EP0686150B1 - Verfahren zur Herstellung von C-Nukleosiden und C-Nukleosid-Analoga, neue C-Nukleoside und C-Nukleosid-Analoga, sowie ihre Verwendung - Google Patents

Verfahren zur Herstellung von C-Nukleosiden und C-Nukleosid-Analoga, neue C-Nukleoside und C-Nukleosid-Analoga, sowie ihre Verwendung Download PDF

Info

Publication number
EP0686150B1
EP0686150B1 EP94910321A EP94910321A EP0686150B1 EP 0686150 B1 EP0686150 B1 EP 0686150B1 EP 94910321 A EP94910321 A EP 94910321A EP 94910321 A EP94910321 A EP 94910321A EP 0686150 B1 EP0686150 B1 EP 0686150B1
Authority
EP
European Patent Office
Prior art keywords
hal
alkyl
methyl
didesoxy
aryl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94910321A
Other languages
English (en)
French (fr)
Other versions
EP0686150A1 (de
Inventor
Dieter BÄRWOLFF
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Max Delbrueck Centrum fuer Molekulare in der Helmholtz Gemeinschaft
Original Assignee
Max Delbrueck Centrum fuer Molekulare in der Helmholtz Gemeinschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE4320570A external-priority patent/DE4320570C2/de
Application filed by Max Delbrueck Centrum fuer Molekulare in der Helmholtz Gemeinschaft filed Critical Max Delbrueck Centrum fuer Molekulare in der Helmholtz Gemeinschaft
Publication of EP0686150A1 publication Critical patent/EP0686150A1/de
Application granted granted Critical
Publication of EP0686150B1 publication Critical patent/EP0686150B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/645Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having two nitrogen atoms as the only ring hetero atoms
    • C07F9/6509Six-membered rings
    • C07F9/6512Six-membered rings having the nitrogen atoms in positions 1 and 3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • C07H19/10Pyrimidine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids

Definitions

  • the invention relates to a method for producing C-nucleosides and C-nucleoside analogs, new C-nucleosides and C-nucleoside analogs and their use.
  • the new C-nucleosides and C-nucleoside analogues have not yet been synthesized.
  • 6- (D-Ribofuranosylmethyl) pyrimidines are known from J. Org. Chem. 43, 2925 (1978), 47, 5115 (1982), 51, 1058 (1986), Liebigs Annalen 6, 957 (1986), J. Chem. Soc. Perkin I 201 (1983).
  • nucleosides For the treatment of viral and cancer diseases is one Series of nucleosides have been synthesized and tested. Several of which are used in medical practice today, e.g. Acyclovir (Schaeffer et al, Nature 1978, 272, 583-85) and 3'-azidothymidine (Broder et al, Proc. Natl. Acad. Sci., USA, 1985, 82, 7096). Others are used as therapeutic agents shortly before, among others for 5- (2-bromovinyl) -2'-deoxyuridine and 3'-fluorothymidine.
  • the invention aims to be therapeutic, in particular Virostatic and cancerostatic compounds are available to ask which one with the known substances comparable effectiveness and high stability. she are said to be potential therapeutic agents with low stress for be suitable for the patient.
  • Another object of the invention consists of building blocks for novel oligonucleotides to provide.
  • the compounds I are virostatic and / or cancerostatic. Their effectiveness has been tested on bone marrow stem cells. The compounds show an inhibition in the bone marrow stem cell proliferation test that is comparable to the known substances and in some cases even higher. It is, for example, 6- ( ⁇ -D-2 ', 3'-didehydro-2', 3'-dideoxyribofuranos-1-yl) methyl-4-aminopyrimidine below 10 -4 molar.
  • Synthetic oligonucleotides are understood to mean RNA and DNA oligonucleotides, including above all ribozymes (also ribozymes from DNA and RNA building blocks) and antisense oligonucleotides.
  • the compounds mentioned in claim 5 are preferably used for this.
  • Such compounds are prepared according to a known pattern, some typical routes are described below using the example of thymidine.
  • thymidine is first tritylated to the 5'-dimethoxy-trityl derivative, followed by reaction via cyanoethyl (diisopropyl) phosphorodiamidite.
  • the resulting 5'-di-methoxy-trityl-3'-cyanoethyl (diisopropyl) phosphamidite is then reacted further in a manner known per se in the oligonucleotide synthesizer.
  • RNA oligonucleotides after tritylation protection of the 2'-OH group z. B. done by the silyl radical.
  • ribozymes and antisense oligonucleotides are constructed in the same way.
  • Compounds which are particularly suitable for the construction of the ribozyme are 6- ( ⁇ -D-ribofuranos-1-yl) methyl-4-aminopyrimidine and 6- ( ⁇ -D-ribofuranos-1-yl) methyl-2-amino-4-hydroxy-pyrimidine and their derivatives substituted in the 2'-position by F, NH 2 , H or ara-OH. These compounds can be used as phosphate esters, thiophosphate esters or as phosphonates.
  • These compounds can also be used as phosphate esters, thiophosphate esters or as phosphonates.
  • the novel antisense oligonucleotides produced show an increased specific activity and an increased ability to bind to the desired support, which results in improved application possibilities.
  • the invention further relates to a process for the preparation of the compounds I by reacting an esterified or etherified 1-halogenose of the general formula II (see drawing sheet 3/4) with C-metalated pyrimidines or their mono-, di- or trimethylsilyloxy ether or - alkyl ethers of the general formula III, the NH 2 groups which may be present in the 2- and / or 4-position are protected, preferably by a dimethyl aminomethylene group (see drawing sheet 4/4), at temperatures from -70 ° C. to +100 ° C, preferably at -70 ° C to -50 ° C.
