EP0723038B1 - Procédé et dispositif de régénération d'une solution usagée de décapage d'éléments en alliage de zirconium - Google Patents

Procédé et dispositif de régénération d'une solution usagée de décapage d'éléments en alliage de zirconium Download PDF

Info

Publication number
EP0723038B1
EP0723038B1 EP96400097A EP96400097A EP0723038B1 EP 0723038 B1 EP0723038 B1 EP 0723038B1 EP 96400097 A EP96400097 A EP 96400097A EP 96400097 A EP96400097 A EP 96400097A EP 0723038 B1 EP0723038 B1 EP 0723038B1
Authority
EP
European Patent Office
Prior art keywords
solution
acid
water
pickling
regenerated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96400097A
Other languages
German (de)
English (en)
Other versions
EP0723038A1 (fr
Inventor
Bernard Furic
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zircotube SNC
Original Assignee
Zircotube SNC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zircotube SNC filed Critical Zircotube SNC
Publication of EP0723038A1 publication Critical patent/EP0723038A1/fr
Application granted granted Critical
Publication of EP0723038B1 publication Critical patent/EP0723038B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/36Regeneration of waste pickling liquors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/46Regeneration of etching compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S423/00Chemistry of inorganic compounds
    • Y10S423/01Waste acid containing iron

Definitions

  • the invention relates to a regeneration method. of a used acid pickling solution used for pickling of elements in zirconium alloy.
  • Fuel assemblies for nuclear reactors and in particular the fuel assemblies for pressurized water nuclear reactors are generally consisting of a bundle of fuel rods parallel to each other and held by a frame comprising in particular longitudinal guide tubes and transverse spacer grids.
  • Fuel rods can be made by a zirconium alloy sheath in which pellets of combustible material are introduced.
  • the frame guide tubes can be also made up of zirconium tubes.
  • zirconium tubes from of drafts requires several successive passes of cold rolling which are each followed by a treatment thermal annealing.
  • degreasing is carried out and a chemical pickling of the laminated tube.
  • the chemical pickling of zirconium alloy tubes such as Zircaloy 4 is carried out using a solution of hydrofluoric acid HF containing a certain proportion of nitric acid HNO 3 serving as catalyst for the attack of zirconium by hydrofluoric acid, according to the chemical reaction Zr + 4HF ⁇ ZrF 4 + 2H 2 .
  • the used pickling solution which is recovered in a storage tank after pickling mainly contains hydrofluoric acid, water and nitric acid as well as zirconium fluoride ZrF 4 formed during pickling.
  • Zirconium alloy pickling baths containing pollutants can be treated to separate most of the water from the solution of pollutants which must be destroyed, in approved treatment centers.
  • Zirconium alloy tube production units must therefore bear significant costs relating to separation and destruction polluting products in approved centers and the purchase of new acid to reconstitute the pickling solution.
  • Transport of the used solution to the treatment center is also accompanied by risks which are those of road transport of Hazardous Material.
  • a process for the regeneration of alloy pickling solutions zirconium can therefore have both economic advantages and ecologically.
  • a device for processing solutions is described pickling plants containing sulfuric acid and sulphates ferrous.
  • the device comprises first and second evaporators under vacuum arranged in series and a crystallizer as well as vapor condensers produced by evaporators.
  • An acid solution obtained by separation at the outlet of the crystallizer is incorporated into the distillate obtained in one condensers, then the solution obtained is heated and then stored in a container of regenerated solution.
  • the object of the invention is therefore to propose a regeneration process a used pickling solution consisting mainly of hydrofluoric acid, nitric acid and water, after use for pickling of elements in zirconium alloy, this process making it possible to limit the operating costs of production lines for alloy elements of zirconium, the release of pollutants into the environment and the risks associated with the transport of hazardous materials.
  • the single figure is a block diagram showing the different successive operations implemented to perform the regeneration a used fluonitric acid solution, used for pickling tubes made of zirconium alloy.
  • the usual pickling process consists in preparing a solution of new pickling, mixing in a container 3, hydrofluoric acid, nitric acid and water in sufficient quantity to obtain good pickling efficiency.
  • the pickling solution is used in a pickling unit 4 in which the zirconium alloy tubes are brought into contact with the pickling solution.
  • Destruction of fluonitric acid solutions used in an approved center has the disadvantage of increasing manufacturing line operating costs of zirconium alloy tubes, due to the cost of transportation and processing for the destruction of the used solution and the obligation to prepare in the storage tank 3 a fresh acid solution to from commercial products.
  • the regeneration process according to the invention as shown inside frame 2 is implemented by carrying out a separation treatment on the solution of used pickling stored in the tank 5.
  • the solution stored in tank 5 mainly contains water, hydrofluoric acid and nitric acid as well as zirconium fluoride ZrF4 resulting from the attack of the zirconium alloy tubes by hydrofluoric acid, catalyzed with nitric acid HNO 3 .
  • the separation operations necessary for the regeneration of the pickling solution by the process according to the invention are carried out successively in a vacuum evaporator 7 and in a vacuum-crystallizer evaporator 8.
  • ZIRCOTUBE used a vacuum evaporator marketed under the name WTSE 1000 by LED ITALIA and an evaporator WTSE 150 from the same company modified to withstand aggression by concentrated acids and to constitute a crystallizer.
  • the vacuum evaporators used include an evaporation chamber in which a low pressure, for example of the order of 5260 Pa (40 mm of mercury).
  • the solution to be treated in the evaporation chamber is introduced and maintained at a moderate temperature, for example of the order of 35 ° C.
  • the heating of the solution to be treated is obtained through a heat pump.
  • Reduced chamber pressure allows to separate at least one of the constituents of the solution which is being treated, in the form of a vapor, at a moderate temperature.
  • the vacuum evaporator has a stage of condensation in which the condensation of the vapor separated from the solution to be treated.
  • the vacuum evaporator 7 and the crystallizer evaporator 8 make it possible to obtain a distillate which is condensed in a condensing stage and a concentrate remaining in the evaporation chamber.
  • the vacuum evaporator 7 which can be constituted by a WTSE 1000 evaporator from LED ITALIA allows evaporation and condensation of a much of the water in the pickling solution used which is introduced into the evaporation chamber evaporator 7, from the storage tank 5.
  • the concentrated acid solution contains hydrofluoric acid HF, nitric acid HNO 3 , a small amount of water and a pollutant consisting of zirconium fluoride ZrF 4 originating from the acid attack of the tubes of zirconium alloy, during stripping.
  • the concentrated acid solution could be partially or totally sent for destruction but, according to the method of the invention, it is preferred to carry out a second treatment of this concentrated solution in the crystallizer 8.
  • the crystallizer 8 which can be a vacuum evaporator operating according to the same principle as the vacuum evaporator 7 comprises, inside its condensation chamber, a container coated with a material resistant to concentrated acids and making it possible to collect the pollutant ZrF 4 in the form of solid crystals.
  • the crystallizer 8 preferably comprises a plastic coating to allow it to resist the action of acids in concentrated form.
  • the purified concentrated acid solution recovered in the condensing stage of the crystallizer 8 contains substantially all of the nitric acid from the initial pickling solution, because the acid nitric only plays a catalytic role during pickling of the zirconium alloy.
  • the purified concentrated acid obtained at the outlet of the condensing stage of the crystallizer 8 is mixed with the slightly acidic water obtained at the outlet of the condensing stage of the vacuum evaporator 7, to obtain a regenerated pickling solution which can be returned to the solution storage tank 3 pickling.
  • the title of the pickling solution is set at level of a processing unit 9 in which we do penetrate the mixture of concentrated acid and water supplied in outlet of the crystallizer 8 and the evaporator 7.
  • the discount under the solution can be made for example by reintroducing pure water or the new acid in the mixture, at the unit of treatment 9.
  • the title of the pickling solution is checked by a measurement unit 10 arranged on the recycling line 11 of the pickling solution regenerated inside storage tank 3.
  • the regenerated acid reaching the reservoir storage 3 is rid of the pollutants formed when pickling zirconium alloy tubes.
  • the regeneration treatment according to the invention allows to recover hydrofluoric acid from the solution pickling and almost all of the acid of the fluonitric mixture. This avoids the use large quantities of expensive new materials.
  • the ZrF 4 crystals constituting a dry extract in the crystallizer can be easily extracted, because they are soluble in water.
  • Pure water is therefore introduced into the crystallizer, which makes it possible to dissolve the ZrF 4 crystals.
  • the liquid obtained is removed, so as to empty the crystallizer.
  • An acid solution of ZrF4 is obtained in which the ZrF 4 can precipitate as soon as the pH of the solution reaches a value of approximately 5. It is therefore possible to recover the ZrF 4 from the aqueous solution, by neutralizing this solution.
  • ZrF 4 zirconium fluoride obtained as a by-product in the regeneration process can be used as a base product in some manufacturing.
  • the ZrF 4 produced by the regeneration process according to the invention can be separated from the aqueous solution on a filter such as a filter press and conditioned, by example, for its disposal in an underground storage center.
  • the method according to the invention makes it possible to limit operating costs of element production units zirconium alloy such as tubes cladding and to avoid the transport of pickling solutions used containing pollutants and treatment expensive of these solutions used in specialized treatment.
  • the invention is not limited to the embodiment that has been described.
  • the invention applies to the regeneration of any fluonitric acid solution used for pickling elements made of zirconium alloy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • ing And Chemical Polishing (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Description

L'invention concerne un procédé de régénération d'une solution de décapage acide usagée utilisée pour le décapage d'éléments en alliage de zirconium.
Les assemblages combustibles pour réacteur nucléaire et en particulier les assemblages de combustible pour réacteur nucléaire à eau sous pression sont généralement constitués par un faisceau de crayons combustibles parallèles entre eux et maintenus par une ossature comportant en particulier des tubes-guides longitudinaux et des grilles-entretoises transversales.
Les crayons de combustible peuvent être constitués par une gaine en alliage de zirconium dans laquelle sont introduites des pastilles de matériau combustible.
Les tubes-guides de l'ossature peuvent être également constitués par des tubes de zirconium.
La fabrication des tubes en zirconium à partir d'ébauches nécessite plusieurs passes successives de laminage à froid qui sont suivies chacune d'un traitement thermique de recuit.
Entre chacune des passes de laminage à froid et le traitement thermique consécutif, on effectue un dégraissage et un décapage chimique du tube laminé.
Le décapage chimique des tubes en alliage de zirconium tel que le Zircaloy 4 est réalisé en utilisant une solution d'acide fluorhydrique HF contenant une certaine proportion d'acide nitrique HNO3 servant de catalyseur de l'attaque du zirconium par l'acide fluorhydrique, selon la réaction chimique Zr + 4HF → ZrF4 + 2H2.
La solution de décapage usagée qui est récupérée dans un réservoir de stockage après le décapage renferme principalement de l'acide fluorhydrique, de l'eau et de l'acide nitrique ainsi que du fluorure de zirconium ZrF4 formé lors du décapage.
Les bains de décapage d'alliage de zirconium contenant des produits polluants peuvent être traités pour séparer la plus grande partie de l'eau de la solution des produits polluants qui doivent être détruits, dans des centres de traitement agréés.
Les unités de production de tubes en alliage de zirconium doivent donc supporter des frais importants relatifs à la séparation et à la destruction des produits polluants dans les centres agréés ainsi qu'à l'achat d'acide neuf pour reconstituer la solution de décapage.
En outre, la destruction des solutions acides usagées produit des nitrates qui sont rejetés dans le milieu naturel.
Le transport de la solution usagée vers le centre de traitement s'accompagne également de risques qui sont ceux d'un transport routier de matières dangereuses.
Un procédé de régénération des solutions de décapage d'alliage de zirconium peut donc présenter des avantages à la fois sur le plan économique et sur le plan écologique.
On connaít par le US-A-5,076,884 et le EP-A-0.331.231 des procédés de régénération de solutions de décapage de métaux tels que le zirconium et le hafnium. Ces procédés utilisent un réactif de précipitation qui est un composé de sodium.
Dans le US-A-3,540,513, on décrit un dispositif de traitement de solutions de décapage usagées contenant de l'acide sulfurique et des sulfates ferreux. Le dispositif comporte un premier et un second évaporateurs sous vide disposés en série et un cristalliseur ainsi que des condenseurs des vapeurs produites par les évaporateurs. Une solution acide obtenue par séparation à la sortie du cristalliseur est incorporée au distillat obtenu dans l'un des condenseurs, puis la solution obtenue est chauffée puis stockée dans un bac de solution régénérée.
Dans le US-A-2,993,757, on décrit un procédé de récupération de solutions acides utilisées pour le décapage de tôles d'acier inoxydable ou de titane. La solution est traitée dans un premier et un second évaporateurs sous vide en série. Les vapeurs obtenues sont condensées et des matières solides polluantes sont évacuées du second évaporateur sous forme d'une boue pour être séparées par filtration et éliminées. Le distillat obtenu dans le condenseur à la sortie du second évaporateur est réutilisé pour le décapage.
Cependant, on ne connaissait pas jusqu'ici de procédé de régénération sans apport de réactif d'une solution de décapage fluonitrique utilisée pour le décapage d'éléments en alliage de zirconium tels que des tubes de gainage ou des tubes-guides d'assemblages de combustible pour réacteur nucléaire.
Le but de l'invention est donc de proposer un procédé de régénération d'une solution de décapage usagée constituée principalement par de l'acide fluorhydrique, de l'acide nitrique et de l'eau, après une utilisation pour le décapage d'éléments en alliage de zirconium, ce procédé permettant de limiter les coûts d'exploitation des lignes de production d'éléments en alliage de zirconium, le rejet de matières polluantes dans l'environnement et les risques liés au transport de matières dangereuses.
Dans ce but, selon le procédé de l'invention :
  • on évapore sous vide puis on condense une partie de l'eau contenue dans la solution usagée de manière à obtenir de l'eau légèrement acide et une solution acide concentrée polluée par du fluorure de zirconium ZrF4, représentant à peu près 30 % en volume de la solution usagée,
  • on traite par évaporation sous vide dans un cristalliseur, la solution acide concentrée polluée, de manière à obtenir des cristaux de fluorure de zirconium ZrF4, et une solution acide concentrée épurée, et
  • on mélange l'eau légèrement acide et la solution acide concentrée épurée en proportions voulues pour obtenir une solution de décapage régénérée.
Afin de bien faire comprendre l'invention, on va maintenant décrire, en se référant à la figure jointe en annexe, un mode de réalisation du procédé de régénération suivant l'invention.
La figure unique est un schéma fonctionnel montrant les différentes opérations successives mises en oeuvre pour effectuer la régénération d'une solution acide fluonitrique usagée, utilisée pour le décapage de tubes en alliage de zirconium.
Sur la figure, on a représenté, à l'intérieur du cadre 1, les opérations mises en oeuvre de manière usuelle dans le cadre d'un procédé de décapage au moyen d'une solution d'acide et, à l'intérieur du cadre 2, les opérations de régénération d'une solution de décapage usagée après son utilisation dans le cadre du procédé habituel de décapage de tubes en alliage de zirconium.
Le procédé usuel de décapage consiste à préparer une solution de décapage neuve, en mélangeant dans un récipient 3, de l'acide fluorhydrique, de l'acide nitrique et de l'eau en quantité voulue pour obtenir une bonne efficacité du décapage. La solution de décapage est utilisée dans une unité de décapage 4 dans laquelle les tubes en alliage de zirconium sont mis en contact avec la solution de décapage.
Dans le cadre d'un procédé de fabrication de tubes de gainage ou de tubes-guides pour assemblages de combustible pour réacteur nucléaire, on effectue successivement, sur les ébauches tubulaires, trois opérations de laminage suivies chacune d'un traitement thermique de recuit. Entre chacune des opérations de laminage et le recuit consécutif, on réalise un dégraissage et un décapage des ébauches tubulaires ou des tubes par le mélange fluonitrique.
On effectue un contrôle des caractéristiques chimiques de la solution de décapage et, lorsque la solution ne présente plus les caractéristiques voulues pour une mise en oeuvre efficace du procédé de décapage, on évacue la solution de décapage usagée dans un réservoir de stockage 5.
Dans le cadre de la mise en oeuvre industrielle du procédé de décapage selon l'art antérieur, les solutions de décapage usagées stockées dans un réservoir faisaient l'objet d'une destruction dans un centre agréé comme représenté par l'étape 6 qui n'est pas mise en oeuvre dans le cadre du procédé de régénération suivant l'invention.
La destruction des solutions d'acide fluonitrique usagées en centre agréé présente l'inconvénient d'augmenter les coûts d'exploitation de la ligne de fabrication de tubes en alliage de zirconium, du fait des frais de transport et de traitement pour la destruction de la solution usagée et de l'obligation de préparer dans le réservoir de stockage 3 une solution d'acide neuf à partir de produits du commerce.
En outre, le procédé de destruction en centre agréé s'accompagne d'une production de nitrates qui doivent être rejetés dans l'environnement.
Le procédé de régénération suivant l'invention tel que figuré à l'intérieur du cadre 2 est mis en oeuvre en effectuant un traitement de séparation sur la solution de décapage usagée stockée dans le réservoir 5.
La solution stockée dans le réservoir 5 renferme principalement de l'eau, de l'acide fluorhydrique et de l'acide nitrique ainsi que du fluorure de zirconium ZrF4 provenant de l'attaque des tubes en alliage de zirconium par l'acide fluorhydrique, catalysée par l'acide nitrique HNO3.
Les opérations de séparation nécessaires pour la régénération de la solution de décapage par le procédé suivant l'invention sont réalisées successivement dans un évaporateur sous vide 7 et dans un évaporateur sous vide-cristalliseur 8.
Pour réaliser la mise en oeuvre industrielle du procédé de régénération, la société ZIRCOTUBE a utilisé un évaporateur sous vide commercialisé sous la dénomination WTSE 1000 par la société LED ITALIA et un évaporateur WTSE 150 de la même société modifié pour résister à l'agression par des acides concentrés et pour constituer un cristalliseur.
Les évaporateurs sous vide utilisés comportent une chambre d'évaporation dans laquelle on maintient une pression faible, par exemple de l'ordre de 5260 Pa (40 mm de mercure).
La solution à traiter dans la chambre d'évaporation est introduite et maintenue à une température modérée, par exemple de l'ordre de 35°C.
L'échauffement de la solution à traiter est obtenu par l'intermédiaire d'une pompe à chaleur.
La mise sous pression réduite de la chambre d'évaporation permet de séparer au moins l'un des constituants de la solution dont on effectue le traitement, sous forme d'une vapeur, à une température modérée.
L'évaporateur sous vide comporte un étage de condensation dans lequel on réalise la condensation de la vapeur séparée de la solution à traiter.
L'évaporateur sous vide 7 et l'évaporateur cristalliseur 8 permettent d'obtenir un distillat qui est condensé dans un étage de condensation et un concentrat restant dans la chambre d'évaporation.
L'évaporateur sous vide 7 qui peut être constitué par un évaporateur WTSE 1000 de la société LED ITALIA permet de réaliser l'évaporation et la condensation d'une grande partie de l'eau contenue dans la solution de décapage usagée qui est introduite dans la chambre d'évaporation de l'évaporateur 7, à partir du réservoir de stockage 5.
On obtient en sortie de l'étage de condensation de l'évaporateur sous vide, de l'eau très légèrement acide et très légèrement polluée qui représente 70 % en volume de la solution initiale traitée. A l'intérieur de la chambre d'évaporation, il reste, après évaporation de l'eau, une solution d'acide concentrée représentant à peu près 30 % en volume de la solution de décapage initiale introduite dans la chambre d'évaporation.
La solution acide concentrée renferme de l'acide fluorhydrique HF, de l'acide nitrique HNO3, une faible quantité d'eau et un polluant constitué par du fluorure de zirconium ZrF4 provenant de l'attaque acide des tubes en alliage de zirconium, au cours du décapage.
La solution d'acide concentrée pourrait être envoyée partiellement ou totalement à la destruction mais, selon le procédé de l'invention, on préfère effectuer un second traitement de cette solution concentrée dans le cristalliseur 8.
Le cristalliseur 8 qui peut être un évaporateur sous vide fonctionnant suivant le même principe que l'évaporateur sous vide 7 comporte, à l'intérieur de sa chambre de condensation, un récipient revêtu d'un matériau résistant aux acides concentrés et permettant de recueillir le polluant ZrF4 sous la forme de cristaux solides.
Le cristalliseur 8 comporte de préférence un revêtement en matière plastique pour lui permettre de résister à l'action des acides sous forme concentrée.
On effectue à l'intérieur de l'évaporateur cristalliseur, de la même manière que dans l'évaporateur 7, une évaporation et une séparation d'une solution concentrée d'acide renfermant en substance, de l'acide fluorhydrique, de l'acide nitrique et une très faible quantité d'eau. L'acide concentré épuré par évaporation puis condensé représente à peu près 80 % en volume de l'acide concentré pollué introduit dans le cristalliseur 8.
La solution acide concentrée épurée récupérée dans l'étage de condensation du cristalliseur 8 renferme sensiblement l'intégralité de l'acide nitrique de la solution de décapage initiale, du fait que l'acide nitrique ne joue qu'un rôle de catalyseur lors du décapage de l'alliage de zirconium.
A l'issue de l'évaporation de la solution acide concentrée épurée, il reste dans le fond du cristalliseur, des cristaux de ZrF4 constituant un extrait sec représentant approximativement 20 % en volume de la solution d'acide concentrée polluée de départ.
L'acide concentré épuré obtenu à la sortie de l'étage de condensation du cristalliseur 8 est mélangé avec l'eau légèrement acide obtenue à la sortie de l'étage de condensation de l'évaporateur sous vide 7, pour obtenir une solution de décapage régénérée qui peut être renvoyée au réservoir de stockage 3 de la solution de décapage.
Le titre de la solution de décapage est réglé au niveau d'une unité de traitement 9 dans laquelle on fait pénétrer le mélange d'acide concentré et d'eau fournis en sortie du cristalliseur 8 et de l'évaporateur 7.
La remise au titre de la solution peut être réalisée par exemple en réintroduisant de l'eau pure ou de l'acide neuf dans le mélange, au niveau de l'unité de traitement 9.
Le titre de la solution de décapage est vérifié par une unité de mesure 10 disposée sur la ligne de recyclage 11 de la solution de décapage régénérée à l'intérieur du réservoir de stockage 3.
L'acide régénéré parvenant au réservoir de stockage 3 est débarrassé des produits polluants formés lors du décapage des tubes d'alliage de zirconium. De plus, le traitement de régénération suivant l'invention permet de récupérer de l'acide fluorhydrique de la solution de décapage usagée et la quasi totalité de l'acide nitrique du mélange fluonitrique. On évite ainsi l'utilisation de grandes quantités de matières neuves coûteuses.
Cependant, il reste nécessaire, pour éviter des phénomènes de concentration dans la solution régénérée et recyclée, d'effectuer des purges de la solution régénérée, de manière régulière, et de compenser ces purges par des appoints d'une solution acide fluonitrique neuve.
Les cristaux de ZrF4 constituant un extrait sec dans le cristalliseur peuvent être extraits facilement, du fait qu'ils sont solubles à l'eau.
On introduit donc de l'eau pure dans le cristalliseur, ce qui permet de dissoudre les cristaux de ZrF4. Le liquide obtenu est prélevé, de manière à vider le cristalliseur. On obtient une solution acide de ZrF4 dans laquelle le ZrF4 peut précipiter dès que le pH de la solution atteint une valeur de 5 environ. On peut donc récupérer le ZrF4 de la solution aqueuse, en neutralisant cette solution.
Le fluorure de zirconium ZrF4 obtenu comme sous-produit dans le procédé de régénération peut être utilisé comme produit de base dans certaines fabrication.
Dans le cas où il n'est pas possible d'utiliser le ZrF4 produit par le procédé de régénération suivant l'invention, on peut le séparer de la solution aqueuse sur un filtre tel qu'un filtre-presse et le conditionner, par exemple, pour son évacuation dans un centre de stockage souterrain.
Le procédé suivant l'invention permet de limiter les coûts d'exploitation des unités de production d'éléments en alliage de zirconium tels que des tubes de gainage et d'éviter le transport de solutions de décapage usagées renfermant des produits polluants et le traitement coûteux de ces solutions usagées dans des centres de traitement spécialisés.
L'invention ne se limite pas au mode de réalisation qui a été décrit.
C'est ainsi qu'on peut utiliser, pour effectuer la séparation des produits de la solution usagée, des évaporateurs sous vide d'un type différent de ceux qui ont été décrits plus haut.
On peut effectuer un recyclage total ou seulement partiel de la solution de traitement usagée et on peut prévoir tout type d'installation pour ajuster la composition de la solution régénérée et pour réintroduire la solution régénérée sur la ligne de décapage des éléments en alliage de zirconium.
L'invention s'applique à la régénération de toute solution d'acide fluonitrique utilisée pour le décapage d'éléments en alliage de zirconium.

Claims (5)

  1. Procédé de régénération d'une solution de décapage usagée constituée principalement par de l'acide fluorhydrique, de l'acide nitrique et de l'eau, après une utilisation pour le décapage d'éléments en alliage de zirconium, caractérisé par le fait :
    qu'on évapore sous vide puis qu'on condense une partie de l'eau contenue dans la solution usagée de manière à obtenir de l'eau légèrement acide et une solution acide concentrée polluée par du fluorure de zirconium ZrF4, représentant à peu près 30 % en volume de la solution usagée,
    qu'on traite par évaporation sous vide dans un cristalliseur (8),la solution acide concentrée polluée, de manière à obtenir des cristaux de zirconium ZrF4 et une solution acide concentrée épurée, et
    qu'on mélange l'eau légèrement acide et la solution acide concentrée épurée en proportion voulue pour obtenir une solution de décapage régénérée.
  2. Procédé suivant la revendication 1, caractérisé par le fait qu'on réalise une remise au titre de la solution régénérée obtenue par mélange de l'eau et de la solution acide concentrée épurée, avant sa réutilisation pour le décapage.
  3. Procédé suivant l'une quelconque des revendications 1 et 2,caractérisé par le fait qu'on effectue la dissolution par de l'eau des cristaux de fluorure de zirconium ZrF4 obtenus dans le cristalliseur (8) pour les évacuer du cristalliseur (8).
  4. Procédé suivant l'une quelconque des revendications 1 à 3, caractérisé par le fait que l'évaporation sous vide de l'eau contenue dans la solution usagée et de la solution acide concentrée polluée dans le cristalliseur (8) est réalisée sous une pression résiduelle de l'ordre de 5260 Pa (40 mm de mercure).
  5. Dispositif de régénération d'une solution de décapage usagée constituée principalement par de l'acide fluorhydrique, de l'acide nitrique et de l'eau, après une utilisation pour le décapage d'éléments en alliage de zirconium, comportant :
    un évaporateur sous vide (7), et un évaporateur sous vide cristalliseur (8) disposés en série, de manière que l'évaporateur sous vide cristalliseur (8) recueille le concentrat de l'évaporateur sous vide (7), l'évaporateur sous vide (7) et l'évaporateur cristalliseur (8) comprenant chacun un étage de condensation de distillat,
    des moyens de réalisation d'un mélange dosé des distillats produits dans l'évaporateur sous vide (7) et dans l'évaporateur cristalliseur (8),
    une unité de mélange et de remise au titre (9) de la solution de décapage régénérée,
    une ligne (11) de recyclage de la solution de décapage régénérée dans un réservoir de stockage de solution de décapage (3), et placé sur la ligne de recyclage (11) de la solution de décapage régénérée, un dispositif de mesure (10) du titre de la solution régénérée.
EP96400097A 1995-01-24 1996-01-15 Procédé et dispositif de régénération d'une solution usagée de décapage d'éléments en alliage de zirconium Expired - Lifetime EP0723038B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9500783A FR2729676B1 (fr) 1995-01-24 1995-01-24 Procede et dispositif de regeneration d'une solution usagee de decapage d'elements en alliage de zirconium
FR9500783 1995-01-24

Publications (2)

Publication Number Publication Date
EP0723038A1 EP0723038A1 (fr) 1996-07-24
EP0723038B1 true EP0723038B1 (fr) 2000-04-12

Family

ID=9475436

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96400097A Expired - Lifetime EP0723038B1 (fr) 1995-01-24 1996-01-15 Procédé et dispositif de régénération d'une solution usagée de décapage d'éléments en alliage de zirconium

Country Status (5)

Country Link
US (1) US5788935A (fr)
EP (1) EP0723038B1 (fr)
DE (1) DE69607660T2 (fr)
ES (1) ES2145390T3 (fr)
FR (1) FR2729676B1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6885845B1 (en) * 1993-04-05 2005-04-26 Ambit Corp. Personal communication device connectivity arrangement
FR2874220B1 (fr) * 2004-08-10 2007-07-06 Snecma Moteurs Sa Procede de regeneration des acides d'usinage chimique, installation pour la mise en oeuvre du procede et procede d'usinage chimique associe.
US7988946B2 (en) 2005-06-30 2011-08-02 Compagnie Europeenne Du Zirconium-Cezus Method for recycling zirconium tetrafluoride into zirconia
FR2887868B1 (fr) * 2005-06-30 2007-08-17 Cie Europ Du Zirconium Cezus S Procede de recyclage de tetrafluorure de zirconium en zircone
CN103241784A (zh) * 2012-02-14 2013-08-14 库特勒自动化***(苏州)有限公司 太阳能电池刻蚀废物体系的处理方法及处理装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2993757A (en) * 1958-07-07 1961-07-25 Crucible Steel Co America Process for recovering acid values from mixed acid waste
US3540513A (en) * 1968-10-14 1970-11-17 Daido Chem Eng Corp Apparatus for treating a pickling waste
AT335251B (de) * 1975-03-10 1977-03-10 Ruthner Industrieanlagen Ag Verfahren und vorrichtung zur wiedergewinnung von salpetersaure und flusssaure aus losungen
FI58519C (fi) * 1978-12-07 1981-02-10 Rosenlew Ab Oy W Foerfarande foer regenerering av betningssyror
DE3009265A1 (de) * 1980-03-11 1981-09-24 Metallgesellschaft Ag, 6000 Frankfurt Verfahren zum regenerieren von zrf (pfeil abwaerts)4(pfeil abwaerts) enthaltenden beizloesungen
AT374508B (de) * 1982-07-01 1984-05-10 Ruthner Industrieanlagen Ag Verfahren zur aufarbeitung verbrauchter beizoder aetzloesungen auf der basis von salpeter-flussaeure
US4572824A (en) * 1984-11-01 1986-02-25 General Electric Company Process for recovery of zirconium and acid from spent etching solutions
EP0331231B1 (fr) * 1988-02-24 1991-10-16 Metallgesellschaft Ag Procédé pour régénérer des solutions de décapage contenant du ZrF4
FR2659956B1 (fr) * 1990-03-21 1992-06-26 Cogema Procede de traitement d'une solution aqueuse contenant principalement de l'acide nitrique et de l'acide fluorhydrique.
US5076884A (en) * 1990-07-19 1991-12-31 Westinghouse Electric Corp. Process of precipitating zirconium or hafnium from spent pickling solutions

Also Published As

Publication number Publication date
DE69607660D1 (de) 2000-05-18
DE69607660T2 (de) 2000-12-28
US5788935A (en) 1998-08-04
FR2729676B1 (fr) 1997-04-11
ES2145390T3 (es) 2000-07-01
EP0723038A1 (fr) 1996-07-24
FR2729676A1 (fr) 1996-07-26

Similar Documents

Publication Publication Date Title
CN101367507B (zh) 废硫酸脱除气体过滤提浓方法
CN207986863U (zh) 一种废酸资源化利用处理***
CA2062493C (fr) Procede de traitement de gaz a base de fluor electrolytique et pouvant contenir des composes uraniferes
US6677482B2 (en) Method of manufacturing (meth) acrylic acid
EP0723038B1 (fr) Procédé et dispositif de régénération d'une solution usagée de décapage d'éléments en alliage de zirconium
CN101767847A (zh) 一种基于膜技术的酸废液的纯化回收方法
EP0145517B1 (fr) Procédé de traitement d'un courant gazeux contenant des oxydes d'azote
EP1018500B1 (fr) Procédé pour l'isolation de glycols
FR2515855A1 (fr) Procede pour la decontamination de la surface radio-activement contaminee de matieres metalliques
EP0967003B1 (fr) Procédé et système pour le traitement des gaz d'échappement
CH672321A5 (fr)
CN110294462A (zh) 一种含有重金属、氟化物及氯化物的废酸处理装置及方法
EP0360866A1 (fr) Procede et installation de nettoyage de pieces
CA2225798C (fr) Procede de purification par extraction d'un milieu liquide
WO2007003769A1 (fr) Procede de recyclage de tetrafluorure de zirconium en zircone
EP2427407B1 (fr) Procédé de récupération et de recyclage d'ammoniac
CN208577599U (zh) 一种处理高盐高cod废水的***
CN105859004A (zh) 一种含汞废盐酸液处理***及方法
US20040050716A1 (en) Electrochemical oxidation of matter
FR2795064A1 (fr) Procede pour recueillir du brome
CN202201854U (zh) 一种聚醚多元醇生产过程中废水再利用***
WO1995032155A1 (fr) Procede de valorisation d'un effluent liquide acide contenant des metaux lourds
FR2530856A1 (fr) Procede de concentration des solutions residuaires de centrales nucleaires
FR2524338A1 (fr) Dispositif pour realiser notamment des economies d'energie dans la recuperation des charbons actifs contenant des solvants adsorbes
FR2721919A1 (fr) Procede et installation de recuperation du brome dans un effluent liquide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE ES FR GB LI SE

17P Request for examination filed

Effective date: 19970111

17Q First examination report despatched

Effective date: 19980902

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE ES FR GB LI SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69607660

Country of ref document: DE

Date of ref document: 20000518

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000519

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2145390

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: ZIRCOTUBE TRANSFER- COMPAGNIE EUROPEENNE DU ZIRCONIUM-CEZUS

Ref country code: CH

Ref legal event code: NV

Representative=s name: KIRKER & CIE SA

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20021216

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030107

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030108

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20030213

Year of fee payment: 8

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040115

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20040119

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040131

BERE Be: lapsed

Owner name: *CEZUS CIE EUROPEENNE DU ZIRCONIUM

Effective date: 20040131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040803

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040115

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050117

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20050117

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20141211

Year of fee payment: 20

Ref country code: SE

Payment date: 20150121

Year of fee payment: 20

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG