EP0745581B1 - Verfahren zur Herstellung von Glycin-N,N-diessigsäure-Derivaten durch Umsetzung von Glycinderivaten oder deren Vorstufen mit Formaldehyd und Alkalimetallcyanid in wässrig-alkalischem Medium - Google Patents

Verfahren zur Herstellung von Glycin-N,N-diessigsäure-Derivaten durch Umsetzung von Glycinderivaten oder deren Vorstufen mit Formaldehyd und Alkalimetallcyanid in wässrig-alkalischem Medium Download PDF

Info

Publication number
EP0745581B1
EP0745581B1 EP96108081A EP96108081A EP0745581B1 EP 0745581 B1 EP0745581 B1 EP 0745581B1 EP 96108081 A EP96108081 A EP 96108081A EP 96108081 A EP96108081 A EP 96108081A EP 0745581 B1 EP0745581 B1 EP 0745581B1
Authority
EP
European Patent Office
Prior art keywords
groups
glycine
reaction
diacetic acid
derivatives
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96108081A
Other languages
English (en)
French (fr)
Other versions
EP0745581A2 (de
EP0745581A3 (de
Inventor
Thomas Dr. Greindl
Alfred Dr. Oftring
Gerold Dr. Braun
Jochen Dr. Wild
Birgit Dr. Potthoff-Karl
Georg Schuh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP0745581A2 publication Critical patent/EP0745581A2/de
Publication of EP0745581A3 publication Critical patent/EP0745581A3/de
Application granted granted Critical
Publication of EP0745581B1 publication Critical patent/EP0745581B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/04Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C229/06Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton
    • C07C229/10Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton the nitrogen atom of the amino group being further bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings
    • C07C229/16Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton the nitrogen atom of the amino group being further bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings to carbon atoms of hydrocarbon radicals substituted by amino or carboxyl groups, e.g. ethylenediamine-tetra-acetic acid, iminodiacetic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/26Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing carboxyl groups by reaction with HCN, or a salt thereof, and amines, or from aminonitriles

