EP0731509A1 - Optoelectronic converter and process of manufacturing - Google Patents

Optoelectronic converter and process of manufacturing Download PDF

Info

Publication number
EP0731509A1
EP0731509A1 EP96103353A EP96103353A EP0731509A1 EP 0731509 A1 EP0731509 A1 EP 0731509A1 EP 96103353 A EP96103353 A EP 96103353A EP 96103353 A EP96103353 A EP 96103353A EP 0731509 A1 EP0731509 A1 EP 0731509A1
Authority
EP
European Patent Office
Prior art keywords
base plate
plate
semiconductor component
glass
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96103353A
Other languages
German (de)
French (fr)
Other versions
EP0731509B1 (en
Inventor
Werner Dipl.-Phys. Späth
Wolfgang Ing. Grad. Gramann
Georg Dipl.-Phys. Bogner
Ralf Ing. Grad. Dietrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0731509A1 publication Critical patent/EP0731509A1/en
Application granted granted Critical
Publication of EP0731509B1 publication Critical patent/EP0731509B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02325Optical elements or arrangements associated with the device the optical elements not being integrated nor being directly associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Definitions

  • the invention relates to an optoelectronic transducer with a radiation-receiving or emitting semiconductor component, with a base plate on which the semiconductor component is fastened and with a spacer connected to the carrier plate for a lens system that is optically aligned with the semiconductor component.
  • Such converters are known, for example, from US Pat. No. 4,055,761 or JP 5-218,463.
  • a major problem is to operate the converters with good efficiency. Apart from the properties of the semiconductor component itself, this is achieved by optically aligning the lens system with the semiconductor component. Only then can the light be coupled out from the semiconductor component with high efficiency onto a light guide or from a light guide onto the semiconductor component.
  • the object of the invention is to improve an optoelectronic transducer of the type mentioned at the outset in such a way that temperature fluctuations have only a minor influence on the adjustment between the semiconductor component and the lens system.
  • a simple method for producing such an optoelectronic converter is to be specified.
  • the first-mentioned goal is achieved in that the base plate, the spacer and the lens system consist of materials with at least similar thermal expansion coefficients.
  • the optoelectronic converter according to FIG. 1 is built on a base plate 1.
  • the upper surface of the base plate 1 is provided with depressions 2.
  • Crosspieces 3 remain on both sides of the recess 2.
  • a radiation-receiving or emitting semiconductor component 6 is fastened in the depression 2 via a metallization 5.
  • This can e.g. a photodiode or a light-emitting diode (LED) or a vertical cavity surface emitter laser (VCSEL).
  • the metallization 5 also serves to supply current to the semiconductor component 6.
  • a second contact lies on the top of the semiconductor component.
  • web-shaped spacers 7 are also fastened to the webs 3.
  • a lens system 8 which is integrally connected to the spacers. The distance between the lens system and the bottom of the depression 2 is greater than the thickness of the semiconductor component 6 plus the metal layer 5.
  • the base plate 1 consists of silicon. This can be polycrystalline or monocrystalline. Instead of silicon, another material with a suitable coefficient of thermal expansion can also be used for the base plate 1.
  • the spacers 7 are made of glass, while the lens system can be made of silicon or glass. It is essential that at least one part consisting of glass is arranged between the semiconductor component and the lens system. Its low thermal conductivity prevents heat dissipated from the semiconductor component 6 into the base plate 1 from reaching the lens system.
  • a base plate made of silicon is preferably used for radiation-emitting semiconductor components because of its good thermal conductivity, since here the implemented power generally is higher than with radiation receivers.
  • the base plate 1 can be made of glass, the spacers 7 made of silicon and the lens system 8 made of silicon or glass. Silicon for the lens system in both cases can be preferred if the radiation has a wavelength for which silicon is transparent. This is the case for wavelengths larger than 1.1 ⁇ m.
  • the base plate, the spacers 7 and the lens system 8 can be connected to one another by gluing and / or soldering. If silicon surfaces and glass surfaces lie on top of each other, they can also be connected to one another by anodic bonding. This technique is well known.
  • the parts to be bonded are pressed together at a temperature of, for example, 400 ° C and a voltage of, for example, -1000 V is applied to the glass. Since this connection technology is very reproducible, it is also advisable to produce the spacers 7 from silicon in the case in which the base plate 1 and the lens system 8 are made of glass.
  • a solder or adhesive layer is placed between the two parts 9 inserted. A layer of solder can be vapor-deposited, for example.
  • a type is used as the glass which has a coefficient of thermal expansion similar to that of silicon.
  • a borosilicate glass e.g. Comes under the trade name "Pyrex" 7740 from Corning or Tempax from Schott.
  • the optoelectronic converter (11) is to have a small capacity, a glass base plate is recommended instead of the silicon base plate.
  • a silicon base plate is required for reasons of better heat dissipation, it can be made thin and connected to a glass plate 10 (FIG. 2) on its rear side.
  • the glass plate 10 can be connected to the silicon base plate either by anodic bonding, by soldering or by gluing.
  • the transducers 11 shown in FIGS. 1 and 2 are inserted into a housing (FIG. 5) which has a base 14 and a cover 15.
  • the transducer 11 is adjusted relative to a window 16 mounted in the cover 15 and fastened on the base 14.
  • An optical fiber (not shown) abuts the window and is connected to the housing by a coupling 20.
  • the semiconductor component itself is electrically connected via the metallization 5 and the contact arranged on the upper side of the semiconductor component to two connections 21 and 22, via which the operating voltage is supplied or the electrical signal is coupled out.
  • a glass plate or silicon plate 1 is first provided with depressions 2 (FIG. 3). These recesses serve to hold the semiconductor components and are correspondingly wide. A web remains between two of the depressions 2. These webs are expediently provided by further depressions 12 separated from each other, creating webs 3.
  • the depressions 2, 12 can be produced, for example, by photolithographic etching or by sawing. When sawing parallel webs 3 are formed, when etching they can take any shape, for example lattice shape.
  • a plate 17 consisting of silicon or glass is placed on the webs 3 and connected to the webs as described by anodic bonding, gluing or soldering. Then the plate 17 is sawn in such a way that the material lying between the webs 3 and not connected to the base plate 1 is removed. This creates the spacers 7 connected to the webs 3 (FIG. 4).
  • the semiconductor components 6 are then fastened in the depressions 2 in accordance with a predetermined grid.
  • a plate 18 made of silicon or glass and containing a large number of lens systems is placed on the spacers 7.
  • the lens systems are arranged in a grid on the plate 18, which corresponds to the grid of the semiconductor component 6 fastened on the base plate 1.
  • the lens systems are optically aligned with the semiconductor components 6 and then the plate 18 is connected to the spacers 7 by the anodic bonding described or by soldering.
  • This composite is then disassembled by saw cuts 13 placed between the webs 3 and by further saw cuts at right angles and parallel to the plane of the drawing. As described above, each of the resulting units 11 is inserted into a housing.