  • the detailed procedure is as follows.
  • the halogenose II is dissolved in an inert solvent such as alkanes, ethers or aromatics, cooled to -70 ° C. to 0 ° C. and the C-metalated pyrimidine III is added dropwise.
  • These metal compounds III are prepared by reacting the corresponding persilylated or other etherified pyrimidine derivatives with organometallic compounds, for example butyllithium or sodium amide.
  • the reaction mixture is then preferably brought to room temperature and, if necessary, heated briefly to complete the reaction. After completion of the reaction, recognizable by the precipitated metal salt, the desired product is obtained after the usual chemical operations.
  • reaction according to the invention preferably when etherified halogenoses are used, is that the halogenose II is placed in an inert solvent and the C-metalated pyrimidine III is added with constant stirring. Absolute freedom from water is essential for the success according to the invention.
  • reaction solution If the reaction solution is neutral, it is evaporated in a rotary evaporator and deacylated with sodium methylate and separated on silica gel (Merck 60) with chloroform-methanol (9/1) into ⁇ , ⁇ anomers.
  • F: 125 °, M: 242.2 ⁇ C 10 H 14 N 2 O 5 according to MS Varian CH 7 300 MHz NMR: H ' 6.4146 ppm ⁇ ⁇
  • the ⁇ -anomer can be converted into cytosine, Isocytosine and others Derivatives are implemented that are the purine derivatives Adenine, inosine, xanthine, guanine and others correspond.
  • the toluene solution is extracted with cold water, the organic phase is dried (MgSO 4 ), the solvent is evaporated and the residue is deacylated with 100 ml of 1 / 20m NaOCH 3 solution.
  • the solution is then neutralized with Dowex H + ion exchanger, the glycoside and unreacted pyrimidine are subsequently detached from the ion exchanger and separated into ⁇ - and ⁇ -anomers via a silica gel column.
  • Syrup, M 226.23 ⁇ C 10 H 14 N 2 O 4 mass peak CH 7 (Varian)
  • Example 3 50 mg of the compound prepared in Example 3 are in 2 ml Hexamethyldisilazane and 1 drop of DMF slowly warmed until the Substance goes into solution. Excess hexamethyldisilazane removed in vacuo, and the residue is mixed with 2 ml liquefied ammonia and catalytic amounts of ammonium chloride heated in a bomb tube at 160 ° C overnight. After evaporating the Ammoniaks the residue is taken up in methanol and on Silica gel 60 (Merck) separated with chloroform / methanol 9/1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Saccharide Compounds (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von C-Nukleosiden und C-Nukleosid-Analoga, neue C-Nukleoside und C-Nukleosid-Analoga und ihre Verwendung.
Die neuen C-Nukleoside und C-Nukleosidanaloga konnten bisher nicht synthetisiert werden.
6-(D-Ribofuranosylmethyl)-pyrimidine sind bekannt aus J. Org. Chem. 43, 2925 (1978), 47, 5115 (1982), 51, 1058 (1986), Liebigs Annalen 6, 957 (1986), J. Chem. Soc. Perkin I 201 (1983).
Für die Therapie von Virus - und von Krebserkrankungen ist eine Reihe von Nukleosiden synthetisiert und getestet worden. Mehrere davon werden heute in der medizinischen Praxis angewendet, u.a. Acyclovir (Schaeffer et al, Nature 1978, 272, 583-85)und 3'-Azidothymidin (Broder et al, Proc. Natl. Acad. Sci., USA, 1985,82,7096). Bei anderen steht der Einsatz als Therapeutikum kurz bevor, u.a. bei 5-(2-Bromvinyl)-2'-desoxyuridin und 3'-Fluorthymidin.