Definitions

  • the present invention relates to a process for the preparation of glycine-N, N-diacetic acid derivatives by reacting glycine derivatives or their precursors with formaldehyde and alkali metal cyanide in an aqueous alkaline medium.
  • NTA nitrilotriacetic acid
  • Methylglycine-N, N-diacetic acid ( ⁇ -alanine-N, N-diacetic acid, MGDA) is a non-toxic, easily biodegradable complexing agent with a higher complex formation constant than NTA.
  • MGDA glycine-N, N-diacetic acid derivatives for the detergent and cleaning agent sector and for numerous new applications, as well as new synthetic routes for such substances, are described in WO-A 94/29421 (1).
  • reaction of ⁇ -amino acids with formaldehyde and sodium cyanide is generally mentioned in US Pat. No. 2,500,019 (4) and is prepared from protein hydrolyzate nitrilotriacetic acid using the example of unsubstituted glycine. In this process, however, a particularly reactive, because unsubstituted, amino acid is used with glycine.
  • the NTA that forms is also preferred due to its high symmetry thermodynamically over asymmetrical connections and is particularly easy to form.
  • glycine sodium salt is produced from protein hydrolyzate.
  • a protein hydrolyzate usually contains admixtures of other amino acids, so that the Strecker reaction does not lead to an NTA-pure product.
  • the object of the present invention was therefore to provide a simple and economical synthesis route for glycine-N, N-diacetic acids such as MGDA, the aim being to achieve the highest possible overall yield with simultaneously high product purities, with low NTA contents, if possible below 2% by weight become.
  • the process according to the invention differs in that the glycine derivatives or their precursors presented as starting material are brought to the reaction temperature in the aqueous reaction medium and then 0.5 to 30%, preferably 1.0 to 15%, in particular 2.0 to 10% of those for the reaction required amount of alkali metal cyanide can be added all at once.
  • the remaining amount of alkali metal cyanide and the formaldehyde are then metered in simultaneously over a period of 0.5 to 12, preferably 1 to 8, in particular 2 to 6 hours.
  • the ends of the addition of alkali metal cyanide and formaldehyde can be at the same time or at different times, with the addition of formaldehyde usually ending later in the second case.
  • 1 to 10, preferably 2 to 5, hours are usually allowed to continue to react under the reaction conditions.
  • Alkali metal cyanide usually sodium or potassium cyanide, and formaldehyde are normally used as aqueous solutions. However, these components can also be added, for example, in solid form (in the case of formaldehyde, for example as paraformaldehyde).
  • Water is usually used as the reaction medium, which usually dissolves the end products and the reaction components used to a sufficient extent.
  • mixtures of water and water-miscible organic solvents, such as alcohols, for example methanol, ethanol or isopropanol can also be used if, for example, glycine-N, N-diacetic acids I are to be prepared with a more hydrophobic, ie longer-chain or more voluminous radical R.
  • an inert gas such as air, nitrogen or argon is passed through the reaction mixture or the reaction components submitted (“stripping” with inert gas) before and / or during the reaction.
  • the reaction according to the invention of the glycine derivatives used or their precursors with formaldehyde and alkali metal cyanide is usually carried out at temperatures from 40 to 110 ° C., in particular 60 to 100 ° C., especially 75 to 90 ° C.
  • the pH of the aqueous reaction medium is 8 to 14, preferably 10 to 13.
  • 2.0 to 3.0 mol, in particular 2.0 to 2.6 mol, of formaldehyde, preferably in the form of its aqueous approx. 30% by weight solution, and a total of 2 are used per mol of glycine derivative or its precursor used as starting material , 0 to 3.0 mol, in particular 2.0 to 2.6 mol, of alkali metal cyanide, preferably as an aqueous approx. 20 to 40% by weight solution.
  • Aqueous solutions of the corresponding glycine derivatives or precursors with a glycine derivative are usually used as the starting material. or precursor content of 10 to 50 wt .-%, in particular 25 to 45 wt .-%.
  • the process according to the invention also gives excellent results if, as starting material from the technical synthesis of glycine derivatives or alanine aminonitrile or 5-methylhydantoin in the case of alanine, the non-purified, i.e. usually not isolated as a solid or e.g. raw material freed by the crystallization of secondary constituents or mother liquors obtained in such syntheses.
  • the usual industrial alanine synthesis is carried out according to Strecker by reacting acetaldehyde, hydrocyanic acid and ammonia. Enzymatically produced alanine can also be used without solid insulation.
  • the process according to the invention can be used with particularly good results for the preparation of glycine-N, N-diacetic acid derivatives I in which R is C 1 -C 20 -alkyl, C 2 -C 20 -alkenyl or a radical of the formula stands.
  • Particularly suitable salts of this type are the sodium, potassium and ammonium salts, in particular the trisodium, tripotassium and triammonium salt, and also organic triamine salts with a tertiary nitrogen atom.
  • the bases on which the organic amine salts are based are, in particular, tertiary amines such as trialkylamines having 1 to 4 carbon atoms in the alkyl, for example trimethylamine and triethylamine, and trialkanolamines having 2 or 3 carbon atoms in the alkanol radical, preferably triethanolamine, tri-n-propanolamine or triisopropanolamine , into consideration.
  • tertiary amines such as trialkylamines having 1 to 4 carbon atoms in the alkyl, for example trimethylamine and triethylamine
  • trialkanolamines having 2 or 3 carbon atoms in the alkanol radical preferably triethanolamine, tri-n-propanolamine or triisopropanolamine , into consideration.
  • the calcium and magnesium salts are used as alkaline earth metal salts.
  • radical R In addition to methyl, straight-chain or branched alk (en) yl radicals, in particular C 2 - to C 17 -alkyl and alkenyl, in particular straight-chain radicals derived from saturated or unsaturated fatty acids, are suitable for the radical R.
  • Examples of individual radicals R are: ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec.-butyl, tert.-butyl, n-pentyl, iso-pentyl, sec.-pentyl, tert.
  • the C 1 - to C 12 -alkylene bridges A are primarily polymethylene groups of the formula - (CH 2 ) k -, in which k denotes a number from 2 to 12, in particular from 2 to 8, ie 1,2-ethylene, 1 , 3-propylene, 1,4-butylene, pentamethylene, hexamethylene, heptamethylene, octamethylene, nonamethylene, decamethylene, undecamethylene and dodecamethylene. Hexamethylene, octamethylene, 1,2-ethylene and 1,4-butylene are particularly preferred here.