Abstract

Der Wandler enthält ein Strahlung empfangendes oder aussendendes Halbleiterbauelement (6), das auf einer Bodenplatte (1) befestigt ist. Auf der Bodenplatte sind Abstandhalter (7) angeordnet, die ein Linsensystem (8) tragen. Bodenplatte, Abstandhalter und Linsensystem bestehen aus Materialien, deren thermischer Ausdehnungskoeffizient in etwa gleich ist, also z.B. aus Silizium und Glas. Eine Vielzahl solcher Anordnungen können als Einheit gefertigt und dann zerteilt werden.

Figure imgaf001
The converter contains a semiconductor component (6) receiving or emitting radiation, which is attached to a base plate (1). Spacers (7), which carry a lens system (8), are arranged on the base plate. The base plate, spacer and lens system are made of materials whose thermal expansion coefficient is approximately the same, for example silicon and glass. A variety of such arrangements can be manufactured as a unit and then cut up.
Figure imgaf001

Description

Die Erfindung bezieht sich auf einen optoelektronischen Wandler mit einem Strahlung empfangenden oder aussendenden Halbleiterbauelement, mit einer Bodenplatte, auf dem das Halbleiterbauelement befestigt ist und mit einem mit der Trägerplatte verbundenen Abstandhalter für ein optisch auf das Halbleiterbauelement ausgerichtetes Linsensystem.The invention relates to an optoelectronic transducer with a radiation-receiving or emitting semiconductor component, with a base plate on which the semiconductor component is fastened and with a spacer connected to the carrier plate for a lens system that is optically aligned with the semiconductor component.

Solche Wandler sind beispielsweise aus der US 4 055 761 oder der JP 5-218 463 bekannt. Ein wesentliches Problem besteht darin, die Wandler mit gutem Wirkungsgrad zu betreiben. Dies wird, abgesehen von den Eigenschaften des Halbleiterbauelements selbst, dadurch erreicht, daß das Linsensystem optisch optimal auf das Halbleiterbauelement ausgerichtet wird. Nur dann läßt sich das Licht vom Halbleiterbauelement mit hohem Wirkungsgrad auf einen Lichtleiter auskoppeln oder von einem Lichtleiter auf das Halbleiterbauelement einkoppeln.Such converters are known, for example, from US Pat. No. 4,055,761 or JP 5-218,463. A major problem is to operate the converters with good efficiency. Apart from the properties of the semiconductor component itself, this is achieved by optically aligning the lens system with the semiconductor component. Only then can the light be coupled out from the semiconductor component with high efficiency onto a light guide or from a light guide onto the semiconductor component.

Bei einem optoelektronischen Wandler muß außerdem sichergestellt werden, daß die optimale Justierung auch im Betrieb erhalten bleibt. Bei Erwärmung des Wandlers im Betrieb kann es nämlich zu Dejustierungen kommen, die den Wirkungsgrad verschlechtern.In the case of an optoelectronic converter, it must also be ensured that the optimal adjustment is retained even during operation. If the converter heats up during operation, this can lead to misalignments which reduce the efficiency.

Der Erfindung liegt die Aufgabe zugrunde, einen optoelektronischen Wandler der eingangs erwähnten Art so zu verbessern, daß Temperaturschwankungen nur noch einen geringen Einfluß auf die Justierung zwischen Halbleiterbauelement und Linsensystem haben. Außerdem soll ein einfaches Verfahren zum Herstellen eines solchen optoelektronischen Wandlers angegeben werden.The object of the invention is to improve an optoelectronic transducer of the type mentioned at the outset in such a way that temperature fluctuations have only a minor influence on the adjustment between the semiconductor component and the lens system. In addition, a simple method for producing such an optoelectronic converter is to be specified.

Das erstgenannte Ziel wird dadurch erreicht, daß die Bodenplatte, der Abstandhalter und das Linsensystem aus Materialien mit zumindest ähnlichen thermischen Ausdehnungskoeffizienten bestehen.The first-mentioned goal is achieved in that the base plate, the spacer and the lens system consist of materials with at least similar thermal expansion coefficients.

Weiterbildungen der Erfindung sind Gegenstand der Unteransprüche 2 bis 8. Ein bevorzugtes Verfahren zur Herstellung des optoelektonischen Wandlers ist Gegenstand des Anspruchs 9.Further developments of the invention are the subject of subclaims 2 to 8. A preferred method for producing the optoelectronic converter is the subject of claim 9.

Die Erfindung wird anhand zweier Ausführungsbeispiele in Verbindung mit den Figuren 1 bis 5 näher erläutert. Es zeigen

Figur 1
einen Schnitt durch ein erstes Ausführungsbeispiel,
Figur 2
einen Schnitt durch ein zweites Ausführungsbeispiel,
Figur 3 und 4
charakteristische Schritte bei der Herstellung des optoelektronischen Wandlers und
Figur 5
ein Gehäuse mit eingesetztem Wandler.
The invention is explained in more detail using two exemplary embodiments in conjunction with FIGS. 1 to 5. Show it
Figure 1
2 shows a section through a first exemplary embodiment,
Figure 2
2 shows a section through a second exemplary embodiment,
Figures 3 and 4
characteristic steps in the manufacture of the optoelectronic transducer and
Figure 5
a housing with inserted converter.

Der optoelektronische Wandler nach Figur 1 ist auf einer Bodenplatte 1 aufgebaut. Die obere Oberfläche der Bodenplatte 1 ist mit Vertiefungen 2 versehen. Beidseitig der Vertiefung 2 bleiben Stege 3 stehen. In der Vertiefung 2 ist über eine Metallisierung 5 ein Strahlung empfangendes oder aussendendes Halbleiterbauelement 6 befestigt. Dieses kann z.B. eine Fotodiode bzw. eine lichtaussendende Diode (LED) oder ein Vertical Cavity Surface Emitter Laser (VCSEL) sein. Die Metallisierung 5 dient außerdem zur Stromzuführung zum Halbleiterbauelement 6. Ein zweiter Kontakt liegt auf der Oberseite des Halbleiterbauelementes.The optoelectronic converter according to FIG. 1 is built on a base plate 1. The upper surface of the base plate 1 is provided with depressions 2. Crosspieces 3 remain on both sides of the recess 2. A radiation-receiving or emitting semiconductor component 6 is fastened in the depression 2 via a metallization 5. This can e.g. a photodiode or a light-emitting diode (LED) or a vertical cavity surface emitter laser (VCSEL). The metallization 5 also serves to supply current to the semiconductor component 6. A second contact lies on the top of the semiconductor component.

