EP0679460B1 - Regulierbare elektromagnetische Stranggiesskokille - Google Patents

Regulierbare elektromagnetische Stranggiesskokille Download PDF

Info

Publication number
EP0679460B1
EP0679460B1 EP95810201A EP95810201A EP0679460B1 EP 0679460 B1 EP0679460 B1 EP 0679460B1 EP 95810201 A EP95810201 A EP 95810201A EP 95810201 A EP95810201 A EP 95810201A EP 0679460 B1 EP0679460 B1 EP 0679460B1
Authority
EP
European Patent Office
Prior art keywords
mould
continuous casting
walls
mold
end wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95810201A
Other languages
English (en)
French (fr)
Other versions
EP0679460A1 (de
Inventor
Bertrand Carrupt
Georges Berclaz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3A Composites International AG
Original Assignee
Alusuisse Lonza Services Ltd
Alusuisse Technology and Management Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alusuisse Lonza Services Ltd, Alusuisse Technology and Management Ltd filed Critical Alusuisse Lonza Services Ltd
Publication of EP0679460A1 publication Critical patent/EP0679460A1/de
Application granted granted Critical
Publication of EP0679460B1 publication Critical patent/EP0679460B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/05Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds into moulds having adjustable walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/01Continuous casting of metals, i.e. casting in indefinite lengths without moulds, e.g. on molten surfaces
    • B22D11/015Continuous casting of metals, i.e. casting in indefinite lengths without moulds, e.g. on molten surfaces using magnetic field for conformation, i.e. the metal is not in contact with a mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations

Definitions

  • the invention relates to an adjustable electromagnetic continuous casting mold for production of continuous cast ingots of different dimensions, in which an electromagnetic Inductor determines the cross-sectional dimensions of the molten metal strand and the mold has a lowerable bottom and a mold frame with a pair of opposing ones stationary side walls and a pair of opposite, in their Includes adjustable end walls, with the side and end walls together form the mold opening, and the walls each consist of an inductor part with an induction loop and a shield.
  • the invention further relates to a method for Implementation of the continuous casting process with the electromagnetic regulator that can be regulated according to the invention Mold.
  • Continuous casting molds are used to pour liquid metal from a ladle or the like in a mold, producing workpieces with a full or hollow cross-section to let.
  • Conventional casting devices for the continuous casting of metals for Manufacture of bars or bolts as primary material for their further processing for example, extrusion presses or rollers consist of a water-cooled mold, i.e. a mold usually open at the top, with parallel walls and initially tightly closing, but lowerable bottom, the mold walls usually are hollow and are cooled with water. If the metal melt in the When the mold is poured in, this melt solidifies rapidly on the walls and bottom of the mold, so that a bowl, the contents of which are still liquid, forms.
  • the mold bottom is then lowered and at the same time there is always so much molten metal refilled into the mold that the level of the melt in the mold remains constant. In this way, the strand or ingot grows down, taking this sprayed on all sides with a coolant, such as usually water, and thus checked is cooled.
  • a coolant such as usually water
  • the grain structure of the solidified metal melt depends, among other things. on the cooling rate , so that during continuous casting, depending on the type of cooling process, in the edge zone and in the core of the ingot sets a different grain structure, whereby for the production of extruded and rolled products fine-grained alloys are advantageous.
  • the conventional Continuous casting of aluminum bars with conventional molds for example usually a 2 to 5 mm wide coarse-grained edge zone is formed.
  • EMC molds electromagnetic continuous casting molds
  • a conductor loop to which a constant high-frequency AC voltage is applied, which produces a corresponding electrical conductor current.
  • This conductor current generates a magnetic field with a magnetic field strength, the vertical component H y , ie the component in the direction of the mold axis, in the metal melt which passes through the cavity of the inductor during the casting process induces an eddy current which flows in the opposite direction to the conductor current in the inductor.
  • the principle of the continuous electromagnetic casting mold is based on the fact that a strong one current flowing through the conductor loop of the inductor generates a strong magnetic field, which in turn causes eddy currents in the melt, so that through the interaction the melt is held together between the magnetic field and eddy currents becomes.
  • molten metal is included predetermined speed to within a loop-shaped electrical Cast-in approach floor.
  • the approach floor is at one of the pouring rates adjusted speed reduced.
  • High-frequency alternating current generated in the inductor an electromagnetic force field, which the introduced molten metal within of the inductor horizontally limited in a shape that is essentially by the inner contours the inductor loop is determined.
  • the structure of a conventional continuous casting mold is fundamentally different that of an electromagnetic continuous casting mold.
  • the mold in conventional Fall serves to dissipate the heat of fusion by contact with the melt. In the further it forms the vessel wall for the melt and must therefore be used in its entirety be tight.
  • the electromagnetic mold does not come into contact with the melt. It is used to conduct electricity in a defined manner and usually contains Devices for additional influencing of the magnetic field.
  • EMC molds differentiate different from the conventional ones so that no transmission options of the individual features of one mold structure assure on the other.
  • the solution proposed in DE-OS 28 48 808 makes use of the consideration that the shape and dimension of the melt during continuous casting in the alternating electromagnetic field - in addition to the shape of the outline of the inductor used - essentially from the vertical component H y of the in depends on the melt prevailing magnetic field strength, which according to DE-OS 28 48 808 can be brought about by locally lowering the current density in the inductor, ie preferably in the middle of its side faces.
  • EP 0 109 357 describes an electromagnetic continuous casting mold with a changeable Cast section describes which special locking elements for the optional positioning and attachment of the end walls to the side walls.
  • One on the end walls arranged special clamping device connects the respective inductor loops and shielding the individual walls from each other, so that inside the mold closed loops are created.
  • This clamping device has a camshaft when rotating, pistons connect special contact elements.
  • This clamping device must be used for each of the two-sided connections between the side and Front wall can be set separately. The contact pressure for the contact elements depends solely on the rotation of the camshaft.
  • EP 0 156 764 describes an electromagnetic continuous casting mold in which an end wall slidably attached to the side walls via releasable locking bolts is, while the respective inductor loops and shields via a clamping device are connected to closed loops with pistons located in cylinder chambers.
  • the cylinder rooms are in a pressure chamber via branch lines or channels Connection, wherein the pressure chamber is filled with a pressure medium which by a Main piston is pressurizable.
  • the inventor set himself the goal of using an electromagnetic continuous casting mold create, which avoids the disadvantages described above and a change in resulting casting cross-section without a prior to the continuous casting process allows manual positioning of the front or side walls.
  • the object of the present invention is therefore to create an electromagnetic continuous casting mold, involved in the manufacture of continuous cast ingots of different dimensions one and the same mold and without one previously necessary for the continuous casting process manual adjustment of the mold opening allowed.
  • the lowerable floor has fixed dimensions has, on the mold frame at least one end wall on the adjacent side walls is slidably mounted, the position of the slidable end walls to each The timing of each position can be determined by means of a position measuring device in the course of the continuous casting process movable end wall by means of a Control unit adjustable drive takes place, and the induction loops as well as the shields of the individual walls connected via flexible electrical conductors to form closed loops are.
  • the opposite ones are used stationary side walls, which expediently with the end walls enclose an approximately right angle and together with these end walls the mold opening form, for example segmented according to EP 0 109 357 and / or with a Inductor provided, for example, according to DE-OS 28 48 808 on the side edge and in the Side center has different vertical dimensions.
  • the bar width can be adjusted by program-controlled regulation the mold opening or the end wall distance can be set, this by the Positioning either only one end wall or, for example, by counter-rotating Shifting of both end walls can happen.
  • the following description will therefore assumed the setting of a single end wall per mold, although for certain mold designs are symmetrical and symmetrical with respect to the center of the mold simultaneous adjustment of both end walls can be advantageous.
  • the subject of the invention includes the regulation of the mold opening by adjustment from only one end wall as well as by simultaneously adjusting both themselves opposite end walls.
  • the end wall distance can be in one area vary appropriately from 10 to 1000 mm and in particular from 100 to 500 mm.
  • the flexible electrical conductors are used to connect the induction loops and shields of the individual walls, so that a closed induction loop and an electrical closed electromagnetic shielding is formed.
  • the flexible electrical conductor preferably have a high electrical conductivity and are of such length trained that they do not restrict the movements of the end walls.
  • be Conductors of the appropriate length made of copper strips or copper strands are preferably used.
  • the flexible electrical conductors at least partially as coolant-carrying ladder formed, for example in the form of flexible hoses, on their wrapping -- for example separated by an insulator - the electrical conductor is applied.
  • each movable front wall is positioned and fixed over at least an axle shaft, for example, lying parallel to the direction of movement of the end wall, these being designed as a solid or hollow profile, or as a piston-shaped element can.
  • Each movable end wall is, for example, according to at least one axle shaft positioned in a given program.
  • the axle shaft is expediently fixed in the center of the front wall.
  • a synchronous movement is required of all axle shafts involved in the movement of the bulkhead.
  • the thrust required for positioning and fixing the end wall is expediently carried out by a drive shaft driven by a motor, the Rotary movement of the drive shaft in the direction of an axial thrust by means of a gear the axle shaft can be transferred.
  • a drive shaft driven by a motor the Rotary movement of the drive shaft in the direction of an axial thrust by means of a gear the axle shaft can be transferred.
  • Gearwheels in the form of single or multi-stage gearwheels are preferred used. These allow the rotational movement of the Drive shaft on the axle shaft / s in a defined transmission ratio.
  • cylindrical spur gears bevel or are suitable as gear drives Worm gears.
  • the cylindrical gears can be straight, oblique, arrow-shaped (Arrow gears), or helical (helical gears) as well as internal or external teeth be.
  • Bevel gears have a conical circumferential surface with straight, helical or curved teeth on.
  • the displacement of the end wall required for setting the mold opening can be done, for example, by an axle shaft that is firmly connected to the end wall, the other end of the axle shaft is designed as a rack, in which - - possibly via a transmission gear - one that is firmly connected to the drive shaft Gear engages.
  • axle shaft (s) can be fixed on the end wall, for example by screwing, Jamming, riveting or welding happen.
  • --zum are preferred Purposes of easier interchangeability with mold elements subject to wear - Detachable connections used.
  • Another way to transfer the rotary motion of the drive shaft into one Axial displacement of the end wall lies, for example, in the transmission of the rotary movement the drive shaft to the axle shaft / s by torque transmission using a Gear such as a gear transmission, the drive and axle shafts each have a gear firmly connected to their axes.
  • the rotary motion of the axle shaft / n can then, for example, by means of a spindle gear, i.e. one in the front wall or in a molding of the end wall existing threaded hole, in which the on their Threaded shaft shaft (spindle) engages in an axial Movement of the end wall can be transferred.
  • the EMC mold designed according to the present invention enables the stepless Setting of the bar dimensions, while with the previously known EMC molds with adjustable end walls usually only between 3 and 5 positions Definition of the end walls are available.
  • the EMC mold according to the invention is suitable for the continuous casting of bars of metal, expediently made of light metal and in particular for the production of continuous cast ingots made of aluminum and its alloys.
  • the invention also relates to a method for the continuous casting of metal bars by means of a electromagnetic continuous casting mold according to the present invention.
  • the distance between the mold end walls is initially set in such a way that that through the mold walls, resp. the force field resulting from the inductor Defined initial cross section of the melt column essentially that of the inner contours of the lowerable mold base corresponds to the defined cross-section, and the distance of the mold end walls in the course of the continuous casting process by means of the Control unit adjustable drive in cooperation with the lowering of the mold bottom is controlled program-controlled such that the cross-sectional dimensions of the resulting molten metal strand continuously or gradually to the dimensions of the desired continuous cast ingot.
  • the metal melt is caused by the electromagnetic
  • the spatial extent of the force field is limited to the interior of the inductor, so that the method according to the invention at no time, and in particular not to Beginning of the continuous casting process, a tight seal between the mold frame and the mold bottom requires.
  • the regulation of the end wall distance effected by the control unit is preferred according to a predefined program, a so-called setpoint curve, time-dependent controlled.
  • the distance between the end walls is regulated in a further preferred manner in such a way that that the positioning of each movable end wall caused by the control unit according to the difference from the measured time-dependent position of the concerned End wall and a time-dependent position value defined in a program (Setpoint curve) happens.
  • the cross section of the melt column can be at the beginning of the method according to the invention be chosen larger or smaller than the cross section of the ingot to be produced.
  • the mold opening can then progressively follow the course of the lowering of the mold base or continuously changed so that the cooled ingot the desired Cross-section, whereby a conical at the beginning of the continuous casting process Part or more of the following conical parts are gradually created.
  • the simple or step-shaped conical parts can, for example, be truncated pyramids or have a frustoconical shape.
  • the shape of the conical billet parts essentially results from the speed the change in distance of the end walls in interaction with the speed the mold bottom lowering.
  • the process is preferably controlled in such a way that the Surface normal of the resulting conical billet parts with a minimal billet axis includes an acute angle of 25 °, i.e. the corresponding angle of the truncated cone or. pyramid-shaped bar parts is between 25 and 90 °.
  • the maximum lowering depth of the mold bottom until the constant is reached and melting column cross-section necessary for the desired ingot cross-sectional dimensions i.e. the height of the truncated pyramid or truncated cone part, expediently less than 50 cm and in particular less than 30 cm.
  • FIG. 1 shows a system of adjustable electromagnetic molds, - of the better clarity because - two corresponding molds 60 are shown as an example are.
  • Each mold 60 has a mold frame 62 containing a pair of opposed ones Side walls 20 and a pair of opposite movable end walls 10, which together form the mold opening 12.
  • the side and end walls are made each consisting of an inductor part with an induction loop and a shield 28 the connection 18 becomes the induction loop 70 of the side wall 20 with a - - Not shown - induction loop of the end wall electrically connected.
  • the electrical Connection of the shield 28 attached to the side wall 20 with that on an end wall attached shielding is done through connection 19.
  • the electrical connections 18 and 19 are made of flexible electrical conductors with high electrical conductivity educated.
  • Copper tapes or copper strands are expediently used for this purpose.
  • the side walls 20 of each mold 60 are spaced apart by profiles 25 rigidly connected.
  • the end walls 10 are by means of sliding shoes 15 which Have recesses in which fastened on the surface 21 of the side walls 20 Guide rails 16 engage, are slidably mounted and are supported by axle shafts 30 driven.
  • the axle shafts are common with a gearbox 32 for a series drive shaft 34 connected by continuous casting molds 60 operating in parallel.
  • the drive shaft 34 is driven by an electric motor 40, the control of the electric motor by means of a control unit (not shown) according to a predetermined program in accordance with the determined with the position measuring device 50 Position of the end wall 10 happens.
  • Figure 2 shows a perspective view of a movably mounted on a side wall and by means of a spindle gear adjustable end wall, the mold bottom is not shown.
  • Figure 2 thus shows an example of the principle of an end wall drive.
  • On the end wall 10 is a slide shoe 15 by means of screws or rivets, for example attached.
  • the sliding shoe 15 has at least one recess in which one the surface 21 of the side wall 20 attached guide rail 16 engages so that the End wall 10 is slidably mounted on the side wall 20.
  • the position of the bulkhead 10 is determined by the axle shaft 30.
  • the slide shoe 15 has another Recess in the form of a threaded bore, which is from a threaded rod or spindle 36 is penetrated, so that one of the drive shaft 34 via the gear transmission 32 transmitted to the axle shaft, which is at least partially designed as a spindle 36 Rotational movement in cooperation with the threaded bore in the slide shoe 15 to one slip-free displacement of the end wall 10 leads.
  • a side wall 20 of the mold 60 has a mold frame 62 which is fixed with screws 66 an insulation body 64. This is one of screws 68 stopped induction loop 70, which cools a cooling channel 72. On the mold frame 62 an electromagnetic shield 28 is attached with further screws 74, which leaves a gap 76 to the induction loop 70, from which a cooling jet from a water chamber 80 via a channel 82 to the surface of a cast - shown in dashed lines in Figure 1 - Barrens 54 hits.
  • the end walls 10 have otherwise a similar structure to the side walls 20th
  • the program-controlled Position the end walls according to the mold opening Set the desired dimensions of the continuous cast ingot to be produced continuously, see above that continuous cast ingots of any dimensions can be manufactured inexpensively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • General Induction Heating (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Electromagnets (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Description

Die Erfindung betrifft eine regulierbare elektromagnetische Stranggiesskokille zur Herstellung von Stranggussbarren unterschiedlicher Abmessungen, bei welcher ein elektromagnetischer Induktor die Querschnittsabmessungen des Metallschmelzestranges bestimmt und die Kokille einen absenkbaren Boden und einen Kokillenrahmen mit einem Paar gegenüberliegender stationärer Seitenwände sowie einem Paar gegenüberliegender, in ihrem Abstand regulierbarer Stirnwände enthält, wobei die Seiten- und Stirnwände zusammen die Kokillenöffnung bilden, und die Wände jeweils aus einem Induktorteil mit Induktionsschleife und einer Abschirmung bestehen. Die Erfindung betrifft weiter ein Verfahren zur Durchführung des Stranggiessprozesses mit der erfindungsgemäss regulierbaren elektromagnetischen Kokille.
Stranggiesskokillen dienen zum Giessen von flüssigem Metall aus einer Giesspfanne oder dergleichen in eine Gussform, wobei sich Werkstücke mit Voll- oder Hohlquerschnitt erzeugen lassen. Konventionelle Giessvorrichtungen zum Stranggiessen von Metallen zur Herstellung von Barren oder Bolzen als Vormaterial für deren Weiterverarbeitung durch beispielsweise Strangpressen oder Walzen bestehen aus einer wassergekühlten Kokille, d.h. einer üblicherweise oben offenen Gussform, mit parallelen Wänden und anfänglich dicht schliessendem, jedoch absenkbarem Boden, wobei die Kokillenwände üblicherweise hohl ausgebildet sind und mit Wasser gekühlt werden. Wird die Metallschmelze in die Kokille eingegossen, so erstarrt diese Schmelze rasch an Wandungen und Boden der Kokille, so dass sich ein Napf, dessen Inhalt noch flüssig ist, bildet. Während dem Stranggiessen wird dann der Kokillenboden abgesenkt und gleichzeitig wird immer soviel Metallschmelze in die Kokille nachgefüllt, dass der Pegel der in der Kokille befindlichen Schmelze konstant bleibt. Auf diese Weise wächst der Strang oder Barren nach unten, wobei dieser allseitig mit einem Kühlmittel, wie üblicherweise Wasser, besprüht und somit kontrolliert abgekühlt wird.
Das Korngefüge der erstarrten Metallschmelze hängt u.a. von der Abkühlgeschwindigkeit ab, so dass sich beim Stranggiessen je nach Art des Abkühlverfahrens in der Randzone und im Kern des Barrens ein unterschiedliches Korngefüge einstellt, wobei für die Herstellung von Strangpress- und Walzprodukten feinkörnige Legierungen vorteilhaft sind. Beim herkömmlichen Stranggiessen von beispielsweise Aluminiumbarren mit konventionellen Kokillen bildet sich üblicherweise eine 2 bis 5 mm breite grobkörnige Randzone.
Beim konventionellen Giessen von metallenen Walzbarren und anderen derartigen Gussstücken verwendet man für jede Barrenbreite und -dicke eine besondere Kokille, was insbesondere dann wirtschaftlich ungünstig ins Gewicht fällt, wenn nur wenige Gussstücke einer bestimmten Abmessung benötigt werden.
Um diese Nachteile wenigstens teilweise zu beheben, wurde in der Deutschen Auslegeschrift 1 059 626 zur Herstellung von Gussstücken mit länglichem Querschnitt eine Kokille aus einem geschlossenen Ring mit parallelen Seiten- und Stirnwänden vorgeschlagen, bei der mindestens eine Stirnwand innerhalb des geschlossenen Ringes verstellbar ist. Die für die Herstellung bestimmter Barrenbreiten notwendige Einstellung der Kokillenöffnung mittels der verstellbaren Stirnwände muss dabei vorgängig zum Stranggiessprozess vorgenommen werden, wobei darauf geachtet werden muss, dass die Kokille in ihrem gesamten Umfang dicht verschlossen ist.
Eine andere Art von Stranggiesskokillen stellen die elektromagnetischen Stranggiesskokillen (EMC-Kokillen) dar. Dabei tritt an Stelle der oben beschriebenen, gekühlten Kokille eine Leiterschleife (Induktor), an welche eine konstante hochfrequente Wechselspannung angelegt wird, die einen entsprechenden elektrischen Leiterstrom hervorruft. Dieser Leiterstrom erzeugt ein Magnetfeld mit einer magnetischen Feldstärke, dessen vertikale Komponente Hy, d.h. die Komponente in Richtung der Kokillenachse, in der beim Giessvorgang durch den Hohlraum des Induktors hindurchtretenden Metallschmelze einen Wirbelstrom induziert, der in entgegengesetzter Richtung zum Leiterstrom im Induktor fliesst. Aus der Wechselwirkung zwischen Hy und dem induzierten Wirbelstrom resultiert eine Kraft, welche in das Zentrum der Schmelze gerichtet ist und deren Betrag der Stromstärke des Wirbelstromes als auch der magnetischen Felsstärke Hy proportional ist. Dieser Kraft entspricht ein sogenannter elektromagnetischer Druck. Das Gleichgewicht zwischen diesem und dem metallostatischen Druck in der Schmelze bestimmt Form und Abmessung des gegossenen Stranges.
Das Prinzip der elektromagnetischen Stranggiesskokille beruht somit darauf, dass ein starker durch die Leiterschleife des Induktors fliessender Strom ein starkes Magnetfeld erzeugt, welches seinerseits Wirbelströme in der Schmelze bewirkt, so dass durch die Wechselwirkung zwischen Magnetfeld und Wirbelströmen die Schmelze zusammengehalten wird. Bei derartigen elektromagnetischen Stranggiesskokillen wird Metallschmelze mit vorgegebener Geschwindigkeit auf einen innerhalb eines schlaufenförmigen elektrischen Induktors befindlichen Anfahrboden gegossen. Der Anfahrboden wird mit einer der Giessrate angepassten Geschwindigkeit gesenkt. Hochfrequenter Wechselstrom im Induktor erzeugt ein elektromagnetisches Kraftfeld, welches die eingeführte Metallschmelze innerhalb des Induktors horizontal in einer Form begrenzt, die im wesentlichen durch die Innenkonturen der Induktorschlaufe bestimmt wird. Durch Beaufschlagung mit einem Kühlmittel, wie beispielsweise Besprühen des Stranges mit Wasser, erfolgt eine rasche Erstarrung der oberflächennahen Schicht des sinkenden Stranges. Durch Anwendung dieser EMC-Kokillen entstehen dünne Randzonen mit feinkörnigem Gefüge. Zudem wird die Neigung zur Bildung von kleinsten Lunkern, d.h. Hohlräumen infolge ungleichmässiger Erstarrung, sowie von Seigerungen, d.h. ungleichmässige Verteilung der Legierungsbestandteile der Kristallkörner, verkleinert.
Der Aufbau einer konventionellen Stranggiesskokille unterscheidet sich somit grundlegend von dem einer elektromagnetischen Stranggiesskokille. Die Kokillle im konventionellen Fall dient der Ableitung der Schmelzwärme durch Kontakt mit der Schmelze. Im weiteren bildet sie die Gefässwand für die Schmelze und muss deshalb in ihrem gesamten Umfang dicht sein. Die elektromagnetische Kokille kommt jedoch mit der Schmelze nicht in Berührung. Sie dient der Stromführung in definierter Art und Weise und enthält üblicherweise Vorrichtungen zur zusätzlichen Beeinflussung des Magnetfeldes. EMC-Kokillen unterscheiden sich von den konventionellen also wesentlich, so dass keine Übertragungsmöglichkeiten der einzelnen Merkmale des einen Kokillenaufbaus auf den anderen bestehen.
Eine Weiterentwicklung der EMC-Kokille ist in der US-Patentschrift 3,605,865 beschrieben, bei welcher das axiale Magnetfeld mittels einer sich nach unten verjüngenden elektromagnetischen Abschirmung, bestehend aus einem Ring eines nicht-magnetischen Metalls, dessen unteres Ende sich ungefähr in der Mitte der Induktorhöhe befindet, derart eingestellt wird, dass der laterale metallostatische Druck an jedem Punkt der Schmelzensäule im wesentlichen gleich dem elektromagnetischen Druck ist und somit Querschnittsveränderungen im entstehenden Barren vermieden werden.
Durch die Verwendung eines innerhalb der elektromagnetischen Abschirmung an dessen oberen Ende positionierten und in der Höhe gegenüber der Abschirmung verstellbaren, konzentrischen Metallringes hoher elektrischer Leitfähigkeit werden in der Schmelze durch das elektromagnetische Feld des Induktors Wirbelströme erzeugt, deren magnetisches Feld dem des Induktors entgegenwirkt, so dass das resultierende Magnetfeld an der Oberfläche der Schmelzzone nur gering ist und somit an dieser Stelle starke Turbulenzen in der Schmelze, welche zu Gefügefehlern an der Barrenoberfläche führen können, vermieden werden.
Beim konventionellen Strangiessen wie beim Strangguss mit elektromagnetischen Kokillen weisen die gefertigten Barren etwas konkave Seitenflächen auf. Diese Konkavität der Barrenseitenflächen ist durch einen während dem Abkühlen der Schmelze stattfindenden Schrumpfungsprozess bedingt und tritt insbesondere auf den Flachseiten langformatiger, rechteckförmiger Walzbarren auf. Die durch den Schrumpfungsprozess resultierende konkave Krümmung der Barren-Seitenwände hängt unter anderem von deren Format, Legierung und der Giessgeschwindigkeit ab. Typische Werte für den Einzug betragen 5 bis 10 mm pro Seite für Walzbarren des Formats 300 x 1000 mm aus einer Mg-haltigen Aluminiumlegierung und bei einer Giessgeschwindigkeit von 5 bis 8 cm pro Minute. Solche Abweichungen von der Planarität der Oberfläche sind insoweit unerwünscht, als sie beim Fräsen zur Erhöhung des Abfalls führen und beim Walzen Schwierigkeiten hinsichlich des Geradelaufs der Barren bereiten.
Bei konventionellen Stranggiesskokillen werden, um der Bildung von konkaven Seitenflächen Rechnung zu tragen, die inneren Flächen der Stranggiesskokille nach aussen gewölbt ausgebildet. Die Metallschmelze verlässt durch diese Massnahme die Kokille mit nach aussen gewölbten Seitenflächen, welche dann durch das Schrumpfen eben werden. Das selbe Prinzip kann auch für EMC-Kokillen verwendet werden.
Eine andere Möglichkeit den Schrumpfungsvorgang bei mit EMC-Kokillen hergestellten Barren auszugleichen, besteht gemäss der DE-OS 28 48 808 in der Verwendung eines eine metallische Leiterschleife mit einem Hohlraum für das Durchleiten eines Kühlmittels aufweisenden Induktors, wobei die Vertikalabmessung des Induktors in der Seitenmitte ein Mehrfaches der Vertikalabmessung an dessen Ecken beträgt. Die in der DE-OS 28 48 808 vorgeschlagene Lösung macht von der Überlegung gebrauch, dass Form und Abmessung der Schmelze beim Stranggiessen im elektromagnetischen Wechselfeld -- neben der Form des Grundrisses des verwendeten Induktors -- im wesentlichen von der vertikalen Komponente Hy der in der Schmelze herrschenden magnetischen Feldstärke abhängt, welche gemäss der DE-OS 28 48 808 durch lokale Herabsetzung der Stromdichte im Induktor, d.h. vorzugsweise in der Mitte von dessen Seitenflächen, bewirkt werden kann.
Die Herstellung elektromagnetischer Stranggiesskokillen ist -- vorallem aufgrund ihrer engen Masstoleranzen -- aufwendig und kostspielig. Die zahlreichen unterschiedlichen Gussbarrenformate bringen zudem die unwirtschaftliche Notwendigkeit mit sich, eine entsprechend grosse Zahl von Kokillen auf Lager zu halten.
In der EP 0 109 357 wird eine elektromagnetische Stranggiesskokille mit veränderbarem Gussquerschnitt beschrieben, welche besondere Sperrelementen für die wahlweise Positionierung und Befestigung der Stirnwände an den Seitenwänden aufweist. Eine an den Stirnwänden angeordnete spezielle Klemmvorrichtung verbindet die jeweiligen Induktorschleifen und Abschirmungen der einzelnen Wände miteinander, so dass innerhalb der Kokille jeweils geschlossene Schleifen entstehen. Diese Klemmvorrichtung weist eine Nockenwelle auf, bei deren Drehung Kolben spezielle Kontaktelemente in Verbindung bringen. Diese Klemmeinrichtung muss für jede der beidseitigen Verbindungen zwischen Seiten-und Stirnwand gesondert eingestellt werden. Der Anpressdruck für die Kontaktelemente hängt dabei allein von der Drehung der Nockenwelle ab.
In der EP 0 156 764 wird eine elektromagnetische Stranggiesskokille beschrieben, bei welcher eine Stirnwand über lösbare Sperrbolzen an den Seitenwänden verschiebbar befestigt ist, während die jeweiligen Induktorschleifen und Abschirmungen über eine Klemmeinrichtung mit in Zylinderräumen sitzenden Kolben zu geschlossenen Schleifen verbunden sind. Die Zylinderräume stehen über Zweigleitungen bzw. Kanäle mit einer Druckkammer in Verbindung, wobei die Druckkammer mit einem Druckmittel gefüllt ist, welches durch einen Hauptkolben unter Druck setzbar ist. Durch diesen Aufbau wird eine gleichmässige Bewegung der Kolben in den Zylinderräumen sowie ein gleichmässiger Anpressdruck gewährleistet.
Bei allen heute verfügbaren elektromagnetischen Stranggiesskokillen zum Giessen von Walzbarren und anderen derartigen Gussstücken aus Metall, wie beispielsweise aus Leichtmetall, muss für jede Barrenbreite vorgängig zum Stranggiessen die Breite der Kokille von Hand eingestellt werden, was einen hohen Zeitaufwand bedingt und zudem üblicherweise zu einem längeren Unterbruch in der Fertigungslinie führt. Dies wirkt sich insbesondere dann ungünstig auf die Fertigungsdauer und die Fertigungskosten aus, wenn nur wenige Gussstücke einer bestimmten Breite benötigt werden.
Der Erfinder hat sich zum Ziel gesetzt, eine elektromagnetische Stranggiesskokille zu schaffen, welche die oben beschriebenen Nachteile vermeidet und eine Veränderung des resultierenden Gussquerschnittes ohne eine vorgängig zum Stranggiessprozess vorzunehmende manuelle Positionierung der Stirn- oder Seitenwände ermöglicht.
Aufgabe vorliegender Erfindung ist somit die Schaffung einer elektromagnetischen Stranggiesskokille, die die Herstellung von Stranggussbarren unterschiedlicher Abmessungen mit ein und derselben Kokille und ohne eine vorgängig zum Stranggiessprozess notwendige manuelle Einstellung der Kokillenöffnung erlaubt.
Erfindungsgemäss wird dies dadurch erreicht, dass der absenkbare Boden feste Abmessungen aufweist, am Kokillenrahmen zumindest eine Stirnwand an den anliegenden Seitenwänden verschiebbar gelagert ist, die Position der verschiebbaren Stirnwände zu jedem Zeitpunkt mittels einer Positionsmesseinrichtung bestimmbar ist, die Positionierung jeder im Verlauf des Stranggiessprozesses verschiebbaren Stirnwand durch einen mittels einer Steuereinheit regulierbaren Antrieb erfolgt, und die Induktionsschleifen sowie die Abschirmungen der einzelnen Wände über flexible elektrische Leiter zu geschlossenen Schleifen verbunden sind.
Um Gussbarren mit möglichst ebenen Seitenflächen herzustellen, werden die sich gegenüberliegenden stationären Seitenwände, welche mit den Stirnwänden zweckmässigerweise einen etwa rechten Winkel einschliessen und zusammen mit diesen Stirnwänden die Kokillenöffnung bilden, beispielsweise gemäss der EP 0 109 357 segmentiert und/oder mit einem Induktor versehen, der beispielsweise gemäss der DE-OS 28 48 808 am Seitenrand und in der Seitenmitte unterschiedliche Vertikalabmessungen aufweist.
Gemäss vorliegender Erfindung kann die Barrenbreite durch programmgesteuerte Regulierung der Kokillenöffnung bzw. des Stirnwandabstandes eingestellt werden, wobei dies durch die Positionierung entweder nur einer Stirnwand oder aber durch beispielsweise gegenläufige Verschiebung beider Stirnwände geschehen kann. Üblicherweise genügt zur Einstellung der gewünschten Barrenbreite durch die Regulierung des Abstandes zweier gegenüberliegender Stirnwände jedoch die Verschiebung nur einer Stirnwand. In der folgenden Beschreibung wird deshalb von der Einstellung einer einzigen Stirnwand pro Kokille ausgegangen, obwohl für gewisse Kokillenkonstruktionen eine gegenüber der Kokillenmitte symmetrischen und gleichzeitigen Einstellung beider Stirnwände vorteilhaft sein kann. Der vorliegende Erfindungsgegenstand umfasst jedoch die Regulierung der Kokillenöffnung durch Einstellung von nur einer Stirnwand wie auch durch gleichzeitige Einstellung beider sich gegenüberliegenden Stirnwände.
Mit einer erfindungsgemässen EMC-Kokille lässt sich der Stirnwandabstand in einem Bereich von zweckmässigerweise 10 bis 1000 mm und insbesondere von 100 bis 500 mm variieren.
Die flexiblen elektrischen Leiter dienen zur Verbindung der Induktionsschleifen und Abschirmungen der einzelnen Wände, so dass eine geschlossene Induktionsschleife und eine elektrisch geschlossene elektromagnetische Abschirmung gebildet wird. Die flexiblen elektrischen Leiter weisen bevorzugt eine hohe elektrische Leitfähigkeit auf und sind in ihrer Länge derart ausgebildet, dass sie die Bewegungen der Stirnwände nicht beschränken. Insbesondere werden Leiter der entsprechenden Länge aus Kupferbändern oder Kupferlitzen bevorzugt verwendet.
In einer weiter bevorzugten Ausführungsform der erfindungsgemässen Stranggusskokille sind die flexiblen elektrischen Leiter wenigstens teilweise als Kühlmittel-führende Leiter ausgebildet, beispielsweise in Form von flexiblen Schläuchen, auf deren Umhüllung -- beispielsweise durch einen Isolator getrennt -- der elektrische Leiter aufgebracht ist.
Der Antrieb der verschiebbaren Stirnwände kann beispielsweise durch mechanische, hydraulische, pneumatische oder elektromagnetische Mittel erfolgen. Zweckmässigerweise erfolgt das Positionieren und Festlegen jeder verschiebbaren Stirnwand über mindestens eine beispielsweise parallel zur Bewegungsrichtung der Stirnwand liegende Achswelle, wobei diese als Voll- oder Hohlprofil, oder als kolbenförmiges Element ausgebildet sein kann.
Jede verschiebbare Stirnwand wird beispielsweise über mindestens eine Achswelle gemäss einem vorgegebenen Programm positioniert. Bei Verwendung von nur einer Achswelle pro Stirnwand wird die Achswelle zweckmässigerweise mittig an der Stirnwand festgelegt. Bei Verwendung von mehreren Achswellen pro Stirnwand muss eine synchrone Bewegung aller an der Stirnwand-Bewegung beteiligten Achswellen sichergestellt werden.
Der für das Positionieren und Festlegen der Stirnwand erforderliche Schub erfolgt zweckmässigerweise durch eine mittels einem Motor angetriebenen Antriebswelle, wobei die Drehbewegung der Antriebswelle mittels einem Getriebe in einen axialen Schub in Richtung der Achswelle überführt werden kann. Werden für die Positionierung der Stirnwand mehrere Achswellen eingesetzt, oder werden mehrere erfindungsgemässe Stranggusskokillen parallel betrieben, werden -- zur Sicherstellung einer synchronen Bewegung - - die beteiligten Achswellen bevorzugt durch ein und dieselbe Antriebswelle angetrieben.
Als Getriebe kommen beispielsweise Zugmittel-, Gelenk-, Schrauben- oder Rädergetriebe in Frage. Bevorzugt werden Rädergetriebe in Form von ein- oder mehrstufigen Zahnradgetrieben eingesetzt. Diese erlauben die schlupffreie Übertragung der Drehbewegung der Antriebswelle auf die Achswelle/n in einem definierten Übersetzungsverhältnis.
Als Zahnradgetriebe eignen sich beispielsweise zylindrische Stirnräder, Kegel-oder Schneckenräder. Dabei können die zylindrischen Zahnräder gerade, schräg, pfeilförmig (Pfeilräder), oder schraubenförmig (Schraubenräder) sowie innen- oder aussenverzahnt sein. Kegelräder weisen eine kegelige Umfangsfläche mit gerader, schräger oder Bogenverzahnung auf.
Die für die Einstellung der Kokillenöffnung erforderliche Verschiebung der Stirnwand kann beispielsweise durch eine fest mit der Stirnwand verbundene Achswelle geschehen, wobei das andere Ende der Achswelle als Zahnstange ausgebildet ist, in welche - - gegebenenfalls über ein Übersetzungsgetriebe -- ein mit der Antriebswelle fest verbundenes Zahnrad eingreift.
Das Festlegen der Achswelle/n an der Stirnwand kann beispielsweise durch Verschrauben, Verklemmen, Nieten oder Schweissen geschehen. Bevorzugt werden jedoch --zum Zwecke der einfacheren Austauschbarkeit von der Abnutzung unterworfenen Kokillenelementen -- lösbare Verbindungen eingesetzt.
Eine andere Möglichkeit für die Übertragung der Drehbewegung der Antriebswelle in eine axiale Verschiebung der Stirnwand liegt beispielsweise in der Übertragung der Drehbewegung der Antriebswelle auf die Achswelle/n durch Drehmomentübertragung mittels einem Getriebe wie beispielsweise einem Zahnradgetriebe, wobei die Antriebs- und Achswellen je ein fest mit deren Achsen verbundenes Zahnrad aufweisen. Die Drehbewegung der Achswelle/n kann dann beispielsweise mittels einem Spindelgetriebe, d.h. eine in der Stirnwand bzw. in einer Anformung der Stirnwand vorhandene Gewindebohrung, in welche die an ihrem Umfang mit einem Gewinde versehene Achswelle (Spindel) eingreift, in eine axiale Bewegung der Stirnwand überführt werden.
Die Benützung der in vorliegender Erfindung beschriebenen Kokille für die Herstellung von Stranggussbarren unterschiedlicher Abmessungen mit einem feste Abmessungen aufweisenden Kokillenboden zeitigt gegenüber den bekannten EMC-Kokillen mit üblicherweise mittels Schrauben oder dergleichen an den betreffenden Seitenwänden festgelegten Stirnwänden einen grossen Kostenvorteil, da vorgängig zum Stranggiessprozess keine manuellen Einstellungen notwendig werden und somit bei der Vornahme von Änderungen betreffend die Barrenabmessungen kein Betriebsunterbruch in der Fertigungslinie entsteht. Insbesondere wirkt sich dieser Vorteil bei mehreren parallel arbeitenden EMC-Kokillen aus, da sich alle Kokillenöffnungen gemeinsam, mittels beispielsweise ein und derselben Antriebswelle, einstellen lassen.
Zudem ermöglicht die gemäss vorliegender Erfindung ausgeführte EMC-Kokille die stufenlose Einstellung der Barrenabmessungen, während bei den bisher bekannten EMC-Kokillen mit verstellbaren Stirnwänden üblicherweise nur zwischen 3 und 5 Positionen zur Festlegung der Stirnwände zur Verfügung stehen.
Die erfindungsgemässe EMC-Kokille eignet sich zum Stranggiessen von Barren aus Metall, zweckmässigerweise aus Leichtmetall und insbesondere zur Herstellung von Stranggussbarren aus Aluminium und dessen Legierungen.
Die Erfindung betrifft auch ein Verfahren zum Stranggiessen von Metallbarren mittels einer elektromagnetischen Stranggiesskokille gemäss vorliegender Erfindung.
Erfindungsgemäss wird der Abstand der Kokillen-Stirnwände anfänglich derart eingestellt, dass der durch die Kokillenwände, resp. der durch das im Induktor resultierende Kraftfeld definierte Anfangsquerschnitt der Schmelzensäule im wesentlichen dem durch die Innenkonturen des absenkbaren Kokillenbodens definierten Querschnitt entspricht, und der Abstand der Kokillen-Stirnwände im Verlaufe des Stranggiessprozesses durch den mittels der Steuereinheit regulierbaren Antrieb im Zusammenwirken mit der Absenkung des Kokillenbodens programmgesteuert derart geregelt wird, dass die Querschnittsabmessungen des entstehenden Metallschmelzestranges kontinuierlich oder schrittweise an die Abmessungen des gewünschten Stranggussbarrens angeglichen werden.
Im erfindungsgemässen Verfahren wird die Metallschmelze durch das elektromagnetische Kraftfeld in ihrer räumlichen Ausdehnung auf den Innenbereich des Induktors beschränkt, so dass das erfindungsgemässe Verfahren zu keinem Zeitpunkt, und insbesondere nicht zu Beginn des Stranggiessprozesses, einen dichten Verschluss zwischen dem Kokillenrahmen und dem Kokillenboden erfordert.
Die durch die Steuereinheit bewirkte Regulierung des Stirnwandabstandes wird bevorzugt gemäss einem fest vorgegebenen Programm, einer sogenannten Sollwertkurve, zeitabhängig gesteuert.
Die Regulierung des Stirnwandabstandes erfolgt in einer weiteren bevorzugten Weise derart, dass die durch die Steuereinheit bewirkte Positionierung jeder verschiebbaren Stirnwand gemäss der Differenz aus der gemessenen zeitabhängigen Position der betreffenden Stirnwand und einem in einem Programm festgelegten, vorgegebenen zeitabhängigen Positionswert (Sollwertkurve) geschieht.
Der Querschnitt der Schmelzensäule kann zu Beginn des erfindungsgemässen Verfahrens grösser oder kleiner als der Querschnitt des herzustellenden Barrens gewählt werden. Im Verlaufe des Absenkvorganges des Kokillenbodens kann dann die Kokillenöffnung schrittweise oder kontinuierlich derart verändert werden, dass der abgekühlte Barren den gewünschten Querschnitt aufweist, wodurch zu Beginn des Stranggiessprozesses ein konischer Teil bzw. mehrere sich stufenweise folgende konische Teile geschaffen werden. Die einfach bzw. stufenförmig ausgebildeten konischen Teile können beispielsweise pyramidenstumpf-oder kegelstumpfförmige Form aufweisen.
Die Form der konischen Barrenteile ergibt sich im wesentlichen durch die Geschwindigkeit der Abstandsveränderung der Stirnwände im Zusammenwirken mit der Geschwindigkeit der Kokillenboden-Absenkung. Bevorzugt erfolgt die Verfahrenssteuerung derart, dass die Flächennormale der entstehenden konischen Barrenteile mit der Barrenachse einen minimalen spitzen Winkel von 25° einschliesst, d.h. der entsprechende Winkel der kegelstumpf-bzw. pyramidenstumpfförmigen Barrenteile beträgt zwischen 25 und 90°.
Um den Materialausschuss bei der Weiterverarbeitung der Stranggussbarren zu minimieren, beträgt die maximale Absenktiefe des Kokillenbodens bis zum Erreichen des konstanten und für die gewünschten Barrenquerschnittsabmessungen notwendigen Schmelzsäulenquerschnitts, d.h. die Höhe des pyramidenstupf- bzw. kegelstumpfförmigen Barrenteils, zweckmässigerweise weniger als 50 cm und insbesondere weniger als 30 cm.
Gegenüber den bekannten Stranggiessverfahren, bei denen die Stirnwände vorgängig zum Stranggiessen, üblicherweise mittels Schrauben, festgelegt werden müssen, ermöglicht vorliegendes erfindungsgemässes Verfahren durch die stufenlos einstellbare Kokillenöffnung die kostengünstige Herstellung von Stranggussbarren mit beliebigen, gemäss den Kundenwünschen gewählten Abmessungen.
Bezüglich der erfindungsgemässen Stranggiesskokille ergeben sich weitere Vorteile, Merkmale und Einzelheiten der Erfindung aus den nachfolgenden beispielhaften Figuren.
  • Figur 1zeigt eine Draufsicht auf regulierbare elektromagnetische Kokillen gemäss vorliegender Erfindung.
  • Figur 2zeigt eine perspektivische Ansicht einer auf einer Seitenwand beweglich gelagerten und mittels einem Spindelgetriebe verstellbaren Stirnwand.
  • Figur 3zeigt einen Schnitt durch die Kokillenseitenwand entlang der Linie III - III nach Figur 1.
  • Figur 1 zeigt ein System von regulierbaren elektromagnetischen Kokillen, wobei - - der besseren Übersichtlichkeit wegen -- beispielhaft zwei entsprechende Kokillen 60 dargestellt sind. Jede Kokille 60 weist einen Kokillenrahmen 62 auf, enthaltend ein Paar gegenüberliegende Seitenwände 20 und ein Paar gegenüberliegende bewegliche Stirnwände 10, welche zusammen die Kokillenöffnung 12 bilden. Die Seiten- und Stirnwände bestehen jeweils aus einem Induktorteil mit Induktionsschleife und einer Abschirmung 28. Durch die Verbindung 18 wird die Induktionsschleife 70 der Seitenwand 20 mit einer - - nicht dargestellten -- Induktionsschleife der Stirnwand elektrisch verbunden. Die elektrische Verbindung der an der Seitenwand 20 befestigten Abschirmung 28 mit der an einer Stirnwand befestigten Abschirmung geschieht durch die Verbindung 19. Die elektrischen Verbindungen 18 und 19 werden durch flexible elektrische Leiter mit hoher elektrischer Leitfähigkeit gebildet. Zweckmässigerweise werden dazu Kupferbänder oder Kupferlitzen eingesetzt. Die Seitenwände 20 jeder Kokille 60 sind durch Profile 25 in vorbestimmtem Abstand starr miteinander verbunden. Die Stirnwände 10 sind mittels Gleitschuhen 15, die Ausnehmungen aufweisen, in welche auf der Oberfläche 21 der Seitenwände 20 befestigte Führungsschienen 16 eingreifen, verschiebbar gelagert und werden durch Achswellen 30 angetrieben. Die Achswellen sind über ein Getriebe 32 mit der gemeinsam für eine Serie von parallel arbeitenden Stranggiesskokillen 60 vorhandenen Antriebswelle 34 verbunden. Die Antriebswelle 34 wird durch einen Elektromotor 40 angetrieben, wobei die Steuerung des Elektromotors mittels einer -- nicht eingezeichneten -- Steuereinheit gemäss einem vorgegebenen Programm nach Massgabe der mit dem Positionsmessgerät 50 bestimmten Position der Stirnwand 10 geschieht.
    Figur 2 stellt eine perspektivische Ansicht einer auf einer Seitenwand beweglich gelagerten und mittels einem Spindelgetriebe verstellbaren Stirnwand dar, wobei der Kokillenboden nicht dargestellt ist. Figur 2 zeigt somit beispielhaft das Prinzip eines Stirnwandantriebes. An die Stirnwand 10 ist ein Gleitschuh 15 mittels beispielsweise Schrauben oder Nieten befestigt. Der Gleitschuh 15 weist wenigstens eine Ausnehmung auf, in welche eine auf der Oberfläche 21 der Seitenwand 20 befestigte Führungsschiene 16 eingreift, so dass die Stirnwand 10 auf der Seitenwand 20 verschiebbar gelagert ist. Die Position der Stirnwand 10 wird dabei durch die Achswelle 30 festgelegt. In der beispielhaft dargestellten Ausführungsform des erfindungsgemässen Stimwandantriebes weist der Gleitschuh 15 eine weitere Ausnehmung in Form einer Gewindebohrung auf, welche von einer Gewindestange oder Spindel 36 durchsetzt wird, so dass eine von der Antriebswelle 34 über das Zahnradgetriebe 32 auf die wenigstens teilweise als Spindel 36 ausgelegte Achswelle übertragene Drehbewegung im Zusammenwirken mit der Gewindebohrung im Gleitschuh 15 zu einer schlupffreien Verschiebung der Stirnwand 10 führt.
    Nach Figur 3 weist eine Seitenwand 20 der Kokille 60 einen Kokillenrahmen 62 auf, an dem mit Schrauben 66 ein Isolationskörper 64 befestigt ist. Diesem liegt eine von Schrauben 68 gehaltene Induktionsschleife 70 an, welche ein Kühlkanal 72 kühlt. Am Kokillenrahmen 62 wird mit weiteren Schrauben 74 eine elektromagnetische Abschirmung 28 angebracht, welche zur Induktionsschleife 70 einen Spalt 76 offenlässt, aus dem ein Kühlstrahl von einer Wasserkammer 80 über einen Kanal 82 auf die Oberfläche eines gegossenen -- in Figur 1 nur gestrichelt dargestellten -- Barrens 54 trifft. Die Stirnwände 10 weisen im übrigen einen ähnlichen Aufbau auf wie die Seitenwände 20.
    Bei einer gemäss vorliegender Erfindung ausgeführten EMC-Kokille lässt sich mittels programmgesteuerter Positionierung der Stirnwände die Kokillenöffnung entsprechend den gewünschten Abmessungen der herzustellenden Stranggussbarren stufenlos einstellen, so dass Stranggussbarren beliebiger Abmessungen kostengünstig hergestellt werden können.

    Claims (10)

    1. Regulierbare elektromagnetische Stranggiesskokille (60) zur Herstellung von Stranggussbarren (54) unterschiedlicher Abmessungen, bei welcher ein elektromagnetischer Induktor die Querschnittsabmessungen des Metallschmelzestranges bestimmt, und die Kokille (60) einen absenkbaren Boden und einen Kokillenrahmen (62) mit einem Paar gegenüberliegender stationärer Seitenwände (20) sowie einem Paar gegenüberliegender, in ihrem Abstand regulierbarer Stirnwände (10) enthält, wobei die Seiten- und Stirnwände (10, 20) zusammen die Kokillenöffnung (12) bilden, und die Wände (10, 20) jeweils aus einem Induktorteil mit Induktionsschleife (70) und einer Abschirmung (28) bestehen,
      dadurch gekennzeichnet, dass
      der absenkbare Boden feste Abmessungen aufweist, am Kokillenrahmen (62) zumindest eine Stirnwand (10) an den anliegenden Seitenwänden (20) verschiebbar gelagert ist, die Position der verschiebbaren Stirnwände (10) zu jedem Zeitpunkt mittels einer Positionsmesseinrichtung (50) bestimmbar ist, die Positionierung jeder im Verlauf des Stranggiessprozesses verschiebbaren Stirnwand (10) durch einen mittels einer Steuereinheit regulierbaren Antrieb (15, 16, 30, 32, 34, 36, 40) erfolgt, und die Induktionsschleifen (70) sowie die Abschirmungen (28) der einzelnen Wände (10, 20) über flexible elektrische Leiter (18, 19) zu geschlossenen Schleifen verbunden sind.
    2. Kokille nach Anspruch 1, dadurch gekennzeichnet, dass der Antrieb (15, 16, 30, 32, 34, 36, 40) der verschiebbaren Stirnwände (10) durch mechanische, hydraulische, pneumatische oder elektromagnetische Mittel erfolgt.
    3. Kokille nach Anspruch 1, dadurch gekennzeichnet, dass das Positionieren und Festlegen jeder verschiebbaren Stirnwand (10) über mindestens eine parallel zur Bewegungsrichtung der Stirnwand (10) liegende Achswelle (30) erfolgt.
    4. Kokille nach Anspruch 3, dadurch gekennzeichnet, dass die Übertragung der für das Positionieren und Festlegen der Stirnwand (10) erforderlichen Kräfte über eine durch einen Motor (40) angetriebene Antriebswelle (34) auf die Achswelle/n (30) erfolgt, wobei die Drehbewegung der Antriebswelle (34) mittels einem Getriebe (15, 16, 30, 32, 36) in eine axialen Bewegung in Richtung der Achswelle/n (30) überführt wird.
    5. Kokille nach Anspruch 4, dadurch gekennzeichnet, dass alle für das Positionieren und Festlegen einer Stirnwand (10) erforderlichen Achswellen (30) synchron durch eine gemeinsame Antriebswelle (34) angetrieben werden.
    6. Kokille nach Anspruch 4, dadurch gekennzeichnet, dass der Antrieb (15, 16, 30, 32, 34, 36, 40) der Stirnwände (10) einer Vielzahl parallel betriebener Kokillen (60) durch die selbe Antriebswelle (34) erfolgt.
    7. Verfahren zum Stranggiessen von Metallbarren (54) mittels einer elektromagnetischen Stranggiesskokille (60) gemäss Anspruch 1,
      dadurch gekennzeichnet, dass
      der Abstand der Kokillen-Stirnwände (10) anfänglich derart eingestellt wird, dass der durch die Kokillenwände (10, 20), respektive der durch das im Induktor resultierende Kraftfeld definierte Anfangsquerschnitt der Schmelzensäule im wesentlichen dem durch die Innenkonturen des absenkbaren Kokillenbodens definierten Querschnitt entspricht, und der Abstand der Kokillen-Stirnwände (10) im Verlaufe des Stranggiessprozesses durch den mittels der Steuereinheit regulierbaren Antrieb (15, 16, 30, 32, 34, 36, 40) im Zusammenwirken mit der Absenkung des Kokillenbodens programmgesteuert derart geregelt wird, dass die Querschnittsabmessungen des entstehenden Metallschmelzestranges kontinuierlich oder schrittweise an die Abmessungen des gewünschten Stranggussbarrens (54) angeglichen werden.
    8. Verfahren gemäss Anspruch 7, dadurch gekennzeichnet, dass die durch die Steuereinheit bewirkte Regulierung des Stirnwandabstandes gemäss einem fest vorgegebenen Programm zeitabhängig gesteuert wird.
    9. Verfahren gemäss Anspruch 7, dadurch gekennzeichnet, dass die durch die Steuereinheit bewirkte Positionierung der verschiebbaren Stirnwände (10) gemäss der Differenz aus der gemessenen zeitabhängigen Position der betreffenden Stirnwände (10) und einem in einem Programm festgelegten, vorgegebenen zeitabhängigen Positionswert geschieht.
    10. Verfahren gemäss Anspruch 7, dadurch gekennzeichnet, dass die Höhe des pyramidenstupf- bzw. kegelstumpfförmigen Barrenteils zweckmässigerweise weniger als 50 cm und insbesondere weniger als 30 cm beträgt.
    EP95810201A 1994-04-06 1995-03-24 Regulierbare elektromagnetische Stranggiesskokille Expired - Lifetime EP0679460B1 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    CH00997/94A CH688991A5 (de) 1994-04-06 1994-04-06 Regulierbare elektromagnetische Stranggiesskokille.
    CH997/94 1994-04-06
    CH99794 1994-04-06

    Publications (2)

    Publication Number Publication Date
    EP0679460A1 EP0679460A1 (de) 1995-11-02
    EP0679460B1 true EP0679460B1 (de) 1999-08-18

    Family

    ID=4200047

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP95810201A Expired - Lifetime EP0679460B1 (de) 1994-04-06 1995-03-24 Regulierbare elektromagnetische Stranggiesskokille

    Country Status (8)

    Country Link
    EP (1) EP0679460B1 (de)
    AT (1) ATE183419T1 (de)
    CA (1) CA2146078A1 (de)
    CH (1) CH688991A5 (de)
    DE (1) DE59506622D1 (de)
    ES (1) ES2136822T3 (de)
    FI (1) FI951632A (de)
    NO (1) NO951296L (de)

    Families Citing this family (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP0812638A1 (de) * 1996-06-14 1997-12-17 Alusuisse Technology & Management AG Regulierbare Stranggiesskokille
    US20090050290A1 (en) * 2007-08-23 2009-02-26 Anderson Michael K Automated variable dimension mold and bottom block system

    Family Cites Families (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPS57171554A (en) * 1981-04-14 1982-10-22 Kawasaki Steel Corp Automatic controller for short side of mold
    FR2547220B3 (fr) * 1983-06-08 1986-02-21 Usinor Procede pour modifier la largeur d'une brame de coulee continue sans interrompre la coulee
    DE3335762A1 (de) * 1983-10-01 1985-04-25 Benteler-Werke AG, 4790 Paderborn Verstellbare stranggiesskokillenanordnung
    DE3406699C1 (de) * 1984-02-22 1985-01-10 Schweizerische Aluminium Ag, Chippis Elektromagnetische Stranggiesskokille
    US5249622A (en) * 1992-04-13 1993-10-05 Stelco Inc. Retrofitted width adjusting mechanism for continuous casting

    Also Published As

    Publication number Publication date
    NO951296D0 (no) 1995-04-04
    FI951632A0 (fi) 1995-04-05
    FI951632A (fi) 1995-10-07
    CH688991A5 (de) 1998-07-15
    NO951296L (no) 1995-10-09
    CA2146078A1 (en) 1995-10-07
    DE59506622D1 (de) 1999-09-23
    ES2136822T3 (es) 1999-12-01
    ATE183419T1 (de) 1999-09-15
    EP0679460A1 (de) 1995-11-02

    Similar Documents

    Publication Publication Date Title
    DE69529513T2 (de) Verfahren zum kontinuierlichen giessen für dünnes gussstück
    DE3205480C2 (de)
    AT391432B (de) Vorrichtung zum horizontalen stranggiessen
    DE60107690T2 (de) Verfahren und vorrichtung zur herstellung von metall-legierungs-gussteilen
    DE2906261A1 (de) Verfahren und vorrichtung fuer den direkten kokillenguss von nichteisenmetallen durch eine offene form
    DE2414514A1 (de) Stranggiessverfahren
    EP3515634B1 (de) Regelung der schmalseitenkonizität einer stranggusskokille : verfahren und vorrichtung
    DE4238654C2 (de) Bandgießen
    DE3142099A1 (de) Verfahren und vorrichtung zum stranggiessen von metall unter gesteuerter belastung
    EP3993921B1 (de) Schmelzezuführung für bandgussanlagen
    DE3440236C2 (de)
    EP0679460B1 (de) Regulierbare elektromagnetische Stranggiesskokille
    DE19639299C2 (de) Vorrichtung zur Herstellung eines Vielkant- oder Profil-Formats in einer Stranggießanlage
    DE1508965B1 (de) Verfahren und Vorrichtung zum Stranggiessen von Aluminium und Aluminiumlegierungen
    DE2853868C2 (de) Verfahren zum Stranggießen von Stahl sowie dementsprechend hergestellter Stahlstrang
    DE4234135C2 (de) Verfahren und Vorrichtung für das Horizontal-Stranggießen
    EP1050355B1 (de) Verfahren zum Herstellen von stranggegossenen Stahlerzeugnissen
    DE60205168T2 (de) Verfahren und Vorrichtung zum vertikal Giessen von Rohblöcken und so hergestellter Rohblock
    EP0812638A1 (de) Regulierbare Stranggiesskokille
    DE3440235A1 (de) Verfahren und vorrichtung zum bandstranggiessen von metallen, insbesondere von stahl
    DE2406252C3 (de) Verfahren und Vorrichtung zum Stranggießen und Weiterverarbeiten des gegossenen Strangs
    DE2923110A1 (de) Verfahren zum anfahren einer stranggiessanlage
    DE19710887C2 (de) Verwendung einer Kokille zum Herstellen von Barren aus Leichtmetall oder einer Leichtmetallegierung, insbesondere aus Magnesium oder einer Magnesiumlegierung
    DE2063545C3 (de) Viereckige Stranggießkokille
    EP0156764A1 (de) Elektromagnetische Stranggiesskokille

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE ES FR GB IT LI NL PT SE

    17P Request for examination filed

    Effective date: 19960502

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: ALUSUISSE TECHNOLOGY & MANAGEMENT AG

    17Q First examination report despatched

    Effective date: 19980806

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    ITF It: translation for a ep patent filed

    Owner name: DE DOMINICIS & MAYER S.R.L.

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE ES FR GB IT LI NL PT SE

    REF Corresponds to:

    Ref document number: 183419

    Country of ref document: AT

    Date of ref document: 19990915

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19990818

    REF Corresponds to:

    Ref document number: 59506622

    Country of ref document: DE

    Date of ref document: 19990923

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2136822

    Country of ref document: ES

    Kind code of ref document: T3

    ET Fr: translation filed
    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: SC4A

    Free format text: AVAILABILITY OF NATIONAL TRANSLATION

    Effective date: 19991019

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000324

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000325

    Ref country code: ES

    Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

    Effective date: 20000325

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20001001

    EUG Se: european patent has lapsed

    Ref document number: 95810201.4

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20000324

    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 20001001

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20010103

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20010531

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20010930

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: MM4A

    Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

    Effective date: 20010930

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20020325

    Year of fee payment: 8

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20020204

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20020404

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20020405

    Year of fee payment: 8

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030324

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030331

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030331

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030331

    BERE Be: lapsed

    Owner name: *ALUSUISSE TECHNOLOGY & MANAGEMENT A.G.

    Effective date: 20030331

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20050324

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000324

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20000331