  • branched C 1 - to C 12 -alkylene groups can also occur, for. B. -CH 2 CH (CH 3 ) CH 2 -, -CH 2 C (CH 3 ) 2 CH 2 -, -CH 2 CH (C 2 H 5 ) - or -CH 2 CH (CH 3 ) -.
  • the C 1 to C 30 alkyl and C 2 to C 30 alkenyl groups can have up to 5, in particular up to 3, additional substituents of the type mentioned and can be interrupted by up to 5, in particular up to 3, non-adjacent oxygen atoms.
  • Examples of such substituted alk (en) yl groups are -CH 2 OH, -CH 2 CH 2 OH, -CH 2 CH 2 -O-CH 3 , -CH 2 CH 2 -O-CH 2 CH 2 -O-CH 3 , -CH 2 -O-CH 2 CH 3 , -CH 2 -O-CH 2 CH 2 -OH, -CH 2 -CHO, -CH 2 -OPh, -CH 2 -COOCH 3 or -CH 2 CH 2 - COOCH 3 .
  • Suitable alkoxylate groups are in particular those in which m and n each represent numbers from 0 to 30, especially from 0 to 15.
  • a 1 and A 2 represent butylene oxide and especially groups derived from propylene oxide and from ethylene oxide. Pure ethoxylates and pure propoxylates are of particular interest, but ethylene oxide-propylene oxide block structures can also occur.
  • N-H groups in the heterocyclic rings mentioned should, if possible, be in a derivatized form, for example as an N-alkyl group.
  • substitution on the phenyl nuclei or the heterocyclic rings preferably two (identical or different) or in particular a single substituent occur.
  • phenylalkyl groups and heterocyclic rings-bearing alkyl groups for R are benzyl, 2-phenylethyl, 3-phenylpropyl, 4-phenylbutyl, o-, m- or p-hydroxylbenzyl, o-, m- or p-carboxylbenzyl, o-, m- or p-sulfobenzyl, o-, m- or p-methoxy- or -ethoxycarbonylbenzyl, 2-furylmethyl, N-methylpiperidin-4-ylmethyl or 2-, 3- or 4-pyridinylmethyl.
  • water-solubilizing groups such as hydroxyl groups, carboxyl groups or sulfo groups preferably occur.
  • the compounds I prepared by the process according to the invention can be present as racemates or as enantiomerically pure compounds with respect to the ⁇ -C atom, depending on whether one starts from D, L-glycine derivatives or the corresponding D or L forms.
  • the free acids of the compounds I can be obtained by acidification using customary methods.
  • the formation of undesired NTA in the product is largely suppressed by the special reaction procedure, the NTA amounts are clearly below 2% by weight, usually 0.1 to 0.3% by weight.
  • the yields are significantly higher than in the processes known from the prior art, so the yield in the case of the production of MGDA trisodium salt is> 95%, based on alanine, compared to approximately 90% by the process known from (4) .
  • the side reaction of the formation of formate from cyanide is largely suppressed; in contrast to the process according to (4), the average residence time of cyanide in the alkaline solution is shortened by the process according to the invention.
  • the formation of iminodiacetic acid as a by-product in contrast to the saponification of the corresponding trinitrile to MGDA trisodium salt described in (1), cannot be observed.
  • a particular advantage of the process according to the invention is the possibility, instead of pure glycine derivatives, of also corresponding crude mixtures, such as those which arise, for example, in the amino acid synthesis according to Strecker, for example of alanine, or also enzymatically, but also corresponding precursors such as hydantoins.
  • This procedure is particularly economical since the expensive product separation at the isoelectric point which is normally necessary after the amino acid production is not necessary here.
  • reagents for pH adjustment can be saved and separation losses avoided, since the amino acid normally remaining in the mother liquor of the amino acid synthesis is also used.
  • the alkali metal salt from the amino acid synthesis can advantageously be reacted directly without further addition of alkali and without loss of yield and selectivity.
  • hydantoins can also be saponified in one batch by adding an appropriate amount of alkali and reacted directly with formaldehyde in aqueous alkali metal cyanide in one process in accordance with the invention; overall, this method provides a higher overall yield compared to the reaction of amino acid isolated by precipitation with a simpler process .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Glycin-N,N-diessigsäure-Derivaten durch Umsetzung von Glycinderivaten oder deren Vorstufen mit Formaldehyd und Alkalimetallcyanid in wäßrig-alkalischem Medium.
  • In den typischen Anwendungsgebieten von Komplexbildern und Buildern, wie hochalkalische Reiniger und Haushaltswaschmittel, werden heute als Standardprodukte Aminopolyphosphonate, Polycarboxylate oder Ethylendiamintetraessigsäure (EDTA) eingesetzt. Diese Produkte sind nur schwer biologisch abbaubar, deshalb besteht ein Bedarf nach wirksamen und gleichzeitig billigen biologisch leicht abbaubaren Substituten.
  • Eine Alternative zu obigen Stoffen stellt Nitrilotriessigsäure (NTA) dar, sie ist leicht biologisch abbaubar, hat aber deutliche Wirkungsnachteile gegenüber EDTA und ist aus toxikologischen Gründen häufig unerwünscht. Methylglycin-N,N-diessigsäure (α-Alanin-N,N-diessigsäure, MGDA) ist ein nicht toxischer, leicht biologisch abbaubarer Komplexbildner mit höherer Komplexbildungskonstante als NTA. Die Verwendung von MGDA und verwandter Glycin-N,N-diessigsäure-Derivate für den Wasch- und Reinigungsmittelsektor und für zahlreiche neue Anwendungen sowie neue Syntheserouten für solche Substanzen werden in der WO-A 94/29421 (1) beschrieben.
  • Die Synthese von MGDA mit Hilfe von Chloressigsäure ist seit langem bekannt. Dieser Weg ist heute aufgrund des Zwangsanfalls von Natriumchlorid und der Bildung chlororganischer Verunreinigungen nicht mehr wirtschaftlich und vom ökologischen Standpunkt her auch nicht mehr zeitgemäß. Auch muß, um hohe Ausbeuten zu erreichen, Chloressigsäure im Überschuß eingesetzt werden, dabei kommt es zur Bildung von Glykolsäure, Oxodiacetat und chlororganischen Verbindungen als Nebenprodukten. Andere Halogenessigsäuren bilden ein ähnliches Nebenproduktspektrum aus. Die Abtrennung der stöchiometrisch anfallenden anorganischen Salze wie Natriumchlorid ist aufwendig und kostspielig.
  • Eine wirtschaftliche und gleichzeitig umweltschonende Methode zur Herstellung von Aminopolycarboxylaten ist prinzipiell die Strekker-Reaktion von Aminosäuren. Die Synthese von MGDA mit Hilfe der Strecker-Reaktion wird in (1) beschrieben.