Auf den Stegen 3 sind z.B. ebenfalls stegförmige Abstandhalter 7 befestigt. Auf den Abstandhaltern 7 liegt ein Linsensystem 8, das mit den Abstandhaltern stoffschlüssig verbunden ist. Der Abstand zwischen dem Linsensystem und dem Boden der Vertiefung 2 ist größer als die Dicke des Halbleiterbauelements 6 zuzüglich der Metallschicht 5.For example, web-shaped spacers 7 are also fastened to the webs 3. On the spacers 7 there is a lens system 8 which is integrally connected to the spacers. The distance between the lens system and the bottom of the depression 2 is greater than the thickness of the semiconductor component 6 plus the metal layer 5.

Die Bodenplatte 1 besteht aus Silizium. Dieses kann polykristallin oder monokristallin sein. Anstelle von Silizium kann für die Bodenplatte 1 jedoch auch ein anderes Material mit einem geeigneten thermischen Ausdehnungskoeffizienten verwendet werden.The base plate 1 consists of silicon. This can be polycrystalline or monocrystalline. Instead of silicon, another material with a suitable coefficient of thermal expansion can also be used for the base plate 1.

Die Abstandhalter 7 bestehen aus Glas, während das Linsensystem aus Silizium oder Glas bestehen kann. Wesentlich ist, daß zwischen dem Halbleiterbauelement und dem Linsensystem wenigstens ein aus Glas bestehendes Teil angeordnet ist. Dessen geringer Wärmeleitwert verhindert, daß vom Halbleiterbauelement 6 in die Bodenplatte 1 abgeleitete Wärme zum Linsensystem gelangt. Eine Bodenplatte aus Silizium wird wegen ihrer guten Wärmeleitfähigkeit vorzugsweise bei Strahlung aussendenden Halbleiterbauelementen verwendet, da hier die umgesetzte Leistung i.a. höher als bei Strahlungsempfängern ist. Bei Strahlungsempfängern kann die Bodenplatte 1 aus Glas bestehen, die Abstandhalter 7 aus Silizium und das Linsensystem 8 aus Silizium oder Glas. Silizium für das Linsensystem in beiden Fällen kann dann der Vorzug gegeben werden, wenn die Strahlung eine Wellenlänge hat, für die Silizium durchlässig ist. Dies ist bei Wellenlänge größer als 1,1 µm der Fall.The spacers 7 are made of glass, while the lens system can be made of silicon or glass. It is essential that at least one part consisting of glass is arranged between the semiconductor component and the lens system. Its low thermal conductivity prevents heat dissipated from the semiconductor component 6 into the base plate 1 from reaching the lens system. A base plate made of silicon is preferably used for radiation-emitting semiconductor components because of its good thermal conductivity, since here the implemented power generally is higher than with radiation receivers. In the case of radiation receivers, the base plate 1 can be made of glass, the spacers 7 made of silicon and the lens system 8 made of silicon or glass. Silicon for the lens system in both cases can be preferred if the radiation has a wavelength for which silicon is transparent. This is the case for wavelengths larger than 1.1 µm.

Die Bodenplatte, die Abstandhalter 7 und das Linsensystem 8 können miteinander durch Kleben und/oder Löten verbunden werden. Liegen jeweils Siliziumflächen und Glasflächen aufeinander, so können diese auch durch anodisches Bonden miteinander verbunden werden. Diese Technik ist bekannt. Dabei werden die miteinander zu bondenden Teile unter einer Temperatur von z.B. 400° C aufeinandergedrückt und eine Spannung von z.B -1000 V wird am Glas angelegt. Da diese Verbindungstechnik sehr gut reproduzierbar ist, empfiehlt es sich auch in demjenigen Fall, bei dem die Bodenplatte 1 und das Linsensystem 8 aus Glas besteht, die Abstandhalter 7 aus Silizium herzustellen. Beim Löten oder Verkleben von Abstandhalter und Linsensystem wird zwischen beide Teile eine Lot- oder Kleberschicht 9 eingefügt. Eine Lotschicht kann z.B. aufgedampft werden.The base plate, the spacers 7 and the lens system 8 can be connected to one another by gluing and / or soldering. If silicon surfaces and glass surfaces lie on top of each other, they can also be connected to one another by anodic bonding. This technique is well known. The parts to be bonded are pressed together at a temperature of, for example, 400 ° C and a voltage of, for example, -1000 V is applied to the glass. Since this connection technology is very reproducible, it is also advisable to produce the spacers 7 from silicon in the case in which the base plate 1 and the lens system 8 are made of glass. When soldering or gluing the spacer and lens system, a solder or adhesive layer is placed between the two parts 9 inserted. A layer of solder can be vapor-deposited, for example.

Als Glas wird ein Typ verwendet, das ein dem Silizium ähnlichen thermischen Ausdehnungskoeffizienten hat. Hierfür eignet sich z.B ein Borosilikatglas, das z.B. unter der Handelsbezeichnung "Pyrex" 7740 von der Firma Corning oder Tempax von der Firma Schott in den Handel kommt.A type is used as the glass which has a coefficient of thermal expansion similar to that of silicon. A borosilicate glass, e.g. Comes under the trade name "Pyrex" 7740 from Corning or Tempax from Schott.

Soll der optoelektronische Wandler (11) eine geringe Kapazität haben, so empfiehlt sich statt der Silizium-Bodenplatte eine Glas-Bodenplatte. Ist jedoch aus Gründen der besseren Wärmeableitung eine Silizium-Bodenplatte erforderlich, so kann diese dünn ausgeführt und auf ihrer Rückseite mit einer Glasplatte 10 (Figur 2) verbunden werden. Die Glasplatte 10 kann mit der Siliziumbodenplatte entweder durch anodisches Bonden, durch Löten oder durch Kleben verbunden sein.If the optoelectronic converter (11) is to have a small capacity, a glass base plate is recommended instead of the silicon base plate. However, if a silicon base plate is required for reasons of better heat dissipation, it can be made thin and connected to a glass plate 10 (FIG. 2) on its rear side. The glass plate 10 can be connected to the silicon base plate either by anodic bonding, by soldering or by gluing.

