND ENERGIETECHNIK DE

Effective date: 20031104

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20070426

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20070514

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20070515

Year of fee payment: 13

Ref country code: DK

Payment date: 20070515

Year of fee payment: 13

Ref country code: CH

Payment date: 20070515

Year of fee payment: 13

Ref country code: AT

Payment date: 20070515

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070522

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20070529

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20070531

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070522

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070514

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070516

Year of fee payment: 13

BERE Be: lapsed

Owner name: *MARTIN G.M.B.H. FUER UMWELT-UND ENERGIETECHNIK

Effective date: 20080531

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20081202

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081202

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081201

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080602

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20080602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080601