Ein Nachteil aller dieser Verbindungen liegt in ihrer Instabilität. Die N-C-Bindung zwischen dem Heterocyclus und dem Zuckerteil wird relativ leicht hydrolytisch oder enzymatisch gespalten, wonach unwirksame Abbauprodukte entstehen (York, J.; J org. Chem. 1981 (46), 2171; Mansuri, M., J. Med. Chem. 1989 (32), 461). Bei Acyclovir muß dem Patienten z.B. die 10-fache Menge der therapeutisch notwendigen Dosis verabreicht werden. Beim 5-(2-Bromvinyl)-2'-desoxyuridin sind nach 6 Stunden im Körper des Patienten nur noch etwa 1% der eingesetzten Menge vorhanden. 3'-Azido- und 3'-Fluorthymidin sind zwar hochwirksam, aber für eine Dauerbehandlung eines Patienten zu toxisch.
Bei den vom Adenin abgeleiteten 2',3'-Didesoxyadenosin treten darüber hinaus Desaminierung und Nucleosid-Spaltungen ein, was den Einsatz der an sich hochwirksamen Verbindung entscheidend limitiert (Nucleosides & Nucleotides 8 (56), 659-71 (89) und J. Med. Chem. 1988, 31, 2040-48). Man hat versucht, durch Ersatz des Adenosinrestes durch Inosin eine Verbesserung herbeizuführen, da im Körper eine geringe Umwandlung in Adenosin erfolgt. Eine entscheidender Durchbruch war aber auch damit nicht zu erreichen.
Die Erfindung hat das Ziel, therapeutisch, insbesondere virostatisch und cancerostatisch wirksame Verbindungen zur Verfügung zu stellen, welche bei einer mit den bekannten Substanzen vergleichbaren Wirksamkeit eine hohe Stabilität aufweisen. Sie sollen als potentielle Therapeutika mit geringer Belastung für den Patienten geeignet sein. Ein weiteres Ziel der Erfindung besteht darin, Bausteine für neuartige Oligonukleotide bereitzustellen.
Die Zielstellung der Erfindung wird mit den neuen C-Nukleosiden der allgemeinen Formel I erreicht; siehe Zeichnungsblatt 1/4 und 2/4.
Diese Verbindungen sind bedeutend stabiler als ihre Analogen ohne -C-Brücke zwischen Nukleobase und Zuckerrest. Da der Substituent an der Methylgruppe am C6 des Pyrimidinrings beliebig variiert werden kann, wird durch die Erfindung eine große Zahl von Verbindungen I zur Verfügung gestellt, die eine selektive Hemmung an Enzymen hervorrufen, welche für die Vermehrung von Viren bedeutungsvoll sind. Besonders stabil sind die erfindungsgemäßen Verbindungen I gemäß der Unteransprüche 4 bis 11.
Die Verbindungen I sind virostatisch und/oder cancerostatisch wirksam. Ihre Wirksamkeit wurde an Knochenmark-Stammzellen getestet. Die Verbindungen zeigen eine mit den bekannten Substanzen vergleichbare, teilweise sogar höhere Hemmung im Knochenmark-Stammzell-Proliferationstest. Sie liegt z.B. bei 6-(β-D-2',3'-Didehydro-2',3'-didesoxyribofuranos-1-yl)methyl-4-amino-pyrimidin unter 10-4 molar.
Eine weitere, sehr wichtige Anwendungsmöglichkeit der erfindungsgemäßen Verbindungen I besteht in ihrer Verwendung als Bausteine für synthetische Oligonukleotide. Unter synthetischen Oligonukleotiden werden RNA- und DNA-Oligonukleotide, darunter vor allem Ribozyme (auch Ribozyme aus DNA- und RNA-Bausteinen) und Antisense-Oligonukleotide, verstanden. Vorzugsweise werden dafür die in Anspruch 5 genannten Verbindungen eingesetzt. Die Herstellung solcher Verbindungen erfolgt nach bekanntem Muster, einige typische Wege sollen nachfolgend am Beispiel des Thymidins beschrieben werden. Zum Aufbau von DNA-Oligonukleotiden wird Thymidin zunächst zum 5'-Dimethoxy-trityl-Derivat trityliert, danach erfolgt eine Umsetzung über Cyanoethyl(diisopropyl)phosphordiamidit. Das entstandene 5'-Di-methoxy-trityl-3'-cyanoethyl(diisopropyl)phosphamidit wird anschließend in an sich bekannter Weise im Oligonukleotid-Synthesizer weiter umgesetzt.