Die in Figur 1 und 2 gezeigten Wandler 11 werden in ein Gehäuse eingesetzt (Figur 5), das einen Sockel 14 und einen Deckel 15 hat. Der Wandler 11 wird relativ zu einem im Deckel 15 angebrachtes Fenster 16 justiert und auf dem Sockel 14 befestigt. An das Fenster stößt ein Lichtwellenleiter (nicht dargestellt), der durch eine Kupplung 20 mit dem Gehäuse verbunden ist. Das Halbleiterbauelement selbst ist elektrisch über die Metallisierung 5 und den auf der Oberseite des Halbleiterbauelements angeordneten Kontakt mit zwei Anschlüssen 21 und 22 verbunden, über die die Betriebsspannung zugeführt wird bzw. das elektrische Signal ausgekoppelt wird.The transducers 11 shown in FIGS. 1 and 2 are inserted into a housing (FIG. 5) which has a base 14 and a cover 15. The transducer 11 is adjusted relative to a window 16 mounted in the cover 15 and fastened on the base 14. An optical fiber (not shown) abuts the window and is connected to the housing by a coupling 20. The semiconductor component itself is electrically connected via the metallization 5 and the contact arranged on the upper side of the semiconductor component to two connections 21 and 22, via which the operating voltage is supplied or the electrical signal is coupled out.

Zum gleichzeitigen Herstellen einer Vielzahl von optoelektronischen Wandlern 11 nach Figur 1 oder 2 wird zunächst eine Glasplatte oder Siliziumplatte 1 mit Vertiefungen 2 versehen (Figur 3). Diese Vertiefungen dienen der Aufnahme der Halbleiterbauelemente und sind entsprechend breit bemessen. Zwischen zwei der Vertiefungen 2 bleibt ein Steg stehen. Diese Stege werden zweckmäßigerweise durch weitere Vertiefungen 12 voneinander getrennt, wodurch Stege 3 entstehen. Die Vertiefungen 2, 12 können z.B. durch fotolithografisches Ätzen oder durch Sägen hergestellt werden. Beim Sägen entstehen einander parallele Stege 3, beim Ätzen können sie jede beliebige Form, z.B. Gitterform annehmen.For the simultaneous production of a large number of optoelectronic transducers 11 according to FIG. 1 or 2, a glass plate or silicon plate 1 is first provided with depressions 2 (FIG. 3). These recesses serve to hold the semiconductor components and are correspondingly wide. A web remains between two of the depressions 2. These webs are expediently provided by further depressions 12 separated from each other, creating webs 3. The depressions 2, 12 can be produced, for example, by photolithographic etching or by sawing. When sawing parallel webs 3 are formed, when etching they can take any shape, for example lattice shape.

Als nächstes wird auf die Stege 3 eine aus Silizium oder Glas bestehende Platte 17 aufgelegt und mit den Stegen wie beschrieben durch anodisches Bonden, Kleben oder Verlöten verbunden. Dann wird die Platte 17 zersägt derart, daß das zwischen den Stegen 3 liegende, nicht mit der Bodenplatte 1 verbundenen Material entfernt wird. Dabei entstehen die mit den Stegen 3 verbundenen Abstandhalter 7 (Figur 4). Anschließend werden die Halbleiterbauelemente 6 gemäß einem vorgegebenen Raster in den Vertiefungen 2 befestigt.Next, a plate 17 consisting of silicon or glass is placed on the webs 3 and connected to the webs as described by anodic bonding, gluing or soldering. Then the plate 17 is sawn in such a way that the material lying between the webs 3 and not connected to the base plate 1 is removed. This creates the spacers 7 connected to the webs 3 (FIG. 4). The semiconductor components 6 are then fastened in the depressions 2 in accordance with a predetermined grid.

Als nächster Schritt wird eine eine Vielzahl von Linsensystemen enthaltende Platte 18 aus Silizium oder Glas auf die Abstandhalter 7 aufgelegt. Die Linsensysteme sind in einem Raster auf der Platte 18 angeordnet, das dem Raster der auf der Bodenplatte 1 befestigten Halbleiterbauelement 6 entspricht. Die Linsensysteme werden optisch auf die Halbleiterbauelemente 6 ausgerichtet und anschließend wird die Platte 18 mit den Abstandhaltern 7 durch das beschriebene anodische Bonden oder durch Verlöten verbunden. Hierdurch entsteht ein aus Bodenplatte 1, Halbleiterbauelementen 6, Abstandhaltern 7 und Platte 18 bestehender Verbund mit einer Vielzahl von Halbleiterbauelementen und Linsensystemen. Dieser Verbund wird dann durch zwischen den Stegen 3 gelegte Sägeschnitte 13 und durch dazu rechtwinklige, parallel zur Zeichenebene liegende weitere Sägeschnitte zerlegt. Jede der dabei entstehenden Einheiten 11 wird, wie oben beschrieben, in ein Gehäuse eingesetzt.As the next step, a plate 18 made of silicon or glass and containing a large number of lens systems is placed on the spacers 7. The lens systems are arranged in a grid on the plate 18, which corresponds to the grid of the semiconductor component 6 fastened on the base plate 1. The lens systems are optically aligned with the semiconductor components 6 and then the plate 18 is connected to the spacers 7 by the anodic bonding described or by soldering. This creates a composite consisting of base plate 1, semiconductor components 6, spacers 7 and plate 18 with a large number of semiconductor components and lens systems. This composite is then disassembled by saw cuts 13 placed between the webs 3 and by further saw cuts at right angles and parallel to the plane of the drawing. As described above, each of the resulting units 11 is inserted into a housing.

Die Technik der Vereinzelung eines Wafers in kleine Chips ist in der Halbleitertechnik seit langem üblich und kann bei Vereinzelung des Verbundes ebenfalls angewandt werden. Der Verbund wird also durch Sägen, Ritzen und Brechen geteilt. Hierbei ist es üblich, den Verbund auf einer elastischen Klebefolie zu fixieren. Die Folie dient dann als Träger bei allen Nachfolgeprozessen.The technique of separating a wafer into small chips has long been common in semiconductor technology and can also be used when separating the composite. Of the So composite is divided by sawing, scratching and breaking. It is customary to fix the composite on an elastic adhesive film. The film then serves as a carrier in all subsequent processes.

Es ist in Abänderung des beschriebenen Verfahrens auch möglich, zunächst fotolithografisch oder mechanisch die Vertiefungen 2 und die Stege 3 zu erzeugen und dann die Abstandhalter wie beschrieben anzubringen. Anstelle einer mit vielen Linsensystemen versehenen Scheibe 18 werden dann aber einzelne Linsensysteme optisch auf die Halbleiterkörper ausgerichtet und mit den Abstandhaltern 7 verbunden.In a modification of the method described, it is also possible to first produce the depressions 2 and the webs 3 photolithographically or mechanically and then to attach the spacers as described. Instead of a disk 18 provided with many lens systems, individual lens systems are then optically aligned with the semiconductor bodies and connected to the spacers 7.

Claims (10)

Optoelektronischer Wandler mit einem Strahlung empfangenden oder aussendenden Halbleiterbauelement mit einer Bodenplatte, auf dem das Halbleiterbauelement befestigt ist und mit einem mit der Bodenplatte verbundenen Abstandhalter für ein optisch auf das Halbleiterbauelement ausgerichtetes Linsensystem,
dadurch gekennzeichnet, daß die Bodenplatte (1), der Abstandhalter (7) und das Linsensystem (8) aus Materialien mit zumindest ähnlichen thermischen Ausdehnungskoeffizienten bestehen.
Optoelectronic converter with a radiation-receiving or emitting semiconductor component with a base plate on which the semiconductor component is fastened and with a spacer connected to the base plate for a lens system that is optically aligned with the semiconductor component,
characterized in that the base plate (1), the spacer (7) and the lens system (8) consist of materials with at least similar coefficients of thermal expansion.
Wandler nach Anspruch 1,
dadurch gekennzeichnet, daß die Bodenplatte (1) und das Linsensystem (8) aus Silizium und der Abstandhalter (7) aus Glas bestehen.
Converter according to claim 1,
characterized in that the base plate (1) and the lens system (8) consist of silicon and the spacer (7) consist of glass.
Wandler nach Anspruch 1,
dadurch gekennzeichnet, daß die Bodenplatte (1) aus Glas, das Linsensystem (8) und der Abstandhalter (7) aus Silizium bestehen.
Converter according to claim 1,
characterized in that the base plate (1) consists of glass, the lens system (8) and the spacer (7) consist of silicon.
Wandler nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet, daß die Bodenplatte (1) mit einer Metallschicht (5) versehen ist, auf der das Halbleiterbauelement (6) befestigt ist.
Converter according to one of claims 1 to 3,
characterized in that the base plate (1) is provided with a metal layer (5) on which the semiconductor component (6) is attached.
Wandler nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet, daß die aus Glas mit den aus Silizium bestehenden Teilen jeweils durch anodisches Bonden miteinander verbunden sind.
Converter according to one of claims 1 to 4,
characterized in that the glass and silicon parts are bonded together by anodic bonding.
Wandler nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet, daß jeweils aus Glas bzw. aus Silizium bestehende Teile miteinander verlötetet oder verklebt sind.
Converter according to one of claims 1 to 5,
characterized in that parts made of glass or silicon are soldered or glued together.
Wandler nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet, daß das Halbleiterbauelement (6) in einer Vertiefung (2) der Bodenplatte (1) sitzt.
Converter according to one of claims 1 to 6,
characterized in that the semiconductor component (6) is seated in a recess (2) in the base plate (1).
Wandler nach einem der Ansprüche 1 bis 7,
dadurch gekennzeichnet, daß die Bodenplatte (1) aus Silizium besteht und daß sie auf der vom Halbleiterbauelement (6) abgewandten Seite mit einer Glasplatte (10) verbunden ist.
Converter according to one of claims 1 to 7,
characterized in that the base plate (1) consists of silicon and that it is connected to a glass plate (10) on the side facing away from the semiconductor component (6).
Verfahren zum Herstellen eines optoelektronischen Wandlers nach Anspruch 1,
gekennzeichnet durch die Merkmale: a) In der Bodenplatte (1) werden Vertiefungen (2) zur Aufnahme der Halbleiterbauelemente (6) erzeugt derart, daß mindestens auf einer Seite jeder Vertiefung ein Steg (3) stehen bleibt, b) auf die Stege wird eine Platte (17) von der Größe der Bodenplatte (1) aufgelegt und mit den Stegen (3) stoffschlüssig verbunden, c) die Platte (17) wird zwischen den Stegen (3) entfernt, so daß mit der Bodenplatte (1) verbundene Abstandhalter (7) entstehen, d) in die Vertiefungen (2) werden gemäß einem vorgegebenen Raster die Halbleiterbauelemente (6) eingesetzt und mit der Bodenplatte (1) verbunden, e) auf die Träger wird eine weitere Platte (18) aufgelegt, die eine der Anzahl der Halbleiterbauelemente entsprechende Zahl von Linsensystemen (8) enthält, die gemäß dem gleichen Raster auf der weiteren Platte angeordnet sind, f) die weitere Platte (18) wird bezüglich der Träger derart justiert, daß jedes der Linsensysteme auf eines der Halbleiterbauelemente ausgerichtet ist, g) die weitere Platte (18) wird auf den Trägern befestigt, h) der aus Bodenplatte, Halbleiterbauelementen, Abstandhaltern und weiterer Platte bestehende Verbund wird durch erste parallele Schnitte (13) und dazu rechtwinkelige zweite Schnitte zerteilt so daß Einheiten (11) entstehen, die jeweils eine Bodenplatte (1), ein Halbleiterbauelement (6), Abstandhalter (7) und ein Linsensystem (8) enthalten.
A method of manufacturing an optoelectronic transducer according to claim 1,
characterized by the characteristics: a) recesses (2) for receiving the semiconductor components (6) are produced in the base plate (1) in such a way that a web (3) remains at least on one side of each recess, b) a plate (17) the size of the base plate (1) is placed on the webs and is integrally connected to the webs (3), c) the plate (17) is removed between the webs (3), so that spacers (7) connected to the base plate (1) are formed, d) the semiconductor components (6) are inserted into the recesses (2) according to a predetermined grid and connected to the base plate (1), e) a further plate (18) is placed on the carrier, which contains a number of lens systems (8) corresponding to the number of semiconductor components, which are arranged on the further plate according to the same grid, f) the further plate (18) is adjusted with respect to the carrier such that each of the lens systems is aligned with one of the semiconductor components, g) the further plate (18) is attached to the supports, h) the composite consisting of base plate, semiconductor components, spacers and further plate is divided by first parallel cuts (13) and second cuts at right angles thereto, so that units (11) are formed, each having a base plate (1), a semiconductor component (6), Spacers (7) and a lens system (8) included.
Verfahren nach Anspruch 9,
dadurch gekennzeichnet, daß jede der Einheiten (11) in ein gasdichtes Gehäuse (14, 15) eingesetzt wird.
Method according to claim 9,
characterized in that each of the units (11) is inserted into a gas-tight housing (14, 15).
EP96103353A 1995-03-08 1996-03-04 Optoelectronic converter and process of manufacturing Expired - Lifetime EP0731509B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19508222 1995-03-08
DE19508222A DE19508222C1 (en) 1995-03-08 1995-03-08 Opto-electronic converter

Publications (2)