  • In der DE-A 20 27 972 (2) wird die "saure" Variante der Strecker-Reaktion von unsubstituiertem Glycin mit Formaldehyd und Blausäure beschrieben. Hierbei bildet sich aus Glycin das N,N-Bis(cyanmethyl)glycin, welches in hoher Reinheit isoliert werden kann. Der Nachteil der "sauren" Variante liegt im Umgang mit freier Blausäure und in der Notwendigkeit eines zusätzlichen Verseifungsschrittes nach Abtrennung des Nitrils.
  • Die "alkalische" Variante der Strecker-Reaktion wird beispielsweise in der US-A 3 733 355 (3) in allgemeiner Form dargestellt. Die dort aufgeführten Beispiele zeigen jedoch, daß immer ein hoher Anteil an Nebenprodukten, vor allem an unerwünschter Glykolsäure, auftritt; dies läßt sich aus den Umsätzen von nur maximal ca. 89 % schließen.
  • In der US-A 2 500 019 (4) wird die Umsetzung von α-Aminosäuren mit Formaldehyd und Natriumcyanid allgemein erwähnt und am Beispiel von unsubstituiertem Glycin aus Proteinhydrolysat Nitrilotriessigsäure hergestellt. Bei diesem Verfahren wird allerdings mit Glycin eine besonders reaktive, weil unsubstituierte Aminosäure eingesetzt. Das sich bildende NTA ist zudem aufgrund seiner hohen Symmetrie thermodynamisch gegenüber unsymmetrischen Verbindungen bevorzugt und bildet sich besonders leicht.
  • Gerade die Umsetzung von stärker sterisch gehinderten Aminosäuren, wie etwa Alanin, in hohen Ausbeuten mit möglichst geringen Anteilen an NTA ist schwierig. In (4) wird Glycin-Natrium-Salz aus Proteinhydrolysat hergestellt. Ein Proteinhydrolysat enthält in der Regel Beimengungen von anderen Aminosäuren, so daß die Umsetzung nach Strecker hier zu keinem NTA-reinen Produkt führt.
  • Aufgabe der vorliegenden Erfindung war daher die Bereitstellung einer einfachen und wirtschaftlichen Syntheseroute für Glycin-N,N-diessigsäuren wie MGDA, dabei sollte eine möglichst hohe Gesamtausbeute bei gleichzeitig hohen Produktreinheiten, mit niedrigen NTA-Gehalten, möglichst unter 2 Gew.-%, angestrebt werden.
  • Demgemäß wurde ein Verfahren zur Herstellung von Glycin-N,N-diessigsäure-Derivaten der allgemeinen Formel I in der
  • R
    für C1- bis C30-Alkyl oder C2- bis C30-Alkenyl, welche zusätzlich als Substituenten bis zu 5 Hydroxylgruppen, Formylgruppen, C1- bis C4-Alkoxygruppen, Phenoxygruppen oder C1- bis C4-Alkoxycarbonylgruppen tragen und durch bis zu 5 nicht benachbarte Sauerstoffatome unterbrochen sein können, Alkoxylat-Gruppierungen der Formel -(CH2)k-O-(A1O)m-(A2O)n-Y, in der A1 und A2 unabhängig voneinander 1,2-Alkylengruppen mit 2 bis 4 C-Atomen bezeichnen, Y Wasserstoff, C1- bis C12-Alkyl, Phenyl oder C1- bis C4-Alkoxycarbonyl bedeutet und k für die Zahl 1, 2 oder 3 sowie m und n jeweils für Zahlen von 0 bis 50 stehen, wobei die Summe aus m + n mindestens 4 betragen muß, Phenylalkylgruppen mit 1 bis 20 C-Atomen im Alkyl, Phenyl, einen fünf- oder sechsgliedrigen ungesättigten oder gesättigten heterocyclischen Ring mit bis zu drei Heteroatomen aus der Gruppe Stickstoff, Sauerstoff und Schwefel, welcher zusätzlich benzanelliert sein kann, wobei alle bei den Bedeutungen für R genannten Phenylkerne und heterocyclischen Ringe noch zusätzlich als Substituenten bis zu drei C1- bis C4-Alkylgruppen, Hydroxylgruppen, Carboxylgruppen, Sulfogruppen oder C1- bis C4-Alkoxycarbonylgruppen tragen können, oder einen Rest der Formel steht, wobei A eine C1- bis C12-Alkylen-Brücke oder eine chemische Bindung bezeichnet, und
    M
    Wasserstoff, Alkalimetall, Erdalkalimetall-, Ammonium oder substituiertes Ammonium in den entsprechenden stöchiometrischen Mengen bedeutet,
    durch Umsetzung von entsprechenden 2-substituierten Glycinen oder 2-substituierten Glycinnitrilen oder verdoppelten Glycinen der Formel oder verdoppelten Glycinnitrilen der Formel oder von Alaninaminonitril oder 5-Methylhydantoin im Falle von Alanin als Vorstufen der als Ausgangsmaterial genannten Glycinderivate mit Formaldehyd und Alkalimetallcyanid in wäßrigem Medium bei einem pH-Wert von 8 bis 14 gefunden, welches dadurch gekennzeichnet ist, daß man das Ausgangsmaterial im wäßrigen Reaktionsmedium auf Umsetzungstemperatur bringt, danach 0,5 bis 30 % der zur Umsetzung benötigten Menge an Alkalimetallcyanid zu den vorgelegten Glycinderivaten oder deren Vorstufen gibt und anschließend die restliche Menge Alkalimetallcyanid und den Formaldehyd gleichzeitig über einen Zeitraum von 0,5 bis 12 Stunden zudosiert.
  • Bei den aus dem Stand der Technik bekannten Durchführungsformen der "alkalischen" Strecker-Reaktion aus Aminosäuren werden meist entweder die Gesamtmengen an Formaldehyd und Alkalimetallcyanid vor Beginn der Umsetzung auf einmal zugesetzt oder die Gesamtmenge an Alkalimetallcyanid wird zugegeben und danach der Formaldehyd zudosiert.
  • Das erfindungsgemäße Verfahren unterscheidet sich demgegenüber dadurch, daß die als Ausgangsmaterial vorgelegten Glycinderivate oder deren Vorstufen im wäßrigen Reaktionsmedium auf Umsetzungstemperatur gebracht und danach 0,5 bis 30 %, vorzugsweise 1,0 bis 15 %, insbesondere 2,0 bis 10 % der zur Umsetzung benötigten Menge an Alkalimetallcyanid auf einmal zugegeben werden. Anschließend werden die restliche Menge Alkalimetallcyanid und der Formaldehyd gleichzeitig über einen Zeitraum von 0,5 bis 12, vorzugsweise 1 bis 8, insbesondere 2 bis 6 Stunden zudosiert. Dabei können die Zugabeenden von Alkalimetallcyanid und Formaldehyd gleichzeitig oder zeitlich versetzt liegen, wobei im zweiten Fall die Formaldehyd-Zugabe meist später beendet ist. Im Anschluß an die Zugabe der Umsetzungskomponenten läßt man üblicherweise noch 1 1 bis 10, vorzugsweise 2 bis 5 Stunden unter den Umsetzungsbedingungen nachreagieren.
  • Alkalimetallcyanid, in der Regel Natrium- oder Kaliumcyanid, und Formaldehyd werden normalerweise als wäßrige Lösungen eingesetzt. Man kann aber auch beispielsweise diese Komponenten in fester Form (im Falle des Formaldehyds z.B. als Paraformaldehyd) zugeben. Als Umsetzungsmedium dient in der Regel Wasser, das die Endprodukte sowie die eingesetzten Umsetzungskomponenten meist in ausreichendem Maße löst. Man kann aber auch Mischungen aus Wasser und wassermischbaren organischen Lösungsmitteln wie Alkoholen, z.B. Methanol, Ethanol oder Isopropanol, verwenden, wenn beispielsweise Glycin-N,N-diessigsäuren I mit einem hydrophoberen, d.h. längerkettigen oder voluminöseren Rest R hergestellt werden sollen.
  • In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens legt man vor und/oder während der Umsetzung ein Vakuum von 10 bis 100 kPa (100 bis 1000 mbar), vorzugsweise 30 bis 90 kPa (300 bis 900 mbar), insbesondere 50 bis 80 kPa (500 bis 800 mbar) an die Reaktionsapparatur an.
  • In einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens leitet man vor und/oder während der Umsetzung ein Inertgas wie Luft, Stickstoff oder Argon durch die Reaktionsmischung bzw. die vorgelegten Umsetzungskomponenten ("Strippung" mit Inertgas).
  • Man kann beide genannten bevorzugten Ausführungsformen auch kombinieren. Das Vakuum und das Durchleiten von Inertgas dienen insbesondere dazu, noch aus den Vorstufen enthaltenden bzw. während der Umsetzung sich bildenden Ammoniak aus dem Reaktionssystem besser zu entfernen. Es hat sich auch gezeigt, daß die Umsetzung bei Normaldruck oder die Anwendung eines leichten Überdruckes zu unerwünscht hohen Gehalten an NTA (meist > 2 Gew.-%) im Endprodukt führt.
  • Die erfindungsgemäße Umsetzung der eingesetzten Glycinderivate oder deren Vorstufen mit Formaldehyd und Alkalimetallcyanid wird üblicherweise bei Temperaturen von 40 bis 110°C, insbesondere 60 bis 100°C, vor allem 75 bis 90°C durchgeführt. Der pH-Wert des wäßrigen Umsetzungsmediums liegt bei 8 bis 14, vorzugsweise 10 bis 13.
  • Man setzt pro Mol als Ausgangsmaterial verwendetem Glycinderivat oder dessen Vorstufe zweckmäßigerweise 2,0 bis 3,0 mol, insbesondere 2,0 bis 2,6 mol Formaldehyd, vorzugsweise in Form seiner wäßrigen ca. 30 gew.-%igen Lösung, und insgesamt 2,0 bis 3,0 mol, insbesondere 2,0 bis 2,6 mol Alkalimetallcyanid, vorzugsweise als wäßrige ca. 20 bis 40 gew.-%ige Lösung, ein. Üblicherweise verwendet man als Ausgangsmaterial wäßrige Lösungen der entsprechenden Glycinderivate bzw. Vorstufen mit einem Glycinderivat- bzw. Vorstufen-Gehalt von 10 bis 50 Gew.-%, insbesondere 25 bis 45 Gew.-%.
  • Das erfindungsgemäße Verfahren liefert überraschenderweise auch hervorragende Ergebnisse, wenn man als Ausgangsmaterial aus der technischen Synthese von Glycinderivaten oder Alaninaminonitril oder 5-Methylhydantoin im Falle von Alanin als deren Vorstufen stammendes nicht gereinigtes, d.h. in der Regel nicht als Feststoff isoliertes oder z.B. durch Kristallisation von Nebenbestandteilen befreites Rohmaterial oder bei solchen Synthesen anfallende Mutterlaugen einsetzt.
  • Unter Vorstufen von Glycinderivaten sind im Falle von Alanin (R=CH3) Alaninaminonitril oder 5-Methylhydantoin zu verstehen, wobei letzteres z.B. durch Umsetzung von Acetaldehyd, Alkalimetallcyanid und Ammoniumcarbonat entsteht. Die übliche technische Alanin-Synthese wird nach Strecker durch Umsetzung von Acetaldehyd, Blausäure und Ammoniak durchgeführt. Auch enzymatisch hergestelltes Alanin kann ohne Feststoffisolierung eingesetzt werden.
  • Mit besonders guten Ergebnissen kann das erfindungsgemäße Verfahren zur Herstellung von Glycin-N,N-diessigsäure-Derivaten I angewandt werden, bei denen R für C1- bis C20-Alkyl, C2- bis C20-Alkenyl oder einen Rest der Formel steht.
  • Ganz besonders gut eignet sich das erfindungsgemäße Verfahren zur Herstellung von α-Alanin-N,N-diessigsäure (R=CH3) und ihren Alkalimetall-, Ammonium- und substituierten Ammoniumsalzen.
  • Als derartige Salze kommen vor allem die Natrium-, Kalium- und Ammoniumsalze, insbesondere das Trinatrium-, Trikalium- und Triammoniumsalz, sowie organische Triaminsalze mit einem tertiären Stickstoffatom in Frage.
  • Als den organischen Aminsalzen zugrundeliegende Basen kommen insbesondere tertiäre Amine wie Trialkylamine mit 1 bis 4 C-Atomen im Alkyl, z.B. Trimethyl- und Triethylamin, und Trialkanolamine mit 2 oder 3 C-Atomen im Alkanolrest, bevorzugt Triethanolamin, Tri-n-propanolamin oder Triisopropanolamin, in Betracht.
  • Als Erdalkalimetallsalze werden insbesondere die Calcium- und Magnesiumsalze eingesetzt.
  • Neben Methyl kommen für den Rest R als geradkettige oder verzweigte Alk(en)ylreste vor allem C2- bis C17-Alkyl und -Alkenyl, hierbei insbesondere geradkettige, von gesättigten oder ungesättigten Fettsäuren abgeleitete Reste, in Betracht. Beispiele für einzelne Reste R sind: Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, iso-Pentyl, sec.-Pentyl, tert.-Pentyl, Neopentyl, n-Hexyl, n-Heptyl, 3-Heptyl (abgeleitet von 2-Ethylhexansäure), n-Octyl, iso-Octyl (abgeleitet von iso-Nonansäure), n-Nonyl, n-Decyl, n-Undecyl, n-Dodecyl, iso-Dodecyl (abgeleitet von iso-Tridecansäure), n-Tridecyl, n-Tetradecyl, n-Pentadecyl, n-Hexadecyl, n-Heptadecyl, n-Octadecyl, n-Nonadecyl, n-Eicosyl und n-Heptadecenyl (abgeleitet von Ölsäure). Es können für R auch Gemische auftreten, insbesondere solche, die sich von natürlich vorkommenden Fettsäuren und von synthetisch erzeugten technischen Säuren, beispielsweise durch Oxosynthese, ableiten.
  • Als Beispiele für die weiterhin genannten C1- bis C4-, C1- bis C12- und C1- bis C20-Alkylgruppen sind auch die entsprechenden oben aufgeführten Reste für R zu verstehen.
  • Als C1- bis C12-Alkylen-Brücken A dienen vor allem Polymethylengruppierungen der Formel -(CH2)k-, worin k eine Zahl von 2 bis 12, insbesondere von 2 bis 8 bezeichnet, d. h. 1,2-Ethylen, 1,3-Propylen, 1,4-Butylen, Pentamethylen, Hexamethylen, Heptamethylen, Octamethylen, Nonamethylen, Decamethylen, Undecamethylen und Dodecamethylen. Hexamethylen, Octamethylen, 1,2-Ethylen und 1,4-Butylen werden hierbei besonders bevorzugt. Daneben können aber auch verzweigte C1- bis C12-Alkylengruppen auftreten, z. B. -CH2CH(CH3)CH2-, -CH2C(CH3)2CH2-, -CH2CH(C2H5)- oder -CH2CH(CH3)-.
  • Die C1- bis C30-Alkyl- und C2- bis C30-Alkenylgruppen können bis zu 5, insbesondere bis zu 3 zusätzliche Substituenten der genannten Art tragen und durch bis zu 5, insbesondere bis zu 3 nicht benachbarte Sauerstoffatome unterbrochen sein. Beispiele für solche substituierte Alk(en)ylgruppen sind -CH2OH, -CH2CH2OH, -CH2CH2-O-CH3, -CH2CH2-O-CH2CH2-O-CH3, -CH2-O-CH2CH3, -CH2-O-CH2CH2-OH, -CH2-CHO, -CH2-OPh, -CH2-COOCH3 oder -CH2CH2-COOCH3.
  • Als Alkoxylat-Gruppierungen kommen insbesondere solche in Betracht, bei denen m und n jeweils für Zahlen von 0 bis 30, vor allem von 0 bis 15 stehen. A1 und A2 bedeuten von Butylenoxid und vor allem von Propylenoxid und von Ethylenoxid abgeleitete Gruppen. Von besonderem Interesse sind reine Ethoxylate und reine Propoxylate, aber auch Ethylenoxid-Propylenoxid-Blockstrukturen können auftreten.
  • Als fünf- oder sechsgliedrige ungesättigte oder gesättigte heterocyclische Ringe mit bis zu drei Heteroatomen aus der Gruppe Stickstoff, Sauerstoff und Schwefel, welche zusätzlich benzanelliert und durch die bezeichneten Reste substituiert sein können, kommen in Betracht:
  • Tetrahydrofuran, Furan, Tetrahydrothiophen, Thiophen, 2,5-Dimethylthiophen, Pyrrolidin, Pyrrolin, Pyrrol, Isoxazol, Oxazol, Thiazol, Pyrazol, Imidazolin, Imidazol, 1,2,3-Triazolidin, 1,2,3- und 1,2,4-Triazol, 1,2,3- , 1,2,4- und 1,2,5-Oxadiazol, Tetrahydropyran, Dihydropyran, 2H- und 4H-Pyran, Piperidin, 1,3- und 1,4-Dioxan, Morpholin, Pyrazan, Pyridin, α-, β- und γ-Picolin, α- und γ-Piperidon, Pyrimidin, Pyridazin, Pyrazin, 1,2,5-Oxathiazin, 1,3,5-, 1,2,3- und 1,2,4-Triazin, Benzofuran, Thionaphthen, Indolin, Indol, Isoindolin, Benzoxazol, Indazol, Benzimidazol, Chroman, Isochroman, 2H- und 4H-Chromen, Chinolin, Isochinolin, 1,2,3,4-Tetrahydroisochinolin, Cinnolin, Chinazolin, Chinoxalin, Phthalazin und Benzo-1,2,3-triazin.
  • N-H-Gruppierungen in den genannten heterocyclischen Ringen sollten möglichst in derivatisierter Form, etwa als N-Alkyl-Gruppierung, vorliegen.
  • Bei Substitution an den Phenylkernen oder den heterocyclischen Ringen treten vorzugsweise zwei (gleiche oder verschiedene) oder insbesondere ein einzelner Substituent auf.
  • Beispiele für gegebenenfalls substituierte Phenylalkylgruppen und heterocyclische Ringe tragende Alkylgruppen für R sind Benzyl, 2-Phenylethyl, 3-Phenylpropyl, 4-Phenylbutyl, o-, m- oder p-Hydroxylbenzyl, o-, m- oder p-Carboxylbenzyl, o-, m- oder p-Sulfobenzyl, o-, m- oder p-Methoxy- oder -Ethoxycarbonylbenzyl, 2-Furylmethyl, N-Methylpiperidin-4-ylmethyl oder 2-, 3- oder 4-Pyridinylmethyl.
  • Bei Substitution an Phenylkernen und auch an heterocyclischen Ringen treten bevorzugt wasserlöslich machende Gruppen wie Hydroxylgruppen, Carboxylgruppen oder Sulfogruppen auf.
  • Die nach dem erfindungsgemäßen Verfahren hergestellten Verbindungen I können hinsichtlich des α-C-Atoms als Racemate oder als enantiomerenreine Verbindungen vorliegen, je nachdem, ob man von D,L-Glycinderivaten oder den entsprechenden D- oder L-Formen ausgeht.
  • Die freien Säuren der Verbindungen I können durch Ansäuern nach üblichen Methoden erhalten werden.
  • Beim erfindungsgemäßen Verfahren wird durch die spezielle Reaktionsführung die Bildung von unerwünschtem NTA im Produkt weitestgehend unterdrückt, die NTA-Mengen liegen deutlich unter 2 Gew.-%, meist bei 0,1 bis 0,3 Gew.-%. Die Ausbeuten sind deutlich höher als bei den aus dem Stand der Technik bekannten Verfahren, so liegt die Ausbeute im Falle der Herstellung von MGDA-Trinatriumsalz bei > 95 %, bezogen auf Alanin, gegenüber ca. 90 % nach dem aus (4) bekannten Verfahren. Beim erfindungsgemäßen Verfahren wird die Nebenreaktion der Bildung von Formiat aus Cyanid weitgehend unterdrückt, im Gegensatz zum Verfahren gemäß (4) wird die mittlere Verweilzeit von Cyanid in der alkalischen Lösung durch das erfindungsgemäße Verfahren verkürzt. Überraschenderweise ist die Bildung von Iminodiessigsäure als Nebenprodukt, im Gegensatz zu der in (1) beschriebenen Verseifung des entsprechenden Trinitrils zu MGDA-Trinatriumsalz, nicht zu beobachten.
  • Ein besonderer Vorteil des erfindungsgemäßen Verfahrens ist die Möglichkeit, anstelle von reinen Glycinderivaten auch entsprechende Rohgemische, wie sie z.B. bei der Aminosäure-Synthese nach Strecker, etwa von Alanin, oder auch enzymatisch entstehen, aber auch entsprechende Vorstufen wie Hydantoine einzusetzen. Diese Vorgehensweise ist besonders wirtschaftlich, da die im Anschluß an die Aminosäureherstellung normalerweise notwendige teure Produktabtrennung am isoelektrischen Punkt hier nicht notwendig ist. Somit können Reagenzien zur pH-Wert-Einstellung eingespart und Abtrennungsverluste vermieden werden, da auch die normalerweise in der Mutterlauge der Aminosäuresynthese verbleibende Aminosäure genutzt wird. Günstigerweise kann das Alkalimetallsalz aus der Aminosäuresynthese ohne weiteren Zusatz von Alkali direkt und ohne Ausbeute- und Selektivitätsverlust umgesetzt werden. Hydantoine können ebenfalls wie Nitrile in einem Ansatz durch Zugabe von entsprechender Menge Alkali verseift und unmittelbar in einem Arbeitsgang mit Formaldehyd in wäßrigem Alkalimetallcyanid in erfindungsgemäßer Weise umgesetzt werden, insgesamt liefert diese Methode gegenüber der Umsetzung von durch Fällung isolierter Aminosäure eine höhere Gesamtausbeute bei gleichzeitig einfacherem Verfahren.
  • Beispiele Beispiel 1 Herstellung von MGDA-Trinatriumsalz aus Alanin
  • 42,0 kg 50 gew.-%ige wäßrige Natronlauge wurden in 84 kg Wasser gelöst. Zu dieser Lösung wurden bei Raumtemperatur 44,5 kg D,L-α-Alanin innerhalb 30 min eingetragen. Danach wurde auf 80°C erhitzt und 50 kPa (500 mbar) Unterdruck angelegt. Innerhalb von 3 h wurden 186 kg 33 gew.-%ige wäßrige NaCN-Lösung und, zeitversetzt 15 min später, ebenfalls innerhalb von 3 h 125 kg 30 gew.-%ige wäßrige Formaldehyd-Lösung eingetragen. Die Temperatur wurde während der ganzen Zeit bei 80°C gehalten und der entstehende Ammoniak durch das angelegte Vakuum entfernt. Nach weiteren 3 h bei 80°C verblieben 335 kg einer schwach gelben Lösung mit einem Eisenbindevermögen von 1,47 mmol/g, entsprechend einer Ausbeute an MGDA-Trinatriumsalz von 98,5 %. Der mittels HPLC ermittelte Gehalt an NTA betrug 0,24 Gew.-%.
  • Beispiel 2 Herstellung von MGDA-Trinatriumsalz aus Alanin-Rohgemisch
  • Zu 204 g 25 gew.-%igem wäßrigen Ammoniak wurden bei 0°C 27 g Blausäure zugetropft. Zu der entstandenen Lösung wurden dann innerhalb von 20 min 44 g Acetaldehyd bei 10°C getropft, nach weiteren 2 h bei 20°C betrug der Umsatz an HCN 98 %. Es wurden 204 g 21 gew.-%ige wäßrige NaOH bei dieser Temperatur zugegeben und 5 h gerührt. Danach wurde für 1 h auf 60°C und 3 h auf 95°C erhitzt, dabei wurde mit Stickstoff gestrippt, bis kein Ammoniak mehr entstand.
  • Zu dieser Rohalanin-Lösung wurden dann bei 80°C 7,5 g 33 gew.-%ige Natriumcyanid-Lösung gegeben und anschließend mittels einer automatischen Dosiervorrichtung gleichzeitig über 3 h und bei 800 mbar Vakuum sowie unter Einleiten von Stickstoff 200 g 30 gew.-%ige wäßrige Formaldehyd-Lösung und 290 g 33 gew.-%ige Natriumcyanid-Lösung zudosiert. Nach Ende der Zugabe wurde noch 2 h unter den angegebenen Bedingungen nachgerührt, man erhielt 812 g einer schwach gelben Lösung mit einem Eisenbindevermögen von 0,95 mmol/g, entsprechend 77 % der Theorie, bezogen auf Acetaldehyd. Der Gehalt an NTA betrug 0,27 Gew.-%.
  • Beispiel 3 Herstellung von MGDA aus 5-Methylhydantoin
  • 106 g Ammoniumcarbonat, gelöst in 500 ml Wasser, wurden zusammen mit 149 g 33 gew.-%iger wäßriger Natriumcyanid-Lösung bei 10°C vorgelegt, dazu tropfte man innerhalb von 2 h 44 g Acetaldehyd, nach Ende der Zugabe wurde noch 24 h bei 20°C gerührt, der Umsatz an Cyanid betrug nach dieser Zeit 100 %. Zu der Mischung wurden 3,40 g Imidazol gegeben und portionsweise bei 95°C insgesamt 120 g NaOH eingetragen. Nach 64 h bei ca. 100°C bei gleichzeitiger Strippung mit Stickstoff wurden zu dieser 5-Methylhydantoin enthaltenden Lösung 8 g 33 gew.-%ige wäßrige Natriumcyanid-Lösung i gegeben. Bei 80°C und 80 kPa (800 mbar) Druck wurden unter gleichzeitiger Strippung mit Stickstoff zeitgleich 280 g 33 gew.-%ige wäßrige Natriumcyanid-Lösung sowie 200 g 30 gew.-%iger wäßriger Formaldehyd innerhalb von 3 h zugegeben. Nach weiteren 3 h unter diesen Bedingungen erhielt man 631 g einer Lösung mit einem Eisenbindevermögen von 1,28 mmol/g, entsprechend 81 % der Theorie, der NTA-Gehalt betrug 0,25 Gew.-%.

Claims (6)

  1. Verfahren zur Herstellung von Glycin-N,N-diessigsäure-Derivaten der allgemeinen Formel I in der
    R   für C1- bis C30-Alkyl oder C2- bis C30-Alkenyl, welche zusätzlich als Substituenten bis zu 5 Hydroxylgruppen, Formylgruppen, C1- bis C4-Alkoxygruppen, Phenoxygruppen oder C1- bis C4-Alkoxycarbonylgruppen tragen und durch bis zu 5 nicht benachbarte Sauerstoffatome unterbrochen sein können, Alkoxylat-Gruppierungen der Formel -(CH2)k-O-(A1O)m-(A2O)n-Y, in der A1 und A2 unabhängig voneinander 1,2-Alkylengruppen mit 2 bis 4 C-Atomen bezeichnen, Y Wasserstoff, C1- bis C12-Alkyl, Phenyl oder C1- bis C4-Alkoxycarbonyl bedeutet und k für die Zahl 1, 2 oder 3 sowie m und n jeweils für Zahlen von 0 bis 50 stehen, wobei die Summe aus m + n mindestens 4 betragen muß, Phenylalkylgruppen mit 1 bis 20 C-Atomen im Alkyl, Phenyl, einen fünf- oder sechsgliedrigen ungesättigten oder gesättigten heterocyclischen Ring mit bis zu drei Heteroatomen aus der Gruppe Stickstoff, Sauerstoff und Schwefel, welcher zusätzlich benzanelliert sein kann, wobei alle bei den Bedeutungen für R genannten Phenylkerne und heterocyclischen Ringe noch zusätzlich als Substituenten bis zu drei C1- bis C4-Alkylgruppen, Hydroxylgruppen, Carboxylgruppen, Sulfogruppen oder C1- bis C4-Alkoxycarbonylgruppen tragen können, oder einen Rest der Formel steht, wobei A eine C1- bis C12-Alkylen-Brücke oder eine chemische Bindung bezeichnet, und
    M   Wasserstoff, Alkalimetall, Erdalkalimetall, Ammonium oder substituiertes Ammonium in den entsprechenden stöchiometrischen Mengen bedeutet,
    durch Umsetzung von entsprechenden 2-substituierten Glycinen oder 2-substituierten Glycinnitrilen oder verdoppelten Glycinen der Formel oder verdoppelten Glycinnitrilen der Formel oder von Alaninaminonitril oder 5-Methylhydantoin im Falle von Alanin als Vorstufen der als Ausgangsmaterial genannten Glycinderivate mit Formaldehyd und Alkalimetallcyanid in wäßrigem Medium bei einem pH-Wert von 8 bis 14, dadurch gekennzeichnet, daß man das Ausgangsmaterial im wäßrigen Reaktionsmedium auf Umsetzungstemperatur bringt, danach 0,5 bis 30 % der zur Umsetzung benötigten Menge an Alkalimetallcyanid zu den vorgelegten Glycinderivaten oder deren Vorstufen gibt und anschließend die restliche Menge Alkalimetallcyanid und den Formaldehyd gleichzeitig über einen Zeitraum von 0,5 bis 12 Stunden zudosiert.
  2. Verfahren zur Herstellung von Glycin-N,N-diessigsäure-Derivaten I nach Anspruch 1, dadurch gekennzeichnet, daß man vor und/oder während der Umsetzung ein Vakuum von 10 bis 100 kPa (100 bis 1000 mbar) an die Reaktionsapparatur anlegt.
  3. Verfahren zur Herstellung von Glycin-N,N-diessigsäure-Derivaten I nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß man vor und/oder während der Umsetzung ein Inertgas durch die Reaktionsmischung bzw. die vorgelegten Umsetzungskomponenten leitet.
  4. Verfahren zur Herstellung von Glycin-N,N-diessigsäure-Derivaten I nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß man als Ausgangsmaterial aus der technischen Synthese von Glycinderivaten oder Alaninaminonitril oder 5-Methylhydantoin im Falle von Alanin als deren Vorstufen stammendes nicht gereinigtes Rohmaterial oder bei solchen Synthesen anfallende Mutterlaugen einsetzt.
  5. Verfahren zur Herstellung von Glycin-N,N-diessigsäure-Derivaten I nach den Ansprüchen 1 bis 4, bei denen R für C1- bis C20-Alkyl, C2- bis C20-Alkenyl oder einen Rest der Formel steht.
  6. Verfahren zur Herstellung von α-Alanin-N,N-diessigsäure und ihren Alkalimetall-, Ammonium- und substituierten Ammoniumsalzen nach den Ansprüchen 1 bis 4.
EP96108081A 1995-05-29 1996-05-21 Verfahren zur Herstellung von Glycin-N,N-diessigsäure-Derivaten durch Umsetzung von Glycinderivaten oder deren Vorstufen mit Formaldehyd und Alkalimetallcyanid in wässrig-alkalischem Medium Expired - Lifetime EP0745581B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19518987A DE19518987A1 (de) 1995-05-29 1995-05-29 Verfahren zur Herstellung von Glycin-N,N-diessigsäure-Derivaten durch Umsetzung von Glycinderivaten oder deren Vorstufen mit Formaldehyd und Alkalimetallcyanid in wäßrig-alkalischem Medium
DE19518987 1995-05-29