Zum Aufbau von RNA-Oligonukleotiden muß nach der Tritylierung ein Schutz der 2'-OH-Gruppe z. B. durch den Silylrest erfolgen. Der Aufbau von Ribozymen und von Antisense-Oligonukleotiden erfolgt in prinzipiell gleicher Weise.
In der Möglichkeit, neuartige Ribozyme aufzubauen, liegt ein großer Vorteil der Erfindung. Ein Problem der bisher bekannten Ribozyme liegt darin, daß sie nicht genügend stabil sind. Man hat versucht, die Stabilität zu erhöhen, u. a.
  • durch Substitution der 2'-OH-Gruppe, z. B. durch F oder durch NH2,
  • durch Ersatz der Phosphatreste durch Thiophosphate und
  • durch Ersatz der Phosphatreste durch Phosphonate.
In keinem Falle jedoch war die Stabilität der Ribozyme für die vorgesehenen Verwendungen ausreichend.
Mit den erfindungsgemäßen Verbindungen kann der Ribozymaufbau auf einem neuen Wege gezielt je nach vorgesehenem Verwendungszweck erfolgen. So kann eine geeignete Substition am C5 des Pyrimidinrings der Verbindungen I die Polarität unterschiedlich beeinflussen (z. B. führt eine 5-Fluorsubstitution zur Erniedrigung des pK-Wertes, was eine höhere Azidität bedeutet).
Für den Ribozymaufbau besonders geeignete Verbindungen sind 6-(β-D-Ribofuranos-1-yl)methyl-4-aminopyrimidin und 6-(β-D-Ribofuranos-l-yl)methyl-2-amino-4-hydroxy-pyrimidin und ihre in 2'-Stellung durch F, NH2, H oder ara-OH substituierten Derivate. Diese Verbindungen können als Phosphatester, Thiophosphatester oder als Phosphonate eingesetzt werden.
Für den Aufbau von Antisense-Oligonukleotiden sind besonders geeignet
6-(β-D-2'-Desoxyribofuranos-1-yl)methyl-4-aminopyrimidin und
6-(β-D-2'-Desoxyribofuranos-l-yl)methyl-2-amino-4-hydroxypyrimidin und deren Ribose-Analoga.
Diese Verbindungen können ebenfalls als Phosphatester, Thiophosphatester oder als Phosphonate eingesetzt werden. Die hergestellten neuartigen Antisense-Oligonukleotide zeigen eine erhöhte spezifische Aktivität und eine erhöhte Bindungsfähigkeit am gewünschten Träger, wodurch sich verbesserte Anwendungsmöglichkeiten ergeben.
Die Erfindung betrifft ferner ein Verfahren zur Herstellung der Verbindungen I und zwar durch Umsetzung einer veresterten oder verätherten 1-Halogenose der allgemeinen Formel II (siehe Zeichnungsblatt 3/4) mit C-metallierten Pyrimidinen bzw. ihrer Mono-, Di- oder Trimethylsilyloxyäther oder -alkyläther der allgemeinen Formel III, deren ggf. in 2- und/oder 4-Stellung vorhandene NH2-Gruppen geschützt sind, vorzugsweise durch eine Dimethyl-aminomethylengruppe (siehe Zeichnungsblatt 4/4), bei Temperaturen von -70°C bis +100°C, bevorzugt bei -70°C bis -50°C.
Das Verfahren läuft im einzelnen folgendermaßen ab.
Die Halogenose II wird in einem inerten Lösungsmittel wie Alkanen, Äthern oder Aromaten gelöst, auf -70°C bis 0°C abgekühlt und tropfenweise mit dem C-metallierten Pyrimidin III versetzt. Diese Metallverbindungen III werden durch Umsetzung der entsprechenden persilylierten oder anders verätherten Pyrimidin-Derivate mit metallorganischen Verbindungen z.B. Butyllithium oder Natriumamid, hergestellt. Anschließend wird das Reaktionsgemisch bevorzugt auf Raumtemperatur gebracht und gegebenenfalls zur Vervollständigung der Umsetzung kurz erwärmt. Nach Beendigung der Umsetzung, erkennbar an ausgefallenem Metallsalz, erhält man nach den üblichen chemischen Operationen das gewünschte Produkt.
Eine andere Variante der erfindungsgemäßen Umsetzung, bevorzugt beim Einsatz von verätherten Halogenosen,besteht darin, daß man die Halogenose II in einem inerten Lösungsmittel vorlegt und das C-metallierte Pyrimidin III unter ständigem Rühren zusetzt. Von wesentlicher Bedeutung für den erfindungsgemäßen Erfolg ist die absolute Wasserfreiheit.
Die Erfindung soll nachstehend durch Ausführungsbeispiele näher erläutert werden.