Publication Number Publication Date
EP0731509A1 true EP0731509A1 (en) 1996-09-11
EP0731509B1 EP0731509B1 (en) 2001-06-06

Family

ID=7756033

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96103353A Expired - Lifetime EP0731509B1 (en) 1995-03-08 1996-03-04 Optoelectronic converter and process of manufacturing

Country Status (8)

Country Link
US (1) US5981945A (en)
EP (1) EP0731509B1 (en)
JP (1) JP3256126B2 (en)
KR (1) KR960036157A (en)
CN (1) CN1135660A (en)
DE (2) DE19508222C1 (en)
ES (1) ES2158166T3 (en)
TW (1) TW366599B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1610396A2 (en) * 2004-06-15 2005-12-28 Sharp Kabushiki Kaisha Manufacturing method of a semiconductor wafer having lid parts and manufacturing method of a semiconductor device
DE102007039291A1 (en) * 2007-08-20 2009-02-26 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor module and method for producing such
EP1990829A3 (en) * 2002-07-29 2009-11-11 FUJIFILM Corporation Solid-state imaging device and method of manufacturing the same
US7638823B2 (en) 2002-04-22 2009-12-29 Fujifilm Corporation Solid-state imaging device and method of manufacturing said solid-state imaging device
WO2011035783A1 (en) 2009-09-24 2011-03-31 Msg Lithoglas Ag Method for producing a housing with a component in a hollow space, corresponding housing, method for producing a semi-finished product, and semi-finished product
US8426789B2 (en) 2004-09-14 2013-04-23 Omnivision Technologies, Inc. Aspheric lens forming methods

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080136955A1 (en) * 1996-09-27 2008-06-12 Tessera North America. Integrated camera and associated methods
DE69835216T2 (en) 1997-07-25 2007-05-31 Nichia Corp., Anan SEMICONDUCTOR DEVICE OF A NITRIDE CONNECTION
DE19803936A1 (en) * 1998-01-30 1999-08-05 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Expansion-compensated optoelectronic semiconductor component, in particular UV-emitting light-emitting diode and method for its production
JP2002520819A (en) * 1998-06-30 2002-07-09 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Device for detecting electromagnetic beams
DE19958229B4 (en) * 1998-12-09 2007-05-31 Fuji Electric Co., Ltd., Kawasaki Optical semiconductor sensor device
US6683325B2 (en) * 1999-01-26 2004-01-27 Patent-Treuhand-Gesellschaft-für Elektrische Glühlampen mbH Thermal expansion compensated opto-electronic semiconductor element, particularly ultraviolet (UV) light emitting diode, and method of its manufacture
JP3770014B2 (en) 1999-02-09 2006-04-26 日亜化学工業株式会社 Nitride semiconductor device
WO2000052796A1 (en) 1999-03-04 2000-09-08 Nichia Corporation Nitride semiconductor laser element
US20040041081A1 (en) * 2002-08-30 2004-03-04 Feldman Michael R. Integrated optical transceiver and related methods
US20070181781A1 (en) * 2001-03-06 2007-08-09 Digital Optics Corporation Integrated optical transceiver
JP3858537B2 (en) * 1999-11-02 2006-12-13 富士ゼロックス株式会社 Substrate bonding method, bonded body, inkjet head, and image forming apparatus
IL133453A0 (en) * 1999-12-10 2001-04-30 Shellcase Ltd Methods for producing packaged integrated circuit devices and packaged integrated circuit devices produced thereby
US20040120371A1 (en) * 2000-02-18 2004-06-24 Jds Uniphase Corporation Contact structure for a semiconductor component
US6674775B1 (en) 2000-02-18 2004-01-06 Jds Uniphase Corporation Contact structure for semiconductor lasers
US7842914B2 (en) * 2000-03-06 2010-11-30 Tessera North America, Inc. Optoelectronic package, camera including the same and related methods
US6759687B1 (en) * 2000-10-13 2004-07-06 Agilent Technologies, Inc. Aligning an optical device system with an optical lens system
KR100393057B1 (en) * 2000-10-20 2003-07-31 삼성전자주식회사 Vertical cavity surface emitting laser having micro-lens
US6798931B2 (en) * 2001-03-06 2004-09-28 Digital Optics Corp. Separating of optical integrated modules and structures formed thereby
US6635941B2 (en) * 2001-03-21 2003-10-21 Canon Kabushiki Kaisha Structure of semiconductor device with improved reliability
JP2002290842A (en) * 2001-03-23 2002-10-04 Sanyo Electric Co Ltd Manufacturing method for solid-state image sensing device
DE10118630A1 (en) * 2001-04-12 2002-10-17 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Production of an optoelectronic semiconductor component comprises preparing sintered glass blanks, applying an adhesive to the surfaces of the blank to be connected, fixing both blanks in a tool, and forming a mechanical composite
FR2824955B1 (en) * 2001-05-18 2004-07-09 St Microelectronics Sa SHIELDED OPTICAL SEMICONDUCTOR PACKAGE
CN1302306C (en) * 2001-09-14 2007-02-28 因芬尼昂技术股份公司 Transmitter and/or receiver arrangement for optical signal transmission
DE10146498C2 (en) * 2001-09-21 2003-11-20 Arnold Glaswerke Photovoltaic glazing
US7343535B2 (en) 2002-02-06 2008-03-11 Avago Technologies General Ip Dte Ltd Embedded testing capability for integrated serializer/deserializers
TW587842U (en) * 2002-05-30 2004-05-11 Hon Hai Prec Ind Co Ltd Optical package
KR100464965B1 (en) * 2002-06-28 2005-01-06 삼성전기주식회사 Housing of image sensor module
WO2004007386A2 (en) * 2002-07-11 2004-01-22 Alfalight, Inc. Thermal barrier for an optical bench
CN100550430C (en) * 2002-09-09 2009-10-14 皇家飞利浦电子股份有限公司 Semiconductor device and manufacture method thereof
US7564496B2 (en) * 2002-09-17 2009-07-21 Anteryon B.V. Camera device, method of manufacturing a camera device, wafer scale package
US7033664B2 (en) 2002-10-22 2006-04-25 Tessera Technologies Hungary Kft Methods for producing packaged integrated circuit devices and packaged integrated circuit devices produced thereby
NZ574520A (en) * 2002-11-27 2011-02-25 Dmi Biosciences Inc Use of casein which is at least 10% dephosphorylated for the treatment of diseases and conditions mediated by increased phosphorylation
DE10308048A1 (en) * 2003-02-26 2004-09-09 Abb Research Ltd. Producing carrier elements from a network unit, by partitioning network unit along designated breaking points such that the unit is cut from these points towards a defined distance until reaching the channels within the unit
JP4115859B2 (en) * 2003-02-28 2008-07-09 株式会社日立製作所 Anodic bonding method and electronic device
US7824937B2 (en) * 2003-03-10 2010-11-02 Toyoda Gosei Co., Ltd. Solid element device and method for manufacturing the same
US6982437B2 (en) * 2003-09-19 2006-01-03 Agilent Technologies, Inc. Surface emitting laser package having integrated optical element and alignment post
US6998691B2 (en) * 2003-09-19 2006-02-14 Agilent Technologies, Inc. Optoelectronic device packaging with hermetically sealed cavity and integrated optical element
US6953990B2 (en) * 2003-09-19 2005-10-11 Agilent Technologies, Inc. Wafer-level packaging of optoelectronic devices
US7520679B2 (en) 2003-09-19 2009-04-21 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Optical device package with turning mirror and alignment post
US6900509B2 (en) * 2003-09-19 2005-05-31 Agilent Technologies, Inc. Optical receiver package
US20050063431A1 (en) * 2003-09-19 2005-03-24 Gallup Kendra J. Integrated optics and electronics
FR2861217B1 (en) * 2003-10-21 2006-03-17 St Microelectronics Sa OPTICAL DEVICE FOR OPTICAL SEMICONDUCTOR HOUSING AND METHOD OF MANUFACTURING THE SAME
DE10361650A1 (en) * 2003-12-30 2005-08-04 Osram Opto Semiconductors Gmbh Optoelectronic module and method for its production
EP1602953A1 (en) * 2004-05-31 2005-12-07 STMicroelectronics S.r.l. A package for housing at least one electro-optic element and the corresponding assembly method
TWI228326B (en) * 2004-06-29 2005-02-21 Cleavage Entpr Co Ltd Structure of light emitting diode and manufacture method of the same
JP4547569B2 (en) * 2004-08-31 2010-09-22 スタンレー電気株式会社 Surface mount type LED
TWI289365B (en) 2005-09-29 2007-11-01 Visera Technologies Co Ltd Wafer scale image module
US8044412B2 (en) 2006-01-20 2011-10-25 Taiwan Semiconductor Manufacturing Company, Ltd Package for a light emitting element
JP2007287967A (en) * 2006-04-18 2007-11-01 Shinko Electric Ind Co Ltd Electronic-component apparatus
WO2009052764A1 (en) 2007-10-19 2009-04-30 Ren Lou A composite reaction apparatus and the chemical production method using the same
US20110192445A1 (en) * 2008-03-13 2011-08-11 Florian Solzbacher High precision, high speed solar cell arrangement to a concentrator lens array and methods of making the same
TWI362769B (en) 2008-05-09 2012-04-21 Univ Nat Chiao Tung Light emitting device and fabrication method therefor
TW201010097A (en) * 2008-08-19 2010-03-01 Advanced Optoelectronic Tech Solar cell and manufacturing method therof
TW201033641A (en) 2008-09-18 2010-09-16 Tessera North America Inc Recessed optical surfaces
US8265487B2 (en) * 2009-07-29 2012-09-11 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Half-duplex, single-fiber (S-F) optical transceiver module and method
CN102103235B (en) * 2009-12-18 2012-06-27 国碁电子(中山)有限公司 Optical transceiver and manufacturing method thereof
CN102375185B (en) * 2010-08-20 2013-11-13 国碁电子(中山)有限公司 Optical transceiver and manufacturing method thereof
US20120154945A1 (en) * 2010-12-16 2012-06-21 William Mark Hiatt Optical apertures and applications thereof
JP2012069977A (en) * 2011-11-08 2012-04-05 Citizen Electronics Co Ltd Light emitting device and method for manufacturing the same
CN103926658A (en) * 2013-01-14 2014-07-16 鸿富锦精密工业(深圳)有限公司 Optical communication module
US9008139B2 (en) * 2013-06-28 2015-04-14 Jds Uniphase Corporation Structure and method for edge-emitting diode package having deflectors and diffusers
KR102282827B1 (en) 2014-07-23 2021-07-28 에이엠에스 센서스 싱가포르 피티이. 리미티드. Light emitter and light detector modules including vertical alignment features
US10439358B2 (en) * 2016-04-28 2019-10-08 Nichia Corporation Manufacturing method of light-emitting device
WO2020125646A1 (en) 2018-12-17 2020-06-25 青岛海信宽带多媒体技术有限公司 Optical sub-module and optical module
CN109407233B (en) * 2018-12-17 2020-10-02 青岛海信宽带多媒体技术有限公司 Optical secondary module and optical module
CN109407235B (en) * 2018-12-17 2020-08-25 青岛海信宽带多媒体技术有限公司 Optical secondary module and optical module
CN110212402B (en) * 2019-05-07 2020-11-27 上海灿瑞科技股份有限公司 Laser diode device
EP3796489B1 (en) * 2019-09-20 2022-04-27 Nichia Corporation Light source device and method of manufacturing the same
CN116134356A (en) * 2020-07-20 2023-05-16 苹果公司 Photonic integrated circuit with controlled collapse chip connection
EP3971543B1 (en) * 2020-09-17 2024-02-07 Lynred Infrared detector forming method and associated infrared detector

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4055761A (en) * 1975-03-14 1977-10-25 Nippon Kogaku K.K. Light receiving device for photoelectric conversion element
DE2900356A1 (en) * 1978-01-10 1979-07-12 Canon Kk SEMICONDUCTOR LASER DEVICE
EP0094598A1 (en) * 1982-05-17 1983-11-23 Kei Mori Solar ray collection apparatus
US5167724A (en) * 1991-05-16 1992-12-01 The United States Of America As Represented By The United States Department Of Energy Planar photovoltaic solar concentrator module
JPH05218463A (en) * 1992-02-03 1993-08-27 Sumitomo Electric Ind Ltd Semiconductor photodetective device
US5274456A (en) * 1987-12-28 1993-12-28 Hitachi, Ltd. Semiconductor device and video camera unit using it and their manufacturing method
JPH06326831A (en) * 1993-05-17 1994-11-25 Kyocera Corp Picture device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3833096A1 (en) * 1988-09-29 1990-04-05 Siemens Ag OPTICAL COUPLING
JPH0732208B2 (en) * 1989-10-31 1995-04-10 三菱電機株式会社 Semiconductor device
JPH0463669U (en) * 1990-10-12 1992-05-29
JPH0667115A (en) * 1992-08-20 1994-03-11 Kyocera Corp Image device
US5617131A (en) * 1993-10-28 1997-04-01 Kyocera Corporation Image device having a spacer with image arrays disposed in holes thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4055761A (en) * 1975-03-14 1977-10-25 Nippon Kogaku K.K. Light receiving device for photoelectric conversion element
DE2900356A1 (en) * 1978-01-10 1979-07-12 Canon Kk SEMICONDUCTOR LASER DEVICE
EP0094598A1 (en) * 1982-05-17 1983-11-23 Kei Mori Solar ray collection apparatus
US5274456A (en) * 1987-12-28 1993-12-28 Hitachi, Ltd. Semiconductor device and video camera unit using it and their manufacturing method
US5167724A (en) * 1991-05-16 1992-12-01 The United States Of America As Represented By The United States Department Of Energy Planar photovoltaic solar concentrator module
JPH05218463A (en) * 1992-02-03 1993-08-27 Sumitomo Electric Ind Ltd Semiconductor photodetective device
JPH06326831A (en) * 1993-05-17 1994-11-25 Kyocera Corp Picture device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section EI Week 9516, Derwent World Patents Index; Class T04, AN 95-118405, XP002006158 *
PATENT ABSTRACTS OF JAPAN vol. 017, no. 661 (E - 1471) 7 December 1993 (1993-12-07) *
PATENT ABSTRACTS OF JAPAN vol. 94, no. 011 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7638823B2 (en) 2002-04-22 2009-12-29 Fujifilm Corporation Solid-state imaging device and method of manufacturing said solid-state imaging device
US7659136B2 (en) 2002-04-22 2010-02-09 Fujifilm Corporation Solid-state imaging device and method of manufacturing said solid-state imaging device
EP1990829A3 (en) * 2002-07-29 2009-11-11 FUJIFILM Corporation Solid-state imaging device and method of manufacturing the same
EP1610396A2 (en) * 2004-06-15 2005-12-28 Sharp Kabushiki Kaisha Manufacturing method of a semiconductor wafer having lid parts and manufacturing method of a semiconductor device
EP1610396A3 (en) * 2004-06-15 2009-11-18 Sharp Kabushiki Kaisha Manufacturing method of a semiconductor wafer having lid parts and manufacturing method of a semiconductor device
US8426789B2 (en) 2004-09-14 2013-04-23 Omnivision Technologies, Inc. Aspheric lens forming methods
US8563913B2 (en) 2004-09-14 2013-10-22 Omnivision Technologies, Inc. Imaging systems having ray corrector, and associated methods
DE102007039291A1 (en) * 2007-08-20 2009-02-26 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor module and method for producing such
US9564555B2 (en) 2007-08-20 2017-02-07 Osram Opto Semiconductors Gmbh Opto-electronic semiconductor module and method for the production thereof
WO2011035783A1 (en) 2009-09-24 2011-03-31 Msg Lithoglas Ag Method for producing a housing with a component in a hollow space, corresponding housing, method for producing a semi-finished product, and semi-finished product
DE202010018593U1 (en) 2009-09-24 2018-03-19 Msg Lithoglas Gmbh Arrangement with a component on a carrier substrate and semifinished product and a semi-finished product
EP3297036A1 (en) 2009-09-24 2018-03-21 MSG Lithoglas GmbH Method for producing an assembly comprising a component on a carrier substrate and assembly and method for producing a semi-finished product

Also Published As

Publication number Publication date
JP3256126B2 (en) 2002-02-12
DE59607023D1 (en) 2001-07-12
JPH08264843A (en) 1996-10-11
US5981945A (en) 1999-11-09
KR960036157A (en) 1996-10-28
TW366599B (en) 1999-08-11
ES2158166T3 (en) 2001-09-01
EP0731509B1 (en) 2001-06-06
CN1135660A (en) 1996-11-13
DE19508222C1 (en) 1996-06-05

Similar Documents

Publication Publication Date Title
EP0731509B1 (en) Optoelectronic converter and process of manufacturing
DE19527026C2 (en) Optoelectronic converter and manufacturing process
DE19601955C2 (en) Optoelectronic transmitter module
EP0217063B1 (en) Optical device
EP0905797B1 (en) Semiconductor light source and method of fabrication
EP1299910A1 (en) Led module, method for producing the same and the use thereof
EP0660467B1 (en) Optoelectronical element and method of making the same
DE69927447T2 (en) Device with an optical function and special connection electrodes
EP0335104A2 (en) Arrangement to optically couple one or a plurality of optical senders to one or a plurality of optical receivers of one or a plurality of integrated circuits
DE19640423C1 (en) Optoelectronic module for bidirectional optical data transmission
EP0280305A1 (en) Optoelectronic couple element and method of producing it
DE3633181A1 (en) METHOD FOR PRODUCING AN OPTO COUPLER OR A REFLECTIVE LIGHT BARRIER AND RELATED OPTOCOUPLER OR RELATED REFLECTIVE BARRIER
EP0565843A1 (en) Device for focussing and coupling semiconductor laser radiation into optical fibers
EP0783183A2 (en) Semiconductor device and method of fabrication
EP0783714A1 (en) Optical coupler designed to couple an oeic module to optical fibres
DE2829548A1 (en) CARRIER FOR A LIGHT EMITTING DEVICE
EP3082170A2 (en) Stacked optocoupler module
DE102012215684A1 (en) Method for manufacturing laser component i.e. laser package, for surface mounting technology assembly, involves positioning laser chip on supporting substrate, where side surface of laser chip is attached with stop element
EP1379903A1 (en) Emission module for an optical signal transmission
WO1998014818A1 (en) Method for producing a beam-splitting shaped body and use of the beam-splitting shaped body in an opto-electronic module
DE19640421A1 (en) Optoelectronic module for bidirectional optical data transmission
EP2091116A2 (en) Method for manufacturing a semiconductor laser and semiconductor laser
DE4313492C1 (en) Optical coupler for laser monitoring diode, esp. for semiconductor laser
DE3939723C1 (en) Optical or opto-electronic coupling - uses spherical lens received in frusto-pyramidal recess of one part and groove of other part
DE10321257B4 (en) Optical or opto-electronic device having at least one optoelectronic component arranged on a metal carrier

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT NL SE

17P Request for examination filed

Effective date: 19961008

17Q First examination report despatched

Effective date: 19970418

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INFINEON TECHNOLOGIES AG

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT NL SE

REF Corresponds to:

Ref document number: 59607023

Country of ref document: DE

Date of ref document: 20010712

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN P. & C. S.N.C.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2158166

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010905

ET Fr: translation filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020308

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020312

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20020321

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030305

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031001

EUG Se: european patent has lapsed
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20031001

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050304

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070327

Year of fee payment: 12

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070319

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080304

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080304

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090327

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101001