Publications (3)

Publication Number Publication Date
EP0745581A2 EP0745581A2 (de) 1996-12-04
EP0745581A3 EP0745581A3 (de) 1997-12-10
EP0745581B1 true EP0745581B1 (de) 2000-04-05

Family

ID=7762714

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96108081A Expired - Lifetime EP0745581B1 (de) 1995-05-29 1996-05-21 Verfahren zur Herstellung von Glycin-N,N-diessigsäure-Derivaten durch Umsetzung von Glycinderivaten oder deren Vorstufen mit Formaldehyd und Alkalimetallcyanid in wässrig-alkalischem Medium

Country Status (5)

Country Link
US (1) US5817864A (de)
EP (1) EP0745581B1 (de)
JP (1) JPH08325216A (de)
DE (2) DE19518987A1 (de)
ES (1) ES2145341T3 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3290382B2 (ja) * 1997-07-18 2002-06-10 花王株式会社 粉末洗剤組成物
JP4210427B2 (ja) * 1997-07-30 2009-01-21 ビーエーエスエフ ソシエタス・ヨーロピア グリシン−n,n−二酢酸−誘導体を含有する固形繊維製品洗剤−調製物
WO1999006513A1 (de) * 1997-07-30 1999-02-11 Basf Aktiengesellschaft Feste textilwaschmittel-formulierung auf basis von glycin-n,n-diessigsäure-derivaten mit stark reduziertem anteil an weiteren anionischen tensiden
DE19736476A1 (de) 1997-08-21 1999-02-25 Basf Ag Verfahren zur Herstellung von langkettigen Glycin-N,N-diessigsäure-Derivaten
US20110073461A1 (en) * 2009-09-30 2011-03-31 National Taiwan University Method For Removing Alcohol From Mixture And Apparatus Thereof
JP5914632B2 (ja) * 2011-04-04 2016-05-11 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se メチルグリシン−n,n−二酢酸三アルカリ金属塩の水溶液の製造方法
US8802894B2 (en) * 2011-04-04 2014-08-12 Basf Se Process for the preparation of aqueous solutions of methylglycine-N,N-diacetic acid trialkali metal salts
CN102993034B (zh) * 2011-09-19 2014-11-12 重庆紫光化工股份有限公司 一种甲基甘氨酸二乙酸三钠盐的制备方法
ES2709978T3 (es) 2013-12-09 2019-04-22 Basf Se Procedimiento de producción de un ácido aminocarboxílico
CN106928077B (zh) * 2017-03-13 2019-06-28 重庆紫光化工股份有限公司 甲基甘氨酸二乙酸的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2500019A (en) * 1946-10-08 1950-03-07 Frederick C Bersworth Method of producing polycarboxylic amino acids
FR2057682A5 (de) * 1969-08-26 1971-05-21 Grace W R Ltd
US3733355A (en) * 1970-07-28 1973-05-15 Hooker Chemical Corp Production of nitrilotriacetic acid and the analogs therefor
DE3712329A1 (de) * 1987-04-11 1988-10-20 Basf Ag Verfahren zur herstellung von serin-n,n-diessigsaeure und derivaten, ihre verwendung insbesondere als komplexbildner und diese enthaltende wasch- und reinigungsmittel
DE4319935A1 (de) * 1993-06-16 1994-12-22 Basf Ag Verwendung von Glycin-N,N-diessigsäure-Derivaten als Komplexbildner für Erdalkali- und Schwermetallionen

Also Published As

Publication number Publication date
JPH08325216A (ja) 1996-12-10
DE19518987A1 (de) 1996-12-05
US5817864A (en) 1998-10-06
EP0745581A2 (de) 1996-12-04
ES2145341T3 (es) 2000-07-01
DE59604862D1 (de) 2000-05-11
EP0745581A3 (de) 1997-12-10

Similar Documents

Publication Publication Date Title
EP0745582B1 (de) Verfahren zur Herstellung von Glycin-N,N-diessigsäure-Derivaten durch Umsetzung von Glycinderivaten oder deren Vorstufen mit Formaldehyd und Cyanwasserstoff oder von Iminodiacetonitril oder Iminodiessigsäure mit entsprechenden Aldehyden und Cyanwasserstoff in wässrig-saurem Medium
EP0845456B1 (de) Verfahren zur Herstellung eines kristallinen Feststoffes aus Glycin-N,N-diessigsäure-Derivaten mit hinreichend geringer Hygroskopizität
DE69101791T2 (de) Verfahren zur Herstellung von 3-(1-Amino-1,3-dicarboxy-3-hydroxy-but-4-yl)-indol.
EP0745581B1 (de) Verfahren zur Herstellung von Glycin-N,N-diessigsäure-Derivaten durch Umsetzung von Glycinderivaten oder deren Vorstufen mit Formaldehyd und Alkalimetallcyanid in wässrig-alkalischem Medium
EP2519621B1 (de) Feststoff, der glutaminsäure-n,n-diessigsäure oder ein salz davon enthält sowie verfahren zur herstellung
DE1938513B1 (de) Verfahren zur Herstellung von D-threo-1-p-Methylsulfonyl-phenyl-2-dichloracetamido-propan-1,3-diol
TWI783559B (zh) 使用四氨基化合物製備腈中間體的方法
JP2992428B2 (ja) アミノポリカルボン酸類およびその製造方法
DE3735757A1 (de) Optisch aktive salze aus einem substituierten thiazolidin-4-carboxylat und 3-chlor-2-hydroxypropyltrimethylammonium, deren herstellung und verwendung
DE69207681T2 (de) Verfahren zur Herstellung von einer Alpha-Aminosäure, und dem entsprechenden Ester und Amid
DE3506330C2 (de)
TWI798736B (zh) 使用二腈化合物製備腈中間體的方法
EP0356972B2 (de) Verfahren zur Herstellung von beta-Alanindiessigsäure oder ihren Alkalimetall- oder Ammoniumsalzen
DE2735036C2 (de) Verfahren zur Herstellung optisch aktiver, N-substituierter Pyrrolidine
TW202210451A (zh) 含氮螯合劑的製備
EP1005447B1 (de) Verfahren zur herstellung von langkettigen glycin-n,n-diessigsäure-derivaten
DE2609573A1 (de) Verfahren zur herstellung von 1- (1-phenylaethyl)-1h-imidazol-5-carbonsaeureestern, ihren enantiomeren und salzen mit saeuren
DE60030428T2 (de) 4-cyano-3-hydroxy-butanoyl hydrazine, derivate und verfahren zu ihrer herstellung
DE896809C (de) Verfahren zur Herstellung von Thiazolyl-aryl-essigestern
DE1493965C (de) Verfahren zum Herstellen von Racema ten optisch aktiver Nitrile
JPH07242607A (ja) β−アラニン−N,N−二酢酸およびその塩の製造方法
JPH08268986A (ja) アスパラギン酸− n,n−二酢酸またはその塩類の製造方法
DE19830632A1 (de) Verfahren zur Herstellung von Aminoessigsäureestern mit alpha-ständigem tertiären Kohlenwasserstoffrest
CH646140A5 (de) Verfahren zur herstellung von aminoacetonitrilen.
DD285343A5 (de) Verfahren zur herstellung der reinen enantiomeren des 1-(4-nitrophenoxy)-2-hydroxy-3-tert.-butylaminopropan und ihrer salze

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE DK ES FR GB IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE DK ES FR GB IT NL

17P Request for examination filed

Effective date: 19971031

17Q First examination report despatched

Effective date: 19981005

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE DK ES FR GB IT NL

REF Corresponds to:

Ref document number: 59604862

Country of ref document: DE

Date of ref document: 20000511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000531

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000516

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2145341

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000705

ET Fr: translation filed
BERE Be: lapsed

Owner name: BASF A.G.

Effective date: 20000531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120522

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120629

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130521

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130522

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150529

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150529

Year of fee payment: 20

Ref country code: NL

Payment date: 20150526

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150730

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59604862

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20160520

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20160520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20160520