EP0670451B1 - Mehrrohranordnung - Google Patents

Mehrrohranordnung Download PDF

Info

Publication number
EP0670451B1
EP0670451B1 EP95101893A EP95101893A EP0670451B1 EP 0670451 B1 EP0670451 B1 EP 0670451B1 EP 95101893 A EP95101893 A EP 95101893A EP 95101893 A EP95101893 A EP 95101893A EP 0670451 B1 EP0670451 B1 EP 0670451B1
Authority
EP
European Patent Office
Prior art keywords
pipe
pipes
assembly according
pipe assembly
connecting elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95101893A
Other languages
English (en)
French (fr)
Other versions
EP0670451A2 (de
EP0670451A3 (de
Inventor
Anton Steindl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to EP95101893A priority Critical patent/EP0670451B1/de
Publication of EP0670451A2 publication Critical patent/EP0670451A2/de
Publication of EP0670451A3 publication Critical patent/EP0670451A3/de
Application granted granted Critical
Publication of EP0670451B1 publication Critical patent/EP0670451B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/14Arrangements for the insulation of pipes or pipe systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/18Double-walled pipes; Multi-channel pipes or pipe assemblies

Definitions

  • the invention relates to a multi-tube arrangement, in particular for the flow of media of different temperatures with a first tube for the warmer medium and a second tube for the medium which is colder in comparison.
  • So-called district heating double pipes are also used for installation in district heating networks, in which two steel pipes aligned parallel to one another are surrounded by a common insulating jacket.
  • the casing can consist of several layers of different insulation or insulation material.
  • the first pipe serves as a flow line for the heated medium.
  • the second pipe serves as a return line, ie it leads the medium flowing back and cooled down to a central heating system. Since the two pipes thus carry media of different temperatures, they have different temperatures during operation of the district heating system, which results in different lengths of the two pipes. It has been shown that the resulting shear stresses can lead to the destruction of the sheathing of the two tubes which is non-positively connected to the tubes. Such shear stresses can also arise from ground warping and sagging of the ground.
  • a multi-tube arrangement is also known (EP-A-0 459 973), in which the casing is oval in cross section.
  • the pipes are made of plastic, which makes them a flexible pipe system for relatively small nominal widths and low temperatures up to approx. 90 ° C.
  • the object of the invention is therefore to avoid the disadvantages of the prior art and to provide a simpler arrangement compared to existing multi-pipe arrangements, which do not lead to destruction of the bond between the thermal insulation material and the pipes with different elongations of the pipes.
  • the rigid connecting elements between the two metallic tubes have the effect that, in spite of larger actual length differences, for example of the warmer tube, the ends of the one tube are only insignificantly greater apart than the other tube.
  • the absolute increase in its length compensates for the warmer Pipe by an essentially transverse to its longitudinal axis evasion, whereby large shear stresses which destroy the composite or the casing surrounding the pipes can be avoided, since thus at most an insignificant displacement of the first pipe relative to the insulating material takes place.
  • Another major advantage is that the smaller change in the effective length of the pipe also only brings about slight compressive stresses at the junctures of successive pipe sections of a district heating network.
  • the multi-pipe arrangement according to the invention can also be used for hot water pipes with circulation or for cooling pipes.
  • multi-tube arrangement according to the invention requires only the same amount of thermal insulation material and jacket tube material as conventional arrangements without length compensation in order to achieve at least the same or better insulation effect due to the oval or pear-shaped cross-sectional shape of the multi-tube arrangement, despite partial inner length compensation.
  • Multi-pipe arrangements according to the invention can be designed in any form necessary for a district heating network, such as, for example, as a straight pipe, fitting pipe for measurement connections, bends or branches.
  • Another advantage lies in the fact that the connecting elements have the same distances from the ends of each tube facing them and the center of the tubes with respect to their longitudinal extension, a particularly favorable voltage curve in each of the multi-tube arrangements to be arranged one behind the other and thus a uniform loading of the connecting elements or their Fixings on the pipes results.
  • the connecting elements are each formed from a steel sheet, it may be expedient that the steel sheets are connected to the pipes by welded connections.
  • the connecting elements each to have an insulation element with a poor thermal conductivity.
  • the insulation element can have a through hole and can be located between two flanges of a pipe connection. The insulation element can be clamped between the flanges with a screw inserted through a hole.
  • the arrangement of the connecting elements according to the invention enables a relatively flat bending line to be achieved, as a result of which low bending stresses in the tube are achieved. So that almost the entire change in length is compensated for by this design, on the one hand the shear stresses in the contact area of the thermal insulation material with the pipe carrying the hotter medium can be kept very low, on the other hand there is practically no difference between the distances (effective length) of the respective ends of the two Pipes, which further reduces the compressive stresses between successive pipe sections.
  • FIG. 1 shows a multi-pipe arrangement 1 according to the invention, for example in the form of a district heating double pipe, which has two pre-insulated steel pipes 2, 3 running essentially parallel to one another as media pipes, which can each have a length of up to approximately 12 m.
  • the pipe 2 carries the hot medium, while the pipe 3 carries the colder medium.
  • the two tubes 2, 3 are - see also FIG. 2 - arranged at a certain vertical distance from one another and are surrounded by an insulating, cross-sectionally oval or pear-shaped sheathing 4, only their ends protruding by a certain amount from the sheathing 4.
  • the two tubes 2, 3 are connected to one another by connecting elements fastened on their lateral surfaces, for example by welding, which are formed by steel sheets 5, 6.
  • the connection between the tubes 2, 3 on the one hand and the steel sheets 5, 6 on the other hand takes place along the longitudinal edges 7 of the two steel sheets 5, 6.
  • the steel sheets 5, 6 are oriented so that their plane of symmetry parallel to their surfaces 8, 9 approximately lies in the imaginary plane spanned by the longitudinal axes of the two tubes 2, 3.
  • the steel sheets 5, 6 are at the same distance both from the ends of the two tubes 2, 3 and from the center thereof with respect to their longitudinal extent.
  • the multi-tube arrangement is constructed symmetrically both to level A and to level B (see FIG. 2).
  • the tubes 2, 3 are foam-bonded with a polyurethane foam 10 of the casing 4 which directly surrounds them.
  • a casing tube 11 made of HPDE is in turn arranged around the PUR foam 4 and protects against external influences.
  • the cross-sectional contour of the tubular casing is composed of two semicircles which are connected to one another by two straight-line sections.
  • the tubes 2, 3 are arranged in the casing 4 so that their centers coincide with those of the semicircles of the jacket tube facing them. This results in a particularly uniform thermal insulation or a significantly lower heat loss compared to the circular jacket pipes usually used.
  • the multi-pipe arrangement 1 can be used in district heating networks in which the temperature of the heating medium in pipe 2 (feed pipe) is approx. 120 ° C and in pipe 3 (return pipe) approx. 60 ° C.
  • multi-tube arrangements according to the invention can also be used at temperatures other than these, in particular at higher temperatures of the flow line.
  • the two pipes 2, 3 will initially heat up approximately uniformly to 60 ° C., as a result of which the length of the two pipes is also the same.
  • the further temperature exposure of the tube 2 to its operating temperature of approximately 120 ° C leads to a further actual linear expansion.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Insulation (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Supports For Pipes And Cables (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Description

  • Die Erfindung betrifft eine Mehrrohranordnung, insbesondere zum Durchfluß von Medien unterschiedlicher Temperaturen mit einem ersten Rohr für das wärmere Medium und einem zweiten Rohr für das im Vergleich hierzu kältere Medium.
  • Zur Installation in Fernwärmenetzen werden auch sogenannte Fernwärmedoppelrohre verwendet, bei denen zwei parallel zueinander ausgerichtete Stahlrohre von einer gemeinsamen isolierenden Ummantelung umgeben sind. Die Ummantelung kann dabei aus mehreren Schichten unterschiedlichen Dämm- bzw. Isolierungsmaterials bestehen. Das erste Rohr dient dabei als Vorlaufleitung für das aufgeheizte Medium. Im Gegensatz hierzu dient das zweite Rohr als Rücklaufleitung, d.h. es führt das zu einer zentralen Heizanlage zurückfließende und abgekühlte Medium. Da die beiden Rohre somit Medien unterschiedlicher Temperaturen führen, weisen sie während des Betriebs der Fernwärmeanlage unterschiedliche Temperaturen auf, was unterschiedliche Längenausdehnungen der beiden Rohre zur Folge hat. Es hat sich gezeigt, daß die daraus resultierenden Scherspannungen zu einer Zerstörung der mit den Rohren kraftschlüssig verbundenen Ummantelung der beiden Rohre führen kann. Solche Scherspannungen können auch durch Bodenverwerfungen und Absacken des Grundes entstehen.
  • Um derartige Zerstörungen zu verhindern, ist es bekannt (EP-A-0 443 078) ein im Gesamtquerschnitt kreisrundes Fernwärmerohr mit zwei Mediumrohren auszubilden, die innerhalb der Wärmedämmung jeweils als Rohrwendel mit sinusförmig gebogenem Verlauf ausgebildet sind. Die jeweils an beiden Stirnseiten der Fernwärmerohre aus der Ummantelung herausragenden Enden der Mediumrohre haben einen geradlinigen Verlauf. Mit der wendelförmigen Form soll die durch unterschiedliche Temperaturen bedingte unterschiedliche Wärmedehnung der Mediumrohre anstelle einer Längenänderung zu einer Aufweitung bzw. einer Verengung der Wendel führen. Da ein solches Fernwärmerohr aufgrund der Rohrwendel einen relativ großen Gesamtradius hat, wird zur Erzielung guter Isolationswirkungen verhältnismäßig viel Wärmedämmmaterial benötigt, was jedoch sehr kostenintensiv ist. Das gleiche gilt in bezug auf die Herstellung von derartigen Rohrwendeln, die ebenfalls relativ teuer ist.
  • Es ist ferner eine Mehrrohranordnung bekannt (EP-A-0 459 973), bei der die Ummantelung im Querschnitt oval ist. Jedoch sind die Rohre aus Kunstststoff hergestellt, wodurch es ein flexibiles Rohrsystem für relativ kleine Nennweiten und niedrige Temperaturen bis ca. 90°C ist.
  • Die Aufgabe der Erfindung besteht deshalb darin, die Nachteile des Standes der Technik zu vermeiden und eine im Vergleich zu existierenden Mehrrohranordnungen einfachere Anordnung anzugeben, die bei unterschiedlicher Längendehnungen der Rohre nicht zur Zerstörung des Verbundes zwischen dem Wärmedämmaterial und den Rohren führen.
  • Diese Aufgabe wird bei einer Mehrrohranordnung der eingangs genannten Art durch die Merkmale des unabhängigen Patentanspruchs gelöst.
  • Die starren Verbindungselemente zwischen den beiden metallischen Rohren bewirken, daß trotz größerer tatsächlicher Längendifferenzen, beispielsweise des wärmeren Rohres die Enden des einen Rohres nur einen unwesentlich größeren Abstand zueinander aufweisen als das andere Rohr. Die absolute Vergrößerung seiner Länge kompensiert das wärmere Rohr durch ein im wesentlichen quer zu seiner Längsachse gerichtetes Ausweichen, wodurch große und den Verbund bzw. die die Rohre umgebende Ummantelung zerstörende Scherspannungen vermieden werden können, da somit höchstens eine unwesentliche Verschiebung des ersten Rohres gegenüber dem Dämmaterial stattfindet. Ein weiterer wesentlicher Vorteil besteht darin, daß die geringere Änderung der effektiven Länge des Rohres auch nur geringe Druckspannungen an den Verbindungsstellen aufeinanderfolgender Rohrleitungsabschnitte eines Fernwärmenetzes mit sich bringt. Die erfindungsgemäße Mehrrohranordnung kann auch für Warmwasserrohre mit Zirkulation oder auch für Kälteleitungen eingesetzt werden. Des weiteren benötigt die erfindungsgemäße Mehrrohranordnung trotz einer teilweise inneren Längenkompensation zur Erzielung mindestens gleichguter bzw. besserer Isolationswirkung aufgrund der ovalen oder birnenförmigen Querschnittsform der Mehrrohranordnung nur die gleiche Menge an Wärmedämmaterial und Mantelrohrmaterial wie herkömmliche Anordnungen ohne Längenkompensation. Erfindungsgemäße Mehrrohranordnungen können in jeder für ein Fernwärmenetz notwendigen Form ausgebildet sein, wie beispielsweise als gerades Rohr, Passrohr für Maßanschlüsse, Bögen oder Abzweigungen. Ein weiterer Vorteil liegt darin, daß die Verbindungselemente durch gleiche Abstände zu den ihnen jeweils zugewandten Enden jedes Rohres sowie zur Mitte der Rohre in Bezug auf deren Längserstreckung einen besonders günstigen Spannungsverlauf in jeder der hintereinander anzuordnenden Mehrrohranordnung und damit eine gleichmäßige Belastung der Verbindungselemente bzw. ihrer Befestigungen an den Rohren zur Folge hat.
  • Mit der Erfindung kann somit auf überraschend einfache Weise eine wirksame Längenkompensation und gleichzeitig eine Herabsetzung sowohl der mechanischen Beanspruchung des Verbundes zwischen den Rohren und der Ummantelung als auch der Verbindungsstellen aufeinanderfolgender Rohrleitungsabschnitte erzielt werden.
  • In einer bevorzugten Ausführungsform der Erfindung ist vorgesehen, daß die Verbindungselemente jeweils von einem Stahlblech gebildet sind, wobei es zweckmäßig sein kann, daß die Stahlbleche durch Schweißverbindungen mit den Rohren verbunden sind. Durch diese Maßnahmen kann auf kostengünstige und konstruktiv einfache Weise eine Längenkompensation bewirkende Fixierung der Rohre bzw. Rohrabschnitte erreicht werden.
  • Um den Wärmeaustausch zwischen den beiden Rohren niedrig zu halten, sowie zur Vermeidung einer Wärmebrücke kann es zweckmäßig sein, daß die Verbindungselemente jeweils ein Isolationselement mit schlechtem Wärmeleitkoeffizient aufweisen. In einer möglichen weiteren konstruktiven Ausgestaltung der Erfindung kann das Isolationselement eine Durchgangsbohrung aufweisen und sich zwischen jeweils zwei Flanschen einer Rohrverbindung befinden. Mit einer durch eine Bohrung hindurchgesteckten Schraube kann das Isolationselement dabei zwischen die Flansche gespannt werden.
  • Durch die erfindungsgemäße Anordnung der Verbindungselemente läßt sich eine relativ flache Biegelinie erzielen, wodurch geringe Biegespannungen im Rohr erreicht werden. Damit durch diese Ausbildung nahezug die gesamte Längenänderung kompensiert wird, können zum einen die Scherspannungen im Kontaktbereich des Wärmedämmaterials mit dem das heißere Medium führende Rohr sehr niedrig gehalten werden, zum anderen besteht praktisch keine Differenz zwischen den Abständen (effektiven Länge) der jeweiligen Enden der beiden Rohre, was die Druckspannungen zwischen aufeinanderfolgenden Rohrabschnitten weiter reduziert.
  • Die Erfindung wird im folgenden anhand eines in den Figuren schematisch dargestellten Ausführungsbeispiels näher erläutert. Es zeigen
  • Figur 1
    eine teilweise geschnittene perspektivische Darstellung einer erfindungsgemäßen Mehrrohranordnung;
    Figur 2
    eine Schnittdarstellung entsprechend der Linie II-II der Fig. 1; und
    Figur 3
    eine Darstellung der Mehrrohranordnung nach Fig. 1 im Betriebszustand.
  • In Fig. 1 ist eine beispielsweise als Fernwärmedoppelrohr ausgebildete erfindungsgemäße Mehrrohranordnung 1 dargestellt, die zwei im wesentlichen parallel zueinander verlaufende vorisolierte Stahlrohre 2, 3 als Medienrohre aufweist, die eine Länge bis zu jeweils ca. 12 m aufweisen können. Das Rohr 2 führt dabei das heiße Medium, während das Rohr 3 das demgegenüber kältere Medium führt. Die beiden Rohre 2, 3 sind - siehe auch Fig. 2 - im bestimmten vertikalen Abstand zueinander angeordnet und sind von einer isolierenden, im Querschnitt ovalen oder birnenförmigen Ummantelung 4 umgeben, wobei lediglich ihre Enden um einen bestimmten Betrag gegenüber der Ummantelung 4 vorstehen.
  • Die beiden Rohre 2, 3 sind durch an ihren Mantelflächen, beispielsweise durch Schweißen befestigte Verbindungselemente, die von Stahlblechen 5, 6 gebildet sind, miteinander verbunden. Die Verbindung zwischen den Rohren 2, 3 einerseits und den Stahlblechen 5, 6 andererseits erfolgt entlang der Längskanten 7 der beiden Stahlbleche 5, 6. Die Stahlbleche 5, 6 sind dabei so ausgerichtet, daß ihre zu ihren Oberflächen 8, 9 parallele Symmetrieebene in etwa in der durch die Längsachsen der beiden Rohre 2, 3 aufgespannten imaginären Ebene liegt. Des weiteren weisen die Stahlbleche 5, 6 sowohl von den Enden der beiden Rohre 2, 3 als auch deren Mitte in Bezug auf deren Längserstreckung den gleichen Abstand auf. Somit ist die Mehrrohranordnung sowohl zur Ebene A als auch zur Ebene B (siehe Fig. 2) symmetrisch aufgebaut.
  • Die Rohre 2, 3 sind mit einem sie unmittelbar umgebenden PUR-Schaum 10 der Ummantelung 4 verbundverschäumt. Ein Mantelrohr 11 aus HPDE ist wiederum um den PUR-Schaum 4 angeordnet und schützt in vor äußeren Einflüssen. Wie insbesondere in Fig. 2 zu erkennen ist, setzt sich die Querschnittskontur des Mantelrohres aus zwei Halbkreisen zusammen, die durch zwei geradlinige Abschnitte miteinander verbunden sind. Die Rohre 2, 3 sind dabei in der Ummantelung 4 so angeordnet, daß ihre Mittelpunkte mit denjenigen der ihnen jeweils zugewandten Halbkreise des Mantelrohres zusammenfallen. Dadurch ergibt sich insgesamt gegenüber den sonst üblicherweise verwendeten kreisrunden Mantelrohren eine besonders gleichmäßige Wärmedämmung, bzw. ein wesentlich geringerer Wärmeverlust.
  • Die Mehrrohranordnung 1 kann in Fernwärmenetzen zum Einsatz kommen, bei denen die Temperatur des Heizmediums im Rohr 2 (Vorlaufrohr) ca. 120°C und im Rohr 3 (Rücklaufrohr) ca. 60°C beträgt. Selbstverständlich können erfindungsgemäße Mehrrohranordnungen auch bei anderen als diesen Temperaturen insbesondere bei höheren Temperaturen der Vorlaufleitung eingesetzt werden. Bei der Inbetriebnahme eines solchen Fernwärmenetzes werden sich die beiden Rohre 2, 3 zunächst in etwa gleichmäßig auf 60°C erwärmen, wodurch auch die Längenausdehnung beider Rohre gleich ist. Die weitere Temperaturbeaufschlagung des Rohres 2 auf seine Betriebstemperatur von ca. 120°C führt zu einer weiteren tatsächlichen Längenausdehnung. Da das Rohr 2 aber durch die beiden Verbindungselemente (Stahlbleche 6, 7) am zweiten Rohr fixiert ist, wird der größte Teil der axialen Längenänderung des zwischen den Stahlblechen 6, 7 gelegenen Abschnittes des Rohres 2 durch eine zu dessen Längsachse im wesentlichen quergerichtete Ausweichbewegung kompensiert (siehe Fig. 3). Bei dem in Fig. 3 stark übertrieben dargestellten Ausführungsbeispiel beträgt der Abstand der Längsachse des gekrümmten Rohres 2 von dessen ursprünglichen Verlauf ca. 2,8 mm was eine elastische und somit unkritische Verformung des Rohres 2 darstellt. Durch diese Anordnung erfahren jeweils nur die relativ kurzen Bereiche zwischen den Stahlblechen 6, 7 und den ihnen zugewandten Enden der Rohre 2, 3 eine sich auf deren effektive Länge auswirkende Längenänderung. Somit ändert sich auch deren effektive Gesamtlänge nur unwesentlich, wodurch keine den Verbund zwischen dem PUR-Schaum und dem Mediumrohr 2 schädlichen Scherspannungen auftreten.

Claims (8)

  1. Mehrrohranordnung, insbesondere zum Durchfluß von Medien unterschiedlicher Temperaturen mit einem ersten Rohr (2), beispielsweise für das wärmere Medium und einem zweiten Rohr (3), beispielsweise für das demgegenüber kältere Medium, bei dem die Rohre (2, 3) aus Metall bestehen und mit einem über die nahezu gesamte Rohrlänge im wesentlichen gleichen Abstand zueinander innerhalb einer im Querschnitt oval oder birnenförmig ausgbildeten isolierenden Ummantelung (4) angeordnet und mit mindestens zwei an ihren Mantelflächen befestigten Verbindungselementen (5, 6) starr miteinander verbunden sind, so daß beispielsweise durch eine unterschiedliche Längendifferenz der beiden Rohre die durch die Temperaturdifferenz hervorgerufene Längendehnung des ersten Rohres (2) zu einem im wesentlichen quer zu dessen Längsachse gerichteten Ausweichen des jeweils zwischen den Verbindungselementen gelegenen Rohrabschnittes führt, wobei der Abstand der beiden Verbindungselemente voneinander doppelt so groß ist, wie die Summe der Abstände jedes Verbindungselementes zu dem nächstbenachbarten Ende jedes Rohrs (2, 3).
  2. Mehrrohranordnung nach Anspruch 1, dadurch gekennzeichnet, daß bei dem die Verbindungselemente von mindestens zwei Stahlblechen (5, 6) gebildet sind.
  3. Mehrrohranordnung nach einem Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die Verbindungselemente von einem rechtwinklig zu den Rohren (2, 3) verlaufenden Rohrabschnitt gebildet sind, der an seinen beiden Enden an die Mantelfläche der beiden Rohre (2, 3) angepaßt ist.
  4. Mehrrohranordnung nach einem der vorhergehenden Ansprüche, bei dem die Stahlbleche (5, 6) durch Schweißverbindungen an den Rohren (2, 3) befestigt sind.
  5. Mehrrohranordnung nach einem der vorhergehenden Ansprüche, bei dem der Abstand jedes Verbindungselementes (5, 6) zur Mitte des ersten bzw. zweiten Rohres (2) in bezug auf dessen Längsrichtung sowie zum nächstbenachbarten Ende der Rohre (2, 3) im wesentlichen gleich sind.
  6. Mehrrohranordnung nach einem der vorhergehenden Ansprüche, bei dem die Verbindungselemente jeweils mit einer wärmeisolierenden Ummantelung versehen sind.
  7. Mehrrohranordnung nach einem der vorhergehenden Ansprüche, bei dem die Ummantelung (4) ein Mantelrohr (11), z.B. aus HDPE aufweist, und durch PUR-Schaum kraftschlüssig mit den Rohren verbunden ist.
  8. Mehrrohranordnung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das Metall der Rohre (2, 3) Stahl und/oder Kupfer ist.
EP95101893A 1994-03-03 1995-02-13 Mehrrohranordnung Expired - Lifetime EP0670451B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP95101893A EP0670451B1 (de) 1994-03-03 1995-02-13 Mehrrohranordnung

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP94103225 1994-03-03
EP94103225 1994-03-03
EP95101893A EP0670451B1 (de) 1994-03-03 1995-02-13 Mehrrohranordnung

Publications (3)

Publication Number Publication Date
EP0670451A2 EP0670451A2 (de) 1995-09-06
EP0670451A3 EP0670451A3 (de) 1995-11-02
EP0670451B1 true EP0670451B1 (de) 1997-08-06

Family

ID=8215739

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95101893A Expired - Lifetime EP0670451B1 (de) 1994-03-03 1995-02-13 Mehrrohranordnung

Country Status (4)

Country Link
EP (1) EP0670451B1 (de)
AT (1) ATE156579T1 (de)
DE (1) DE59500453D1 (de)
DK (1) DK0670451T3 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20020563U1 (de) * 2000-12-05 2002-04-11 Baumann, Roland, Dipl.-Ing. (FH), 89081 Ulm Vorrichtung zur Isolation von Mehrfachrohrleitungen
KR101407641B1 (ko) 2012-11-08 2014-06-13 한국에너지기술연구원 양방향 열거래 기반의 열에너지 네트워크용 배관 시스템
WO2017203318A1 (en) * 2016-05-26 2017-11-30 Total Sa An offloading line and a method for installing an offloading line
EP3812635A1 (de) * 2019-10-23 2021-04-28 Mann + Hummel Gmbh Fluidleitungsanordnung
CN114165681A (zh) * 2021-11-26 2022-03-11 湖北三江航天江北机械工程有限公司 Lng双联管组的保冷施工方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2236908A1 (de) * 1972-07-27 1974-02-07 Franz Huelster Isoform-buendelrohr
US4036618A (en) * 1975-04-18 1977-07-19 Cryogenic Technology, Inc. Flexible cryogenic envelope
CH678354A5 (de) * 1988-11-05 1991-08-30 Bruno Lic Rer Pol Stuedi
HU911835D0 (en) * 1990-06-01 1991-12-30 Pipelife Rohrsysteme Gmbh Tube-shaped isolating material and process for manufacturing it

Also Published As

Publication number Publication date
DK0670451T3 (da) 1998-03-23
DE59500453D1 (de) 1997-09-11
EP0670451A2 (de) 1995-09-06
EP0670451A3 (de) 1995-11-02
ATE156579T1 (de) 1997-08-15

Similar Documents

Publication Publication Date Title
DE69602243T3 (de) Biegsame Rohrverbindung für Fahrzeugauspuffanlage
DE202010006739U1 (de) Durchlauferhitzer
EP1770250B1 (de) Wärmetauscher für Abgasleitungen
WO2015007375A1 (de) Wärmeübertrager mit elastischem element
EP0355662B1 (de) Aktiv gekühlter Wärmeschutzschild
EP0670451B1 (de) Mehrrohranordnung
CH666539A5 (de) Waermetauscherrohr und daraus gebildeter waermetauscher.
DE3326259A1 (de) Auspuffleitung
WO1998049427A1 (de) Vorrichtung zur wärmeisolierung für eine dampfturbine
DE3109558A1 (de) Waermetauscher zur kuehlung eines stroemungsmittels mit hoher temperatur
WO2008151680A1 (de) Wärmetauscher
DE102006004828A1 (de) Kunststoffrohr für die Durchleitung eines Heiz- oder Kühlmediums, unter Verwendung derartiger Rohre hergestellte Matte sowie Verbindung zwischen der Stirnseite eines derartigen Rohres und einem Kunststoffkörper
DE9015089U1 (de) Koaxiales Rohrsystem
DE19621271A1 (de) Flexibles Leitungselement für Abgasleitungen von Kraftfahrzeugen
DE3814176C2 (de) Doppelwandige Rohrleitung aus einer Vielzahl endseitig miteinander verbundener Rohrlängen
DE2208746C2 (de) Wärmetauscher
DE4442817C2 (de) Verdampfer für ein Kompressorkühlgerät
WO2018153815A1 (de) Thermoelektrischer wärmeübertrager
DE3002358C2 (de) Elektrischer Durchlauferhitzer
DE29612295U1 (de) Mattenförmiger Wärmetauscher
DD235480A1 (de) Flachrohr-waermeuebertrager
DE2512226A1 (de) Sonnenkollektor
DE3342971A1 (de) Lamellenwaermeuebertrager und verfahren zur herstellung derselben
EP0942250A1 (de) Tieftemperatur-Wärmetauscher
DE10302926A1 (de) Vorgefertigte Einheit für eine Fußbodenheizung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT DE DK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT DE DK

17P Request for examination filed

Effective date: 19960127

17Q First examination report despatched

Effective date: 19960531

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE DK

REF Corresponds to:

Ref document number: 156579

Country of ref document: AT

Date of ref document: 19970815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59500453

Country of ref document: DE

Date of ref document: 19970911

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20110222

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110216

Year of fee payment: 17

Ref country code: AT

Payment date: 20110217

Year of fee payment: 17

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59500453

Country of ref document: DE

Effective date: 20120901

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 156579

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229