Beispiel 1 6-(β-D-2'-Desoxyribofuranos-1-yl)methyl-uracil
2,09 g(5 Mmol) 2,4-Bis-(triisopropylsilyloxy)-6-methyl-pyrimidin werden in 10 ml abs. Hexan gelöst, auf -70°C abgekühlt und unter Argon tropfenweise mit 4 ml 1,5 molarer Butyllithium-Lösung in Hexan versetzt. Die Lösung läßt man auf 0°C erwärmen und gibt sie tropfenweise in eine zunächst auf -70°C abgekühlte, später bis auf 0°C sich erwärmende Lösung von 1,95 g (5 Mmol) 2-Desoxy-(3,5-di-toluyl)-ribosylchlorid in 20 ml abs. Toluol. Wenn die Reaktionslösung neutral ist, wird sie einrotiert und mit Natriummethylat entacyliert und an Kieselgel (Merck 60) mit Chloroform-Methanol (9/1) in α,β Anomere aufgetrennt.
F: 125°, M: 242,2 ≙ C10H14N2O5 laut MS Varian CH7
300 MHz NMR: H' = 6,4146 ppm ≙ β
Das β-Anomere kann nach bekannten Methoden in Cytosin-, Isocytosin- u.a. Derivate umgesetzt werden, die den Purinderivaten Adenin, Inosin, Xanthin, Guanin u.a. entsprechen.
Beispiel 2 6-(β-D-2'-Desoxyribofuranos-1-yl)methyl-4-hydroxypyrimidin
12,54 g (∼30 Mmol) 4-(Triisopropylsilyloxy)-6-methyl-pyrimidin (TK 196°C) werden in 30 ml abs. Toluol gelöst und bei 0°C unter Rühren mit 20 ml 1,6 m Butyllithium in Hexan tropfenweise versetzt (Schutzgas). Die Lithiumsalzlösung wird bei 0°C in eine gerührte Lösung von 10g (∼30 Mmol) 2-Desoxy-(3,5-di-toluyl)ribosylchlorid in 100 ml abs. Toluol getropft. Zur Vervollständigung der Reaktion wird danach kurz erwärmt. Die Toluollösung wird mit kaltem Wasser extrahiert, die organische Phase getrocknet (MgSO4), das Lösungsmittel verdampft und der Rückstand mit 100 ml 1/20m NaOCH3-Lösung entacyliert. Die Lösung wird danach mit Ionenaustauscher Dowex H+ neutralisiert, das Glykosid und unumgesetztes Pyrimidin werden nachfolgend vom Ionenaustauscher abgelöst und über eine Kieselgelsäule in α- und β-Anomere getrennt.
Sirup, M= 226,23 ≙ C10H14N2O4 Massenpeak CH7 (Varian)
Beispiel 3 6-(β-D-2',3'-Didehydro-2',3'-didesoxyribofuranos-1-yl)methyl-4-hydroxypyrimidin
226 mg(1mmol) 6-(β-D-2'-Desoxyribofuranos-1-yl)methyl-4-hydroxypyrimidin werden in bekannter Weise in 20 ml abs. Pyridin mit 300 mg Tritylchlorid und nach weiteren 20 Stdn. bei 0°C mit 0,25 ml Mesylchlorid versetzt. Nach Hydrolyse der überschüssigen Chloride in Wassereis wird der Rückstand in Chloroform aufgenommen, nacheinander in kalter verd. Schwefelsäure, Wasser und Bicarbonatlösung extrahiert.
Die Chloroformlösung wird einrotiert, der Rückstand in Acetanhydrid erwärmt, bis der Pyrimidinring vollständig acyliert ist. Eine teilweise Detritylierung stört die nachfolgende Eliminierung nicht. Der nach erneutem Einrotieren erhaltene Rückstand wird in 5 ml DMF aufgenommen und mit 5 ml Ethyldiisopropylamin unter Rückfluß gekocht, bis die Ausgangsverbindung nicht mehr im Dünnschichtchromatogramm nachweisbar ist. Nach erneutem Einrotieren werden die Schutzgruppen in bekannter Weise entfernt und der verbliebene Rückstand an Kieselgel 60 (Merck) mit Chloroform/Methanol 9/1 getrennt.
Die Titelverbindung wird durch die für En-Verbindungen typische Bromentfärbung nachgewiesen.
Beispiel 4 6-(β-D-2',3'-Didehydro-2',3'-didesoxyribofuranos-1-yl)methyl-4-aminopyrimidin
50 mg der in Beispiel 3 hergestellten Verbindung werden in 2 ml Hexamethyldisilazan und 1 Tropfen DMF langsam erwärmt, bis die Substanz in Lösung geht. Überschüssiges Hexamethyldisilazan wird im Vakuum entfernt, und der Rückstand wird mit 2 ml verflüssigtem Ammoniak und katalytischen Mengen Ammoniumchlorids im Bombenrohr bei 160°C über Nacht erwärmt. Nach Verdampfen des Ammoniaks wird der Rückstand in Methanol aufgenommen und an Kieselgel 60 (Merck) mit Chloroform/Methanol 9/1 getrennt.

Claims (20)

  1. Verfahren zur Herstellung von C-Nukleosiden und C-NukleosidAnaloga der allgemeinen Formel I
    Figure 00080001
    wobei
    R1 =
    H, Hal, OH, SH, NH2, N3, CN,
    R2 =
    H, Hal, OH, SH, NH2, N3, CN, NH-NH2
    R3 =
    H, Hal, OH, NH2, N3, Alkyl, Aryl, NO, NO2 NH-NH2, NH-Aryl, NH-Alkyl, CH2-Hal, Vinyl, Bromvinyl,
    R4 =
    H, Hal, OH, Alkyl, -NH2, NH-Alkyl, NH-Aryl, CN
    R5 =
    H, Hal, OH, Alkyl, NH2, NH-Alkyl, NH-Aryl, CN, R4+R5 zusammen = O, S, N-Aryl, N-Alkyl, N-NH-Aryl, N-NH-Alkyl,
    R6 =
    Figure 00080002
    Figure 00080003
    Figure 00090001
    und
    R7 =
    H, Hal, OH,
    R8 =
    H, Hal, OH,
    R9 =
    H, Hal, OH, N3
    wobei wenn R7 = OH, R8 nicht OH sein kann und umgekehrt R10 = OH, PO4, CH2-PO3, bzw. Salze
    bedeuten,
    dadurch gekennzeichnet, daß man eine veresterte oder verätherte 1-Halogenose der allgemeinen Formel II
    Figure 00090002
    wobei R11 = H, O-Acyl, O-Alkyl, O-Aryl, O-Silyl,
    mit C-metallierten Pyrimidinen bzw. ihren Mono- oder Bis-, Trimethylsilyloxyäthern oder -alkyläthern der allgemeinen Formel III, deren ggf. in 2- und/oder 4-Stellung vorhandene NH2-Gruppen geschützt sind, vorzugsweise durch eine Dimethyl-aminomethylengruppe,
    Figure 00100001
    in der R1 bis R5 die o.g. Bedeutung hat und
    Me = Li, Na ist,
    bei Temperaturen von -70°C bis +100°C umsetzt, vorzugsweise bei -70°C bis -50°C, und nachfolgend gegebenenfalls mit in der Nukleosidchemie üblichen Operationen weiter umsetzt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Halogenose II bei -70°C bis 0°C in einem inerten Lösungsmittel, vorzugsweise in Alkanen, Äthern oder Aromaten, gelöst und tropfenweise mit dem C-metallierten Pyrimidin III im gleichen Lösungsmittel versetzt wird, das Reaktionsgemisch nachfolgend auf Raumtemperatur gebracht und gegebenenfalls zur Vervollständigung der Umsetzung kurz erwärmt wird.
  3. Verfahren nach Anspruch 1 und 2, dadurch gekennzeichnet, daß man die entsprechenden persilylierten Pyrimidin-Derivate mit metallorganischen Verbindungen wie Butyllithium oder Natriumamid umsetzt und die gebildete Verbindung III im Reaktionsgemisch direkt mit der Halogenose II umsetzt.
  4. 6-Methylensubstituierte Nukleoside des
    4-Hydroxypyrimidins,
    4-Aminopyrimidins,
    2-Amino-4-hydroxypyrimidins und des
    2,4-Diaminopyrimidins
    und ihre 5-Halogen- und 5-Aminoderivate mit folgenden Kohlenhydratkomponenten:
    2',3'-Didesoxy-ribose
    3'-Azido-2',3'-didesoxy-ribose
    3'-Fluor-2',3'-didesoxy-ribose
    2'-Fluor-ara-2',3'-didesoxy-ribose
    2',3'-Didehydro-2',3'-didesoxy-ribose.
  5. 6-(β-D-2',3'-Didesoxyribofuranos-1'-yl)methyl-4-hydroxypyrimidin.
  6. 6-(β-D-2',3'-Didesoxyribofuranos-1'-yl)methyl-4-aminopyrimidin.
  7. 6-(β-D-2',3'-Didehydro-2',3'-didesoxy-ribofuranos-1'-yl)methyl-4-hydroxypyrimidin.
  8. 6-(β-D-2',3'-Didehydro-2',3'-didesoxy-ribofuranos-1'-yl) methyl-4-aminopyrimidin.
  9. 6-(β-D-2',3'-Didesoxy-3'-fluor-ribofuranos-1'-yl)methyl-4-hydroxypyrimidin.
  10. 6-(β-D-2',3'-Didesoxy-3'-fluor-ribofuranos-1'-yl)methyl-4-aminopyrimidin.
  11. 6-(β-D-2',3'-Didesoxy-3'-azido-ribofuranos-1'-yl)methyl-4-hydroxypyrimidin.
  12. Pharmazeutische Zusammensetzung enthaltend Verbindungen I als Virostatikum.
  13. Pharmazeutische Zusammensetzung enthaltend Verbindungen I als Krebstherapeutikum.
  14. Verwendung der Verbindungen I als Bausteine für synthetische Oligonukleotide.
  15. Verwendung nach Anspruch 14 als Bausteine für synthetische RNA-Oligonukleotide.
  16. Verwendung nach Anspruch 14 als Bausteine für synthetische DNA-Nukleotide.
  17. Verwendung nach Anspruch 14 und 15 zur Synthese von neuartigen Ribozymen.
  18. Verwendung nach Anspruch 14-17 zur Synthese von Ribozymen aus DNA- und RNA-Bausteinen.
  19. Verwendung nach Anspruch 14 und 16 bis 18 zur Synthese von neuartigen DNA-Antisense-Oligonukleotiden.
  20. Verwendung nach Anspruch 14, 15, 17 und 18 zur Synthese von neuartigen RNA-Antisense-Oligonukleotiden.
EP94910321A 1993-02-26 1994-02-24 Verfahren zur Herstellung von C-Nukleosiden und C-Nukleosid-Analoga, neue C-Nukleoside und C-Nukleosid-Analoga, sowie ihre Verwendung Expired - Lifetime EP0686150B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE4306859 1993-02-26
DE4306859 1993-02-26
DE4320570 1993-06-15
DE4320570A DE4320570C2 (de) 1993-02-26 1993-06-15 Verfahren zur Herstellung von C-Nukleosiden und C-Nukleosid-Analoga, neue C-Nukleoside und C-Nukleosid-Analoga sowie deren Verwendung
PCT/DE1994/000205 WO1994019327A1 (de) 1993-02-26 1994-02-24 Nukleoside, ihre herstellung und ihre verwendung als therapeutikum und als baustein für synthetische oligonukleotide

Publications (2)

Publication Number Publication Date
EP0686150A1 EP0686150A1 (de) 1995-12-13
EP0686150B1 true EP0686150B1 (de) 1998-05-20

Family

ID=25923662

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94910321A Expired - Lifetime EP0686150B1 (de) 1993-02-26 1994-02-24 Verfahren zur Herstellung von C-Nukleosiden und C-Nukleosid-Analoga, neue C-Nukleoside und C-Nukleosid-Analoga, sowie ihre Verwendung

Country Status (3)

Country Link
EP (1) EP0686150B1 (de)
AT (1) ATE166347T1 (de)
WO (1) WO1994019327A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3911703B2 (ja) * 1994-12-15 2007-05-09 日本新薬株式会社 アンチセンス核酸同族体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4532240A (en) * 1982-09-09 1985-07-30 Warner-Lambert Company Diaminopyrimidines
CA2479846C (en) * 1989-05-15 2007-07-24 Institute Of Organic Chemistry And Biochemistry Of The Academy Of Scienc Es Of The Czech Republic Phosphonomethoxymethylpurine/pyrimidine derivatives

Also Published As

Publication number Publication date
ATE166347T1 (de) 1998-06-15
EP0686150A1 (de) 1995-12-13
WO1994019327A1 (de) 1994-09-01

Similar Documents

Publication Publication Date Title
US5194599A (en) Hydrogen phosphonodithioate compositions
DE69806919T2 (de) Antivirale pyrimidin-nukleosid-analogen
DE3687397T2 (de) 2-fluorarabinofuranosylpurinnukleoside.
DE69318836T2 (de) 1,5-anhydrohexitolnukleosidanaloge und pharmazeutische verwendung davon
EP0254268B2 (de) Fluorierte Nucleoside, ihre Herstellung und ihre pharmazeutische Verwendung gegen AIDS
EP0624161B1 (de) 2'-desoxy-isoguanosine, isostere analoge und isoguanosinderivate sowie deren anwendung
DE60005501T2 (de) 4'-c-ethynyl-pyrimidine nukleoside
DE3887273T2 (de) 2',3'-Dideoxy-2'-fluornucleoside.
DE69715774T2 (de) 1-(2-deoxy-2-fluoro-4-thio-beta-d-arabinofuranosyl)-cytosine
DE69029733T2 (de) Nukleosidderivate von 2-halo-9(2-oxy-2-fluoro-beta-d-arabinofuranosyl)adenin
DE3785343T2 (de) Alpha-oligonukleotide.
WO2008125583A1 (de) Ethinylierte heterodinucleosidphosphatanaloga, verfahren zu deren herstellung und deren verwendung
DE19509038A1 (de) C-Nukleosid-Derivate und deren Verwendung in der Detektion von Nukleinsäuren
DE2228750A1 (de) 4'-fluornucleoside, neue zwischenprodukte und verfahren zur herstellung derselben
EP0763047B1 (de) Neues verfahren zur herstellung von nucleosiden
DE60204859T2 (de) Verfahren zur Herstellung von 2'-Halo-beta-L-arabino-furanosylnucleosiden
WO1996032403A2 (de) Neue cytosin- und cytidinderivate
EP0015584A2 (de) Neue Nukleotide, Verfahren zu ihrer Herstellung und Arzneimittel
EP0686150B1 (de) Verfahren zur Herstellung von C-Nukleosiden und C-Nukleosid-Analoga, neue C-Nukleoside und C-Nukleosid-Analoga, sowie ihre Verwendung
DE4320570C2 (de) Verfahren zur Herstellung von C-Nukleosiden und C-Nukleosid-Analoga, neue C-Nukleoside und C-Nukleosid-Analoga sowie deren Verwendung
Thomas et al. Synthesis and biologic activity of purine 2′-deoxy-2′-fluoro-ribonucleosides
EP2321330B1 (de) Verfahren zur herstellung phosphatverbrückter nucleosid-konjugate
EP0611373B1 (de) Oligo-2'-desoxynukleotide und ihre verwendung als arzneimittel mit antiviraler wirksamkeit
DE19618727C2 (de) Herstellung alkylierter Nucleosid-3'-Phosphate
AU4234193A (en) Synthesis of nucleotide monomers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950911

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DK ES FR GB IT LI NL PT SE

17Q First examination report despatched

Effective date: 19960919

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DK ES FR GB IT LI NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980520

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19980520

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980520

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980520

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980520

REF Corresponds to:

Ref document number: 166347

Country of ref document: AT

Date of ref document: 19980615

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980820

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980820

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980820

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19980520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990228

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990228

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: MAX-DELBRUCK-CENTRUM FUR MOLEKULARE MEDIZIN

Effective date: 19990228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL