EP0663241B1 - Zerstäuberdüse - Google Patents

Zerstäuberdüse Download PDF

Info

Publication number
EP0663241B1
EP0663241B1 EP93120417A EP93120417A EP0663241B1 EP 0663241 B1 EP0663241 B1 EP 0663241B1 EP 93120417 A EP93120417 A EP 93120417A EP 93120417 A EP93120417 A EP 93120417A EP 0663241 B1 EP0663241 B1 EP 0663241B1
Authority
EP
European Patent Office
Prior art keywords
nozzle
channels
mixing chamber
atomiser
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93120417A
Other languages
English (en)
French (fr)
Other versions
EP0663241A1 (de
Inventor
Ales Dr.-Ing. Blaha-Schnabel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PARI GmbH Spezialisten fuer Effektive Inhalation
Original Assignee
PARI GmbH Spezialisten fuer Effektive Inhalation
PARI GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AT93120417T priority Critical patent/ATE168289T1/de
Priority to ES93120417T priority patent/ES2120471T3/es
Priority to DK93120417T priority patent/DK0663241T3/da
Priority to DE59308788T priority patent/DE59308788D1/de
Priority to EP93120417A priority patent/EP0663241B1/de
Application filed by PARI GmbH Spezialisten fuer Effektive Inhalation, PARI GmbH filed Critical PARI GmbH Spezialisten fuer Effektive Inhalation
Priority to CA002138234A priority patent/CA2138234A1/en
Publication of EP0663241A1 publication Critical patent/EP0663241A1/de
Priority to US08/760,911 priority patent/US5740966A/en
Application granted granted Critical
Publication of EP0663241B1 publication Critical patent/EP0663241B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0441Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber
    • B05B7/0475Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber with means for deflecting the peripheral gas flow towards the central liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/08Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point
    • B05B7/0807Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point to form intersecting jets
    • B05B7/0861Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point to form intersecting jets with one single jet constituted by a liquid or a mixture containing a liquid and several gas jets

Definitions

  • the present invention relates to an atomizing nozzle for Inhalation with which a powdery or liquid Atomizing material, preferably in the form of a solution or Suspension is atomized.
  • a first group of atomizing nozzles works after the Venturi principle.
  • a nozzle of this type is for example known from DE 32 38 149 A1.
  • Through a central Compressed gas duct is supplied with compressed air, which in a Mouth level emerges from an opening in the central channel.
  • there are usually several intake ducts provided that from the mouth level to a container for the atomizing material is sufficient.
  • the atomization material is from the escaping compressed gas is sucked in through the intake ducts and emerges from openings of the intake ducts in the mouth plane.
  • the openings of the compressed gas duct and the intake ducts are arranged adjacent, so that there is compressed gas and atomization mix intensively and the turbulence that occurs for to provide atomization.
  • Atomizer nozzles are air and Atomizing material under pressure, i.e. actively fed.
  • Atomizer nozzles of this type are made, for example DE 26 46 251 A1 and DE 28 23 643 A1 are known.
  • the basic one The structure of atomizer nozzles in this group also results from "Atomization and Sprays" by Arthur H. Lefebvre. Differentiate become characteristic designs in this context based on the type and location of what is occurring Atomization process, on the one hand so-called “air-assist” nozzles with mixture inside or outside the Nozzle body and so-called “prefilming” nozzles.
  • This Atomizer nozzles follow a common design principle insofar as circular channels around a central channel are arranged concentrically.
  • the nozzle body consists of DE 26 46 251 A1 known atomizer nozzle made of six elements, five of which have a central opening to which the elements refer must be aligned so that the openings are coaxial are arranged.
  • the atomizing nozzle which is a "prefilming" nozzle is suitable because of the Orientation of items related issues not for repeated disassembly and cleaning.
  • the invention is the Task based on an atomizer nozzle for inhalation purposes create an aerosol with the largest possible proportion respirable particles can be generated and still easy to handle, especially disassemble and clean, as well as simple and inexpensive to manufacture (mass-produced items).
  • atomizer nozzle according to the invention from several parts, which in Fig. 3 are shown.
  • FIG. 1 the nozzle insert is shown;
  • Figure A shows the nozzle insert 1 in a perspective view,
  • Figure B in a sectional view.
  • the basic shape of the nozzle insert 1 is composed of two flat circular cylinders with different diameters and a circular cone, the maximum diameter of which corresponds to that of the smaller circular cylinder.
  • the circular cone defines a contact surface 11 of the nozzle insert 1.
  • the two circular cylinders and the circular cone are arranged axially to one another.
  • the larger circular cylinder is flattened on its circumference at two opposite points 12, only one of which is visible in FIG. 1A.
  • a channel 13 for the atomizing material is provided centrally in the nozzle insert 1 and extends in the longitudinal direction of the basic shape of the nozzle insert 1, so that the outlet opening 14 lies in the tip of the support surface 11.
  • the outlet opening 14 defines the smallest diameter d of the channel 13 and thus its outlet cross-sectional area A Z ; the channel 13 has a gradually increasing diameter.
  • FIGS. 2A and 2B show the nozzle holder 2 in a perspective or sectional representation.
  • the basic shape of the nozzle holder is formed by two flat circular cylinders which are arranged axially to each other.
  • the free end face of the larger circular cylinder has a central circular conical depression which defines a receiving surface 21 which is adapted to the shape of the bearing surface 11 of the nozzle insert 1.
  • three channels 22 for the compressed gas are formed, which run radially to the center of the flat circular cylinder and thereby follow the inclined receiving surface 21 of the circular-conical depression.
  • the channels 22 are evenly distributed over the circumference of the nozzle receptacle 2, so that there is an angle of 120 ° between them, and taper towards the center of the nozzle receptacle.
  • the channels 22 for the compressed gas are grooves in the receiving surface 21 with a rectangular or trapezoidal cross-section and with a minimal cross-sectional area A D at the mouth end.
  • the mouth space 23 opens a circular conical outlet funnel 24.
  • a cylindrical housing 3 is used to accommodate the nozzle body, i.e. of the nozzle insert 1 and the nozzle holder 2 in the order shown in Fig. 3.
  • the opposite face of the housing 3 only has an opening 31 for receiving the smaller, flat circular cylinder of the nozzle holder 2.
  • a circular groove 32 for receiving an O-ring 33 intended.
  • There is also a groove 34 for receiving another O-rings 35 on the open for receiving the nozzle body End face of the housing 3 is provided in the housing wall.
  • an external thread 36 is formed on the housing 3.
  • a cover 4 serves on the one hand to close the housing 3 and on the other hand has connections for the supply of Atomizing material and the compressed gas.
  • the cover 4 has a cylindrical basic shape with an axially arranged Bore 41 for the supply of the atomizing material and one eccentrically arranged bore 42 for the supply of Compressed air.
  • a section of the cover 4 has one Diameter that is sufficient to interact with the O-ring 35 to seal the interior of the housing 3.
  • Nozzle insert 1 facing side of the cover 4 are two flat Circular cylinder with a smaller diameter provided; in the The surface of the smaller circular cylinder is a circular groove 43 designed to receive an O-ring 44. The bigger the Both diameters serve to guide the cover 4 in the housing 3.
  • the three O-rings 33, 35, 44 are complete Separation of the gas and liquid part within the nozzle.
  • a union nut 5 is used to secure the housing 3 used parts and points to an inner Circumferential surface a thread 51.
  • An opening 52 is provided on the end face, which provides access to the connection holes 41 and 42 in the cover 4 guaranteed.
  • Fig. 4 shows the embodiment of the invention Atomizer nozzle in assembled condition.
  • the nozzle body i.e. the nozzle insert 1 and the nozzle holder 2 are in the housing 3 arranged.
  • the circular conical bearing surface 11 of the Nozzle insert 1 lies on the complementarily shaped Receiving surface 21 of the nozzle receptacle 2.
  • the union nut 5 and the housing 3 are the two Parts forming the nozzle body are braced against each other, resulting in a good fit of the nozzle insert in the nozzle holder and one Alignment of the outlet opening 14 with respect to the Mixing chamber 23 guaranteed.
  • the as grooves in the Receiving surface 21 formed channels 22 are on their originally opened top through the contact surface 11 of the nozzle insert 1 closed.
  • FIG. 5 shows a further exemplary embodiment of the Atomizer nozzle according to the invention in the assembled state.
  • the structure corresponds in many points to that described above Embodiment, so that reference to its description can be taken. The following are the differences explained by which the two embodiments award.
  • the nozzle insert 1 has the one shown in FIG Embodiment for the atomization material with a channel 13 one except for a section in the area of the outlet opening 14 constant diameter. This diameter is chosen that a flattened cannula is inserted and thereby the dead space can be minimized. The smallest spout For cleaning reasons, diameter d is as short as possible held.
  • the axial bore 41 is designed so that a Rubber disc 43 with a central hole for the cannula 8 can be inserted.
  • an intermediate ring 44 arranged on the side of the rubber washer 43 inwards slightly conical, preferably at an angle of 160 ° is trained.
  • the diameter of the mixing chamber 23 is such that you free cross section about the sum of the free cross sections of the Channels 22 for the compressed gas at the outlet into the mixing chamber 23 results in the energy of the compressed air supplied optimally to take advantage of. If the cross-section of the mixing chamber 23 is too large it leads to premature relaxation if the cross-section is too small to congestion of the compressed air.
  • the goal is an optimized one Exploitation of the implementation of the pressure difference between compressed gas and ambient pressure in the kinetic energy range Outlet openings of the channels 22. A crucial role plays the distance between the channel 13 escaping liquid and the outlet openings of the channels 22 for the compressed air.
  • the length of the mixing chamber corresponds to about their diameter. A mixing chamber that was too short would regarding the required channel depth in the mouth area manufacturing difficulties. With one too long mixing chamber can worsen the Atomization efficiency through impaction and friction, as well as for Tendency to constipation come.
  • the cross-sectional area A M of the mixing chamber 23 essentially corresponds to the sum of the minimum cross-sectional areas A D of the channels 22.
  • the smallest diameter d of the channel 13 for the atomizing material at the outlet opening 14 is approximately 55% to 85%, preferably 60% to 70% of the Diameter D of the mixing chamber 23.
  • the angle of the circular tapered bearing surface 11 or the complementary receiving surface 21 about 120 ° be. Smaller angles than 120 ° do not only affect unfavorable in this connection, but also lead to Problems with the manufacture and cleaning of the nozzle body (Degree formation at the outlet in the nozzle insert at the Injection molding, risk of damage to the edge of the hole in the Nozzle insert, poor access to the mixing chamber the cleaning).
  • the channels 22 for the compressed air can be different than in the case of The exemplary embodiment described also in the contact surface 11 of the nozzle insert 1 are formed.
  • the one above described configuration to be preferred because of the risk of mechanical damage to the channels, especially in the area the mixing chamber 23 is reduced. That too is Cross-sectional shape of the channels 22 for the compressed air not to one rectangular shape or the shape of an isosceles Limited trapezes.
  • Atomizer nozzle are three channels 22 for the compressed air in the Receiving surface 21 .
  • the channel depth should be about correspond to half the mixing chamber length. From geometrical Considerations and in terms of possible Manufacturing accuracy in injection molding seems the number of three channels for the supply of compressed air be.
  • An odd number of channels for the compressed air, stabilized and in particular three channels in 120 ° arrangement centers the outflowing aerosol after exiting the Atomizer nozzle.
  • a tangential can also support this Arrangement of the channels 22 based on the mixing chamber 23 act. This appears due to technical considerations Design to be difficult to implement.
  • To a flat design of the channels 22 is also preferred for the compressed air, since this means that not only cleaning Channels but also the mixing chamber is simplified.
  • the channel 13 for the atomization material in the nozzle insert 1 can with a Wire or nylon cord.
  • the advantages of the atomizing nozzle according to the invention lie in the simple manufacturability (mass article), simple construction (easy cleaning), in the dosage option of Liquid phase (different recipes), fine Primary droplet spectrum (relatively high initial concentration of Drug solution possible, i.e. short inhalation times) and low pneumatic power requirement ( ⁇ p ⁇ 2 bar, Air volume flow ⁇ 5 l / min, i.e. Compressor operation possible, Home therapy).
  • the duct dimensions are the same for all three nozzle holders.
  • the liquid flows through a constant volume flow Bore of 0.30 mm diameter in the mixing chamber 23 promoted.
  • a mixing chamber diameter D of 0.40 mm their free cross-section is smaller than the sum of the free ones Cross sections of channels 22 at the mixing chamber inlet. It comes to
  • the Compressed air can relax too early. In both cases, one too small or too large mixing chamber diameter D, the Delivery of the kinetic energy of the compressed air to the liquid negatively affected and thus the dispersion efficiency worse.
  • the dispersion efficiency of the nozzle body is d 0.30 / D 0.45 independent of liquid flows up to 250 ⁇ l / min.
  • In the Mixing chamber prevail due to the air jet deflection and Air jet acceleration determined an operating point corresponding shear forces. These shear forces act Surfaces on the liquid droplets. The Surface force depends on the drop diameter. One certain shear force corresponds to a certain one Drop diameter, below which the drop is no further can be crushed.
  • To disperse the liquid a certain amount of compressed air, the amount of liquid appropriate proportion of energy taken. The rest is used for Transportation or dissipated. With larger liquid flows the compressed air can release more dispersing energy. Because of the drying required is only smaller, from Air flow dependent liquid flows make sense.
  • the selection of the operating point of a nozzle can be based on the Application of the product from the average drop diameter and the air flow rate over the pressure difference. This criterion also serves to select a suitable one Compressor for home therapy.
  • the optimal operating point corresponds to the minimum in the course of this function.
  • the Liquid flow and drug concentration then have to be adapted to the air flow at the operating point. For short Inhalation times are high fluid flows with high Drug concentration necessary, the high air flow rates and require finer primary droplet distributions.
  • the nozzle will operated at higher pressures than the determined energetic Optimum corresponds.

Landscapes

  • Nozzles (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Percussion Or Vibration Massage (AREA)

Description

Die vorliegende Erfindung betrifft eine Zerstäuberdüse für Inhalationszwecke, mit der ein pulverförmiges oder flüssiges Zerstäubungsgut, vorzugsweise in Form von Lösung oder Suspension zerstäubt wird.
An Zerstäuberdüsen für die Erzeugung eines Aerosols für therapeutische Zwecke werden erhöhte Anforderungen gestellt. Von besonderer Bedeutung ist die therapeutische Qualität des Aerosols; danach ist ein Aerosol zu erzeugen, das einen möglichst großen Anteil lungengängiger Partikel (⊘ < 8 µm) enthält. Daneben muß die Zerstäuberdüse einfach und rückstandsfrei gereinigt werden können, was dazu führt, daß die Zerstäuberdüse auch ohne große Schwierigkeiten zerlegbar sein muß. Trotz zahlreicher unterschiedlicher Bauformen treten zwei Gruppen von Zerstäuberdüsen auf, die nach unterschiedlichen Prinzipien arbeiten.
Eine erste Gruppe von Zerstäuberdüsen arbeitet nach dem Venturi-Prinzip. Eine Düse dieser Art ist beispielsweise bekannt aus DE 32 38 149 A1. Durch einen zentralen Druckgaskanal wird Druckluft zugeführt, die in einer Mündungsebene aus einer Öffnung des zentralen Kanals austritt. Neben dem Druckgaskanal sind zumeist mehrere Ansaugkanäle vorgesehen, die von der Mündungsebene bis in einen Behälter für das Zerstäubungsgut reichen. Das Zerstäubungsgut wird von dem austretenden Druckgas durch die Ansaugkanäle angesaugt und tritt aus Öffnungen der Ansaugkanäle in der Mündungsebene aus. Die Öffnungen des Druckgaskanals und der Ansaugkanäle sind benachbart angeordnet, so daß sich Druckgas und Zerstäubungsgut intensiv vermischen und die auftretenden Verwirbelungen für eine Zerstäubung sorgen. Mit Zerstäuberdüsen dieser Bauart werden Aerosole erzeugt, deren Primärverteilung Aerosolpartikel mit einem Durchmesser von bis zu 40 µm enthält. Aus diesem Grund ist neben der selbständig ablaufenden Abtrocknung des Aerosols, die durch eine ausreichend große Luftmenge sichergestellt wird, eine Nachbehandlung des Aerosols erforderlich; dazu zählt beispielsweise das Abscheiden zu großer Partikel aus dem Aerosol durch konstruktive Maßnahmen. Das abgeschiedene Zerstäubungsgut wird in den Behälter zurückgeführt und kann erneut zerstäubt werden. In einigen Fällen ist die Zirkulation des Zerstäubungsgutes unproblematisch. Zahlreiche Medikamente eignen sich aber für diese Art der Zerstäubung nicht oder nur schlecht, da mit einer Beeinträchtigung der Wirksamkeit des Medikaments gerechnet werden muß. Ferner muß eine vergleichsweise große Menge des Zerstäubungsguts bereitgestellt werden, um das Ansaugen des Zerstäubungsguts durch die Ansaugkanäle zu ermöglichen. Darüberhinaus verbleiben zu große Restmengen im Zerstäuber, da das Zerstäubungsgut konstruktionsbedingt nie ganz vollständig verbraucht werden kann. Hinzu kommt noch die durch die Lösemittelverdampfung bedingte Aufkonzentrierung des Medikaments, verbunden mit einer Änderung der physikalischen Eigenschaften der Lösung, sowie der dadurch direkt oder indirekt bedingte negative Einfluß auf die Medikamentausbringung. Einige sehr teure Medikamente werden aus diesen Gründen nicht im Rahmen einer Inhalationstherapie appliziert, obwohl die Medikamente für diese Art der Applikation durchaus geeignet sind.
Bei einer weiteren Gruppe von Zerstäuberdüsen werden Luft- und Zerstäubungsgut unter Druck, d.h. aktiv zugeführt. Zerstäuberdüsen dieser Art sind beispielsweise aus DE 26 46 251 A1 und DE 28 23 643 A1 bekannt. Der grundsätzliche Aufbau von Zerstäuberdüsen dieser Gruppe ergibt sich ferner aus "Atomization and Sprays" von Arthur H. Lefebvre. Unterschieden werden in diesem Zusammenhang charakteristische Bauformen anhand der Art und des Ortes des sich einstellenden Zerstäubungsvorgangs, und zwar zum einen sogenannte "air-assist"-Düsen mit Mischung innerhalb oder außerhalb des Düsenkörpers und sogenannte "prefilming"-Düsen. Diese Zerstäuberdüsen folgen einem gemeinsamen Konstruktionsprinzip insofern, als um einen zentralen Kanal ringförmige Kanäle konzentrisch angeordnet sind. Dies führt zu einem komplexen Aufbau und teilweise erheblichen Toträumen innerhalb des Düsenkörpers. Die Zerstäuberdüsen sind aus diesem Grund nur bedingt oder nur unter großem Aufwand zu zerlegen. Beispielsweise besteht der Düsenkörper, der aus DE 26 46 251 A1 bekannten Zerstäuberdüse aus sechs Elementen, von denen fünf eine zentrale Öffnung besitzen, auf die bezogen die Elemente so ausgerichtet werden müssen, daß die Öffnungen koaxial angeordnet sind. Die Zerstäuberdüse, bei der es sich um eine "prefilming"-Düse handelt, eignet sich aufgrund der mit der Ausrichtung der Elemente einhergehenden Probleme nicht für wiederholtes Zerlegen und Reinigen. Ferner besitzt diese bekannte Zerstäuberdüse einen erheblichen Totraum, da der den dünnen Flüssigkeitsfilm erzeugende Spaltraum von einem sehr viel größeren ringförmigen Raum allseitig umgeben wird, was auch auf die aus DE 28 23 643 A1 bekannte Düse zutrifft. Dieser Aufbau ist aber erforderlich, um durch den Spaltraum das Zerstäubungsgut so zuzuführen, daß ein dünner Flüssigkeitsfilm allseitig in den zentral geführten Gasstrom eintritt.
Ausgehend von dem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, eine Zerstäuberdüse für Inhalationszwecke zu schaffen, mit der ein Aerosol mit einem möglichst großen Anteil lungengängiger Partikel erzeugt werden kann und die dennoch einfach zu handhaben, insbesondere zu zerlegen und zu reinigen, sowie einfach und preiswert zu fertigen (Massenartikel) ist.
Gelöst wird diese Aufgabe durch eine Zerstäuberdüse mit den im Patentanspruch 1 angegebenen Merkmalen. Eine Zerstäuberduse mit den Merkmalen des Oberbegriffs dieses Anspruchs ist bekannt aus Dokument DE-U-91 115 96. Weitere vorteilhafte Ausgestaltungen ergeben sich aus den Unteransprüchen.
Im folgenden wird die Erfindung anhand eines bevorzugten Ausführungsbeispiels und unter Bezugnahme auf die beiliegenden Zeichnungen genauer beschrieben. In den Zeichnungen zeigt:
Fig. 1
eine perspektivische und eine geschnittene Darstellung des Düseneinsatzes einer erfindungsgemäßen Zerstäuberdüse;
Fgi. 2
eine perspektivische und eine geschnittene Darstellung der Düsenaufnahme einer erfindungsgemäßen Zerstäuberdüse;
Fig. 3
die weiteren Bestandteile eines Ausführungsbeispiels einer erfindungsgemäßen Zerstäuberdüse;
Fig. 4
das Ausführungsbeispiel einer erfindungsgemäßen Zerstäuberdüse aus Fig. 3 in zusammengesetztem Zustand; und
Fig. 5
ein weiteres Ausführungsbeispiel der erfindungsgemäßen Zerstäuberdüse mit einem totraumminimierten Zerstäubungsgutanschluß.
Bei dem im folgenden beschriebenen Ausführungsbeispiel besteht die erfindungsgemäße Zerstäuberdüse aus mehreren Teilen, die in Fig. 3 dargestellt sind. Wesentlich ist die Ausgestaltung des Düsenkörpers, der aus zwei Teilen, dem Düseneinsatz 1 und der Düsenaufnahme 2 besteht.
In Fig. 1 ist der Düseneinsatz dargestellt; Figurenteil A zeigt den Düseneinsatz 1 in einer perspektivischen Darstellung, Figurenteil B in einer geschnittenen Darstellung. Die Grundform des Düseneinsatzes 1 setzt sich zusammen aus zwei flachen Kreiszylindern mit unterschiedlichem Durchmesser und einem Kreiskegel, dessen maximaler Durchmesser dem des kleineren Kreiszylinders entspricht. Der Kreiskegel legt eine Auflagefläche 11 des Düseneinsatzes 1 fest. Die beiden Kreiszylinder und der Kreiskegel sind axial zueinander angeordnet. Der größere Kreiszylinder ist an zwei gegenüberliegenden Stellen 12 an seinem Umfang abgeflacht, von denen in Fig. 1A nur eine sichtbar ist. Im Düseneinsatz 1 ist zentral ein Kanal 13 für das Zerstäubungsgut vorgesehen, der sich in Längsrichtung der Grundform des Düseneinsatzes 1 erstreckt, so daß die Austrittsöffnung 14 in der Spitze der Auflagefläche 11 liegt. Die Austrittsöffnung 14 legt den kleinsten Durchmesser d des Kanals 13 und damit seine Austrittsquerschnittsfläche AZ fest; der Kanal 13 besitzt einen stufenweise größer werdenden Durchmesser.
Die Figuren 2A und 2B zeigen die Düsenaufnahme 2 in perspektivischer bzw. geschnittener Darstellung. Die Grundform der Düsenaufnahme wird gebildet durch zwei flache Kreiszylinder, die axial zueinander angeordnet sind. Die freie Stirnfläche des größeren Kreiszylinders besitzt eine zentrische kreiskegelige Vertiefung, die eine Aufnahmefläche 21 festlegt, die an die Form der Auflagefläche 11 des Düseneinsatzes 1 angepaßt ist. In der Aufnahmefläche 21 sind drei Kanäle 22 für das Druckgas ausgebildet, die radial zur Mitte des flachen Kreiszylinders verlaufen und dabei der geneigten Aufnahmefläche 21 der kreiskegeligen Vertiefung folgen. Die Kanäle 22 sind gleichmäßig über den Umfang der Düsenaufnahme 2 verteilt, so daß zwischen ihnen je ein Winkel von 120° vorliegt, und verjüngen sich zur Mitte der Düsenaufnahme hin. Bei den Kanälen 22 für das Druckgas handelt es sich um Nuten in der Aufnahmefläche 21 mit rechteckigem oder trapezförmigem Querschnitt und mit einer minimalen Querschnittsfläche AD am Mündungsende.
Die Kanäle 22 für das Druckgas enden in einer zylindrischen Mischkammer 23, die koaxial zu den flachen Kreiszylindern der Düsenaufnahme 2 verläuft. Auf der der Vertiefung gegenüberliegenden Seite öffnet sich der Mündungsraum 23 in einen kreiskegeligen Austrittstrichter 24.
In Fig. 3 sind neben dem Düseneinsatz 1 und der Düsenaufnahme 2 weitere Teile des Ausführungsbeispiels der erfindungsgemäßen Zerstäuberdüse dargestellt. Ein zylindrisches Gehäuse 3 dient zur Aufnahme des Düsenkörpers, d.h. des Düseneinsatzes 1 und der Düsenaufnahme 2 in der in Fig. 3 gezeigten Reihenfolge. Der Innendurchmesser des Gehäuses 3 entspricht dem Durchmesser des jeweils größeren, flachen Kreiszylinders der beiden den Düsenkörper bildenden Teile 1 und 2, die durch eine vollständig geöffnete Stirnfläche des Gehäuses 3 in dessen Innenraum eingebracht werden können. Die gegenüberliegende Stirnfläche des Gehäuses 3 besitzt lediglich eine Öffnung 31 zur Aufnahme des kleineren, flachen Kreiszylinders der Düsenaufnahme 2. Innen an der die Öffnung 31 umgebenden Stirnfläche des Gehäuses 3 ist eine Kreisnut 32 zur Aufnahme eines O-Ringes 33 vorgesehen. Ferner ist eine Nut 34 zur Aufnahme eines weiteren O-Rings 35 an der zur Aufnahme des Düsenkörpers geöffneten Stirnfläche des Gehäuses 3 in der Gehäusewand vorgesehen. An dieser Seite ist am Gehäuse 3 ein Aussengewinde 36 ausgebildet.
Ein Deckel 4 dient einerseits zum Verschließen des Gehäuses 3 und weist andererseits Anschlüsse für die Zuführung des Zerstäubungsguts und des Druckgases auf. Der Deckel 4 besitzt eine zylindrische Grundform mit einer axial angeordneten Bohrung 41 für die Zuführung des Zerstäubungsguts und einer exzentrisch angeordneten Bohrung 42 für die Zuführung von Druckluft. Ein Abschnitt des Deckels 4 besitzt einen Durchmesser, der ausreichend ist, um im Zusammenwirken mit dem O-Ring 35 den Innenraum des Gehäuses 3 abzudichten. An der dem Düseneinsatz 1 zugewandten Seite des Deckels 4 sind zwei flache Kreiszylinder mit kleinerem Durchmesser vorgesehen; in der Oberfläche des kleineren Kreiszylinders ist eine Kreisnut 43 zur Aufnahme eines O-Rings 44 ausgebildet. Der größere der beiden Durchmesser dient zur Führung des Deckels 4 im Gehäuse 3. Durch die drei O-Ringe 33, 35, 44 erfolgt eine vollständige Trennung des Gas- und Flüssigkeitsteils innerhalb der Düse.
Eine Überwurfmutter 5 dient zur Sicherung der in das Gehäuse 3 eingesetzten Teile und weist dazu an einer inneren Umfangsoberfläche ein Gewinde 51 auf. In der gegenüberliegenden Stirnseite ist eine Öffnung 52 vorgesehen, die den Zugang zu den Anschlußbohrungen 41 und 42 im Deckel 4 gewährleistet.
Fig. 4 zeigt das Ausführungsbeispiel der erfindungsgemäßen Zerstäuberdüse in zusammengesetztem Zustand. Der Düsenkörper, d.h. der Düseneinsatz 1 und die Düsenaufnahme 2 sind im Gehäuse 3 angeordnet. Die kreiskegelige Auflagefläche 11 des Düseneinsatzes 1 liegt auf der komplementär geformten Aufnahmefläche 21 der Düsenaufnahme 2 auf. Über den Deckel 4, die Überwurfmutter 5 und das Gehäuse 3 werden die beiden den Düsenkörper bildenden Teile gegeneinander verspannt, was einen guten Sitz des Düseneinsatzes in der Düsenaufnahme und eine Ausrichtung der Austrittsöffnung 14 in Bezug auf die Mischkammer 23 gewährleistet. Die als Nuten in der Aufnahmefläche 21 ausgebildeten Kanäle 22 werden an ihrer ursprünglich geöffneten Oberseite durch die Auflagefläche 11 des Düseneinsatzes 1 verschlossen. Die durch die exzentrische Anschlußbohrung 42 im Deckel 4 zugeführte Druckluft gelangt durch den sich an den abgeflachten Stellen 12 des Düseneinsatzes 1 im Gehäuse 3 ergebenden Raum 6 in den Ringraum 7, der sich um den flachen Kreiszylinder mit kleinerem Durchmesser des Düseneinsatzes 1 herum bildet. Von dort strömt die Druckluft durch die drei Kanäle 22 in die Mischkammer 23.
Fig. 5 zeigt ein weiteres Ausüfhrungsbeispiel der erfindungsgemäßen Zerstäuberdüse im zusammengesetzten Zustand. Der Aufbau entspricht in vielen Punkten dem zuvor beschriebenen Ausführungsbeispiel, so daß auf dessen Beschreibung Bezug genommen werden kann. Im folgenden werden die Unterschiede erläutert, durch die sich die beiden Ausführungsbeispiele auszeichnen.
Der Düseneinsatz 1 besitzt bei dem in Fig. 5 gezeigten Ausführungsbeispiel für das Zerstäubungsgut einen Kanal 13 mit einem bis auf einen Abschnitt im Bereich der Austrittsöffnung 14 konstanten Durchmesser. Dieser Durchmesser ist so gewählt, daß eine abgeflachte Kanüle eingebracht und dadurch der Totraum minimiert werden kann. Der Auslauf mit dem kleinsten Durchmesser d wird aus Reinigungsgründen so kurz wie möglich gehalten.
Im Deckel 4 ist die axiale Bohrung 41 so ausgestaltet, daß eine Gummischeibe 43 mit einem zentrischen Loch für die Kanüle 8 eingelegt werden kann. Darüber ist ein Zwischenring 44 angeordnet, der auf der Seite der Gummischeibe 43 nach innen leicht konisch, vorzugsweise unter einem Winkel von 160° ausgebildet ist. Mit Hilfe einer die Kanüle axial aufnehmenden Andrückschraube 45 wird die Kanüle nach dem vollständigen Einschieben in den Kanal 13 durch Anziehen der Andrückschraube arretiert und gegen die Umgebung abgedichtet.
Der Durchmesser der Mischkammer 23 ist so bemessen, daß ihr freier Querschnitt etwa die Summe der freien Querschnitte der Kanäle 22 für das Druckgas am Auslauf in die Mischkammer 23 ergibt, um die Energie der zugeführten Druckluft optimal auszunutzen. Bei zu großem Querschnitt der Mischkammer 23 kommt es zu einer verfrühten Entspannung, bei zu kleinem Querschnitt zu Stauungen der Druckluft. Angestrebt wird eine optimierte Ausnutzung der Umsetzung der Druckdifferenz zwischen Druckgas und Umgebungsdruck in kinetische Energie im Bereich der Austrittsöffnungen der Kanäle 22. Eine entscheidende Rolle spielt dabei der Abstand zwischen der aus dem Kanal 13 austretenden Flüssigkeit und den Austrittsöffnungen der Kanäle 22 für die Druckluft. Die Länge der Mischkammer entspricht in etwa ihrem Durchmesser. Eine zu kurze Mischkammer würde bezüglich der erforderlichen Kanaltiefe im Mündungsbereich fertigungstechnische Schwierigkeiten bereiten. Bei einer zu langen Mischkammer kann es zu einer Verschlechterung der Zerstäubungseffizienz durch Impaktion und Reibung, sowie zur Verstopfungsneigung kommen.
Auf der Grundlage dieser Überlegungen wurde festgestellt, daß erfindungsgemäß folgende Größenverhältnisse einzuhalten sind. Die Querschnittsfläche AM der Mischkammer 23 entspricht im wesentlichen der Summe der minimalen Querschnittsflächen AD der Kanäle 22. Der kleinste Durchmesser d des Kanals 13 für das Zerstäubungsgut an der Austrittsöffnung 14 beträgt etwa 55% bis 85%, vorzugsweise 60% bis 70% des Durchmessers D der Mischkammer 23.
Um einerseits durch das Verspannen des Düseneinsatzes und der Düsenaufnahme gegeneinander einen sicheren Sitz und eine Selbstzentrierung der beiden den Düsenkörper bildenden Teile zu gewährleisten und andererseits die Energieabgabe der Druckluft an das durch den Kanal 13 zugeführte Zerstäubungsgut zu begünstigen, sollte der Winkel der kreiskegeligen Auflagefläche 11 bzw. der komplementären Aufnahmefläche 21 etwa 120° betragen. Kleinere Winkel als 120° wirken sich nicht nur in diesem Zusammenhang ungünstig aus, sondern führen auch zu Problemen bei der Fertigung und Reinigung des Düsenkörpers (Gradbildung am Auslauf im Düseneinsatz bei der Spritzfertigung, Beschädigungsgefahr des Bohrungsrandes im Düseneinsatz, schlechtere Zugänglichkeit der Mischkammer bei der Reinigung).
Zwar können die Kanäle 22 für die Druckluft anders als bei den beschriebenen Ausführungsbeispiel auch in der Auflagefläche 11 des Düseneinsatzes 1 ausgebildet werden. Jedoch ist die oben beschriebene Ausgestaltung zu bevorzugen, da die Gefahr einer mechanischen Beschädigung der Kanäle insbesondere im Bereich der Mischkammer 23 verringert ist. Auch ist die Querschnittsform der Kanäle 22 für die Druckluft nicht auf eine rechteckige Form oder die Form eines gleichschenkeligen Trapezes beschränkt. Im Hinblick auf eine einfache Spritzfertigung sind die beschriebenen Querschnittsformen vorteilhaft und eignen sich auch in besonderem Maße im Hinblick auf die Querschnittsverringerung zur Mitte des Düsenkörpers hin, die zur Beschleunigung der Druckluft unter Zunahme der kinetischen Energie dient.
Bei dem beschriebenen Ausführungsbeispiel der erfindungsgemäßen Zerstäuberdüse sind drei Kanäle 22 für die Druckluft in der Aufnahmefläche 21 vorgesehen. Bei einem in etwa quadratischen Querschnitt des Luftkanals 22 im Bereich der Mündung in die Mischkammer 23 ist der Einfluß der Fertigungsabweichungen auf die Querschnittsgröße am kleinsten. Die Kanaltiefe sollte etwa der halben Mischkammerlänge entsprechen. Aus geometrischen Überlegungen und im Hinblick auf die mögliche Fertigungsgenauigkeit bei Spritzfertigung scheint die Anzahl von drei Kanälen für die Zuführung von Druckluft optimal zu sein. Eine ungerade Anzahl der Kanäle für die Druckluft, insbesondere drei Kanäle in 120°-Anordnung stabilisiert und zentriert das ausströmende Aerosol nach dem Austritt aus der Zerstäuberdüse. Unterstützend kann hier auch eine tangentiale Anordnung der Kanäle 22 bezogen auf die Mischkammer 23 wirken. Aus fertigungstechnischen Überlegungen heraus erscheint diese Ausgestaltung jedoch schwierig zu realisieren zu sein. Zu bevorzugen ist ferner eine flache Ausgestaltung der Kanäle 22 für die Druckluft, da dadurch die Reinigung nicht nur der Kanäle sondern auch der Mischkammer vereinfacht wird. Der Kanal 13 für das Zerstäubungsgut im Düseneinsatz 1 kann mit einem Draht oder einer Nylonschnur gereinigt werden.
Da durch die Zuführung von Druckluft in die Mischkammer 23 dort ein Überdruck herrscht, muß das Zerstäubungsgut durch den Kanal 13 im Düseneinsatz 1 unter Druck zugegeben werden. Dadurch bietet sich die Möglichkeit, das Verhältnis der Massenströme über die Menge des zugeführten Zerstäubungsguts zu variieren. Praktisch können beliebige Mengen des Zerstäubungsgutes zerstäubt werden, da eine weit größere Menge (> 250 µl/min) als die für therapeutische Zwecke sinnvolle Menge von bis zu 50 µl/min zugeführt werden kann. Bei einem Luftdurchsatz von 4,5 bis 5 l/min und einer Druckdifferenz von 2 bar kann die therapeutisch sinnvolle Menge auch problemlos abgetrocknet werden. Dadurch werden Partikel des Primäraerosols mit einem Durchmesser von bis zu 16 µm allein durch die Abtrocknung so weit verkleinert, daß durch die erfindungsgemäße Zerstäuberdüse ohne weitere Nachbehandlung ein Aerosol erzeugt wird, das zu 100% lungengängige Partikel enthält.
Die Vorteile der erfindungsgemäßen Zerstäuberdüse liegen in der einfachen Herstellbarkeit (Massenartikel), im einfachen Aufbau (leichte Reinigung), in der Dosierungsmöglichkeit der Flüssigphase (unterschiedliche Rezepturen), im feinen Primärtröpfchenspektrum (relativ hohe Ausgangskonzentration der Medikamentlösung möglich, d.h. kurze Inhalationszeiten) und im geringen pneumatischen Leistungsbedarf (Δp < 2 bar, Luftvolumenstrom < 5 l/min, d.h. Kompressorbetrieb möglich, Heimtherapie).
Im folgenden werden die Ergebnisse von Untersuchungen dargestellt, die an verschieden ausgestalteten Zerstäuberdüsen mit erfindungsgemäßem Aufbau durchgeführt wurden.
Dabei ist zunächst festzuhalten, daß der Luftdurchsatz der untersuchten Zerstäuberdüsen mit der Druckdifferenz und der Bohrung der Düsenaufnahme, d.h. dem Durchmesser der Mischkammer 23 steigt. Ausgehend von einem Düseneinsatz 1 mit einer Austrittsöffnung 14 von 0,30 mm (d 0,30), kombiniert mit einer Düsenaufnahme 2 mit einer Mischkammer 23 von 0,40 mm Durchmesser (D 0,40), nimmt der mittlere Tropfendurchmesser mit zunehmendem Mischkammerdurchmesser bei konstantem Druck zunächst ab, durchläuft ein Minimum und nimmt anschließend leicht wieder zu. Ein Optimum ergibt sich bei der Kombination d 0,30/D 0,45. Dieses Verhalten kann anhand der Energieverhältnisse in der Mischkammer 23 erklärt werden.
Bei allen drei Düsenaufnahmen sind die Kanalabmessungen gleich. Die Flüssigkeit wird mit konstantem Volumenstrom durch eine Bohrung von 0,30 mm Durchmesser in die Mischkammer 23 gefördert. Bei einem Mischkammerdurchmesser D von 0,40 mm ist ihr freier Querschnitt kleiner als die Summe der freien Querschnitte der Kanäle 22 am Mischkammereintritt. Es kommt zu Stauungen der Druckluft in der Mischkammer 23. Bei einem größeren Durchmesser der Mischkammer 23, etwa 0,50 mm ist der Abstand zwischen der Kanalmündung und der Flüssigkeitsbohrung 14 größer als bei einem kleineren Mischkammerdurchmesser. Die Druckluft kann sich zu früh entspannen. In beiden Fällen, einem zu kleinen oder zu großen Mischkammerdurchmesser D, wird die Abgabe der kinetischen Energie der Druckluft an die Flüssigkeit negativ beeinflußt und damit die Dispergiereffizient schlechter.
Bei einer Auftragung der mittleren Tröpfchendurchmesser über der pneumatischen Leistung, die als das Produkt der Druckdifferenz Δp und des Luftdurchsatzes V definiert ist, weisen beide Düsenkörper, d 0,30 / D 0,45 und d 0,30/ D 0,40 etwa die gleiche Leistungseffizienz auf. Das Primärtropfchenspektrum benötigt zur Abtrocknung eine definierte Menge an Dispergierluft. Der Düsenkörper 0,30/DK 0,45 ist daher besser geeignet, da mit ihm ein konstanter Flüssigkeitsstrom in einen Spray mit einem bestimmten mittleren Tröpfchendurchmesser bei mehr Luftdurchsatz und niedrigerer Druckdifferenz dispergiert wird.
Die Dispergiereffizient des Düsenkörpers d 0,30 / D 0,45 ist von Flüssigkeitsströmen bis zu 250 µl/min unabhängig. In der Mischkammer herrschen aufgrund der Lufstrahlumlenkung und Luftstrahlbeschelunigung bestimmte, einem Betriebspunkt entsprechende Scherkräfte. Diese Scherkräfte wirken den Oberflächen an den Flüssigkeitströpfchen entgegen. Die Oberflächenkraft hängt vom Tropfendurchmesser ab. Einer bestimtmen Scherkraft entspricht also ein bestimmter Tropfendurchmesser, unterhalb dessen der Tropfen nicht weiter zerkleinert werden kann. Zur Dispergierung der Flüssigkeit wird der Druckluft ein bestimmter, der Flüssigkeitsmenge entsprechender Anteil an Energie entnommen. Der Rest dient zum Transport oder dissipiert. Bei größeren Flüssigkeitsströmen kann die Druckluft mehr Dispergierenergie freisetzen. Aufgrund der erforderlichen Abtrocknung sind aber nur kleinere, vom Luftdurchsatz abhängige Flüssigkeitsströme sinnvoll.
Die Auswahl des Betriebspunktes einer Düse kann anhand der Auftragung des Produktes aus dem mittleren Tropfendurchmesser und dem Luftdurchsatz über der Druckdifferenz getroffen werden. Dieses Kriterium dient auch zur Auswahl eines geeigneten Kompressors für die Heimtherapie. Der optimale Betriebspunkt entspricht dem Minimum im Verlauf dieser Funktion. Der Flüssigkeitsstrom und die Medikamentenkonzentration müssen dann dem Luftdurchsatz im Betriebspunkt angepaßt werden. Für kurze Inhalationszeiten sind hohe Flüssigkeitsströme mit hoher Medikamentenkonzentration nötig, die hohe Luftdurchsätze und feinere Primärtröpfchenverteilungen erfordern. Die Düse wird bei höheren Drücken betrieben als dem ermittelten energetischen Optimum entspricht.

Claims (14)

  1. Zerstäuberdüse zum Zerstäuben eines pulverförmigen oder flüssigen Zerstäubungsguts, vorzugsweise in Form einer Lösung oder Suspension, für die Inhalationstherapie, mit einem Düsenkörper bestehend aus
    einem Düseneinsatz (1) mit
    -- einer Auflagefläche (11) und
    -- einem Kanal (13) für die Zuführung des Zerstäubungsguts, der in der Mitte der Auflagefläche (11) angeordnet ist und der sich in Längsrichtung der Grundform des Düseneinsatzes (1) erstreckt,
    und
    einer Düsenaufnahme (2) zur Aufnahme des Düseneinsatzes (1) mit
    -- einer Aufnahmefläche (21), auf der die Auflagefläche (11) des Düseneinsatzes (1) aufliegt,
    -- Kanälen (22) für die Zuführung eines Druckgases, die sich im wesentlichen radial zur Grundform der Düsenaufnahme (2) erstrecken, und
    -- einer kreiszylindrischen Mischkammer (23), in die der Kanal (13) für das Zerstäubungsgut und die Kanäle (22) für das Druckgas münden,
    dadurch gekennzeichnet, daß
    die Kanäle (22) für das Druckgas in der Aufnahmefläche (21) der Düsenaufnahme (2) in Form von Nuten ausgebildet sind und in die Mischkammer (23) durch deren Mantelfläche einmünden, und
    die Summe der minimalen Querschnittsflächen AD der Kanäle (22) für das Druckgas im Mündungsbereich im wesentlichen der Querschnittsfläche AM der Mischkammer (23) entspricht.
  2. Zerstäuberdüse nach Anspruch 1, dadurch gekennzeichnet, daß die Mischkammer (23) kreiszylindrisch ist.
  3. Zerstäuberdüse nach Anspruch 2, dadurch gekennzeichnet, daß der Durchmesser D der Mischkammer (23) etwa gleich ihrer Länge ist.
  4. Zerstäuberdüse nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die Kanäle (22) für das Druckgas in der Düsenaufnahme (2) einen rechteckigen oder trapezförmigen Querschnitt besitzen.
  5. Zerstäuberdüse nach Anspruch 4, dadurch gekennzeichnet, daß die Kanäle (22) einen trapezförmigen Querschnitt besitzen, und daß die Seitenwände der trapezförmigen Kanäle (22) für das Druckgas gegenüber einer zum Boden der Kanäle senkrechten Seitenwand um einen Winkel von 3° bis 15° geneigt sind.
  6. Zerstäuberdüse nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die Kanäle (22) für das Druckgas einen sich zur Mischkammer (23) hin verjüngenden Querschnitt aufweisen.
  7. Zerstäuberdüse nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß der Durchmesser d der Austrittsöffnung des Kanals (13) für das Zerstäubungsgut etwa 55% bis 85% des Durchmessers D der Mischkammer (23) entspricht.
  8. Zerstäuberdüse nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß der Durchmesser d der Austrittsöffnung des Kanals (13) für das Zerstäubungsgut etwa 60% bis 70% des Durchmessers D der Mischkammer (23) entspricht.
  9. Zerstäuberdüse nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß der Durchmesser d der Austrittsöffnung des Kanals (13) gleich 0,3 mm und der Durchmesser D der Mischkammer (23) gleich 0,48 mm ist.
  10. Zerstäuberdüse nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß der Düseneinsatz (1) und die Düsenaufnahme (2) eine kreiszylindrische Grundform aufweisen, die Auflagefläche (11) und die Aufnahmefläche (21) kreiskegelig sind und drei um 120° entlang des Umfangs versetzte Kanäle (22) in der Aufnahmefläche (21) vorgesehen sind.
  11. Zerstäuberdüse nach Anspruch 10, dadurch gekennzeichnet, daß der Düseneinsatz (1) aus zwei flachen Kreiszylindern mit unterschiedlichem Durchmesser und einem Kreiskegel aufgebaut ist, die koaxial zueinander angeordnet sind, so daß nach Aufnahme des Düseneinsatzes (1) in einem zylindrischen Gehäuse (3) im Bereich des kleineren Kreiszylinders ein Ringraum (7) gebildet wird, durch den die Druckluft den Kanälen (22) der Düsenaufnahme (2) zugeführt wird.
  12. Zerstäuberdüse nach Anspruch 11,dadurch gekennzeichnet, daß der größere Kreiszylinder des Düseneinsatzes (11) am Umfang Abflachungen (12) aufweist, in deren Bereich im Gehäuse (3) ein Raum (6) festgelegt wird, durch den die Druckluft in den Ringraum (7) zugeführt wird.
  13. Zerstäubervorrichtung nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die Auflagefläche (11) des Düseneinsatzes (1) und die Aufnahmefläche (21) der Düsenaufnahme (2) kreiskegelig sind.
  14. Zerstäubervorrichtung nach Anspruch 13, dadurch gekennzeichnet, daß der Kreiskegel einen Winkel im Bereich von 100° bis 140°, vorzugweise von 120° besitzt.
EP93120417A 1993-12-17 1993-12-17 Zerstäuberdüse Expired - Lifetime EP0663241B1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
ES93120417T ES2120471T3 (es) 1993-12-17 1993-12-17 Boquilla de pulverizacion.
DK93120417T DK0663241T3 (da) 1993-12-17 1993-12-17 Forstøverdyse
DE59308788T DE59308788D1 (de) 1993-12-17 1993-12-17 Zerstäuberdüse
EP93120417A EP0663241B1 (de) 1993-12-17 1993-12-17 Zerstäuberdüse
AT93120417T ATE168289T1 (de) 1993-12-17 1993-12-17 Zerstäuberdüse
CA002138234A CA2138234A1 (en) 1993-12-17 1994-12-15 Nebuliser nozzle
US08/760,911 US5740966A (en) 1993-12-17 1996-12-06 Nebulizer nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP93120417A EP0663241B1 (de) 1993-12-17 1993-12-17 Zerstäuberdüse

Publications (2)

Publication Number Publication Date
EP0663241A1 EP0663241A1 (de) 1995-07-19
EP0663241B1 true EP0663241B1 (de) 1998-07-15

Family

ID=8213506

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93120417A Expired - Lifetime EP0663241B1 (de) 1993-12-17 1993-12-17 Zerstäuberdüse

Country Status (7)

Country Link
US (1) US5740966A (de)
EP (1) EP0663241B1 (de)
AT (1) ATE168289T1 (de)
CA (1) CA2138234A1 (de)
DE (1) DE59308788D1 (de)
DK (1) DK0663241T3 (de)
ES (1) ES2120471T3 (de)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5969733A (en) * 1996-10-21 1999-10-19 Jemtex Ink Jet Printing Ltd. Apparatus and method for multi-jet generation of high viscosity fluid and channel construction particularly useful therein
EP1272243B1 (de) 2000-04-11 2005-10-26 Trudell Medical International Aerosolspender mit einer möglichkeit für positiven ausatemdruck
DE10163102A1 (de) * 2001-12-20 2003-07-10 Alto Deutschland Gmbh Hochdruckdüse, insbesondere für ein Hochdruckreinigungsgerät
US20030205226A1 (en) 2002-05-02 2003-11-06 Pre Holding, Inc. Aerosol medication inhalation system
US6904908B2 (en) 2002-05-21 2005-06-14 Trudell Medical International Visual indicator for an aerosol medication delivery apparatus and system
US7267120B2 (en) * 2002-08-19 2007-09-11 Allegiance Corporation Small volume nebulizer
MXPA05007154A (es) * 2002-12-30 2005-09-21 Nektar Therapeutics Atomizador prepeliculizacion.
US7360537B2 (en) * 2003-04-16 2008-04-22 Trudell Medical International Antistatic medication delivery apparatus
HUE029994T2 (en) 2005-12-08 2017-04-28 Insmed Inc Lipid-based preparations of antinfectants for the treatment of lung infections
US9119783B2 (en) 2007-05-07 2015-09-01 Insmed Incorporated Method of treating pulmonary disorders with liposomal amikacin formulations
EP3311820A1 (de) 2008-02-26 2018-04-25 Sunovion Respiratory Development Inc. Verfahren und system zur behandlung der chronisch obstruktiver lungenerkrankung durch verabreichung zerstäubter anticholinergika
US20100055045A1 (en) * 2008-02-26 2010-03-04 William Gerhart Method and system for the treatment of chronic obstructive pulmonary disease with nebulized anticholinergic administrations
MX2013000683A (es) * 2010-07-20 2013-02-27 Sulzer Mixpac Ag Mezclador pulverizador estatico.
RU2567638C2 (ru) 2010-07-20 2015-11-10 Зульцер Микспэк Аг Статический распылительный смеситель
US20150272880A1 (en) 2012-05-21 2015-10-01 Insmed Incorporated Systems for treating pulmonary infections
BR112015012351A8 (pt) 2012-11-29 2019-10-01 Insmed Inc composição de antibiótico de glicopeptídeo à base de lipídeo estabilizado e uso de um componente lipídico, um componente de antibiótico de glicopeptídeo e um aminoácido ou derivado do mesmo
PT3104854T (pt) 2014-02-10 2020-06-26 Respivant Sciences Gmbh Estabilizadores de mastócitos para tratamento de doença pulmonar
WO2015120389A1 (en) 2014-02-10 2015-08-13 Patara Pharma, LLC Mast cell stabilizers treatment for systemic disorders
PL3142643T3 (pl) 2014-05-15 2019-12-31 Insmed Incorporated Sposoby leczenia zakażeń płuc prątkami niegruźliczymi
WO2017011729A1 (en) 2015-07-16 2017-01-19 Patara Pharma, LLC Combination therapies for the treatment of lung diseases
US10265296B2 (en) 2015-08-07 2019-04-23 Respivant Sciences Gmbh Methods for the treatment of systemic disorders treatable with mast cell stabilizers, including mast cell related disorders
US10238625B2 (en) 2015-08-07 2019-03-26 Respivant Sciences Gmbh Methods for the treatment of mast cell related disorders with mast cell stabilizers
WO2017034961A1 (en) 2015-08-21 2017-03-02 Trilogy Therapeutics, Inc. Methods of treating lung infection with caspofungin
PE20181295A1 (es) 2015-09-01 2018-08-07 First Wave Bio Inc Metodos y composiciones para tratar afecciones asociadas a una respuesta inflamatoria anomala
GB2542142A (en) * 2015-09-08 2017-03-15 De Beers Uk Ltd Vacuum nozzle
WO2018044942A1 (en) 2016-08-31 2018-03-08 Patara Pharma, LLC Cromolyn compositions for treatment of chronic cough due to idiopathic pulmonary fibrosis
JP2019531308A (ja) 2016-10-07 2019-10-31 レシュピファント サイエンシス ゲゼルシャフト ミット ベシュレンクター ハフトゥングRespivant Sciences Gmbh 肺線維症の治療のためのクロモリン組成物
US11590175B2 (en) 2017-08-23 2023-02-28 Merakris Therapeutics Llc Compositions containing amniotic components and methods for preparation and use thereof
WO2019157453A1 (en) 2018-02-12 2019-08-15 Trilogy Therapeutics, Inc. Caspofungin compositions for inhalation
JP7460534B2 (ja) 2018-03-30 2024-04-02 インスメッド インコーポレイテッド リポソーム医薬品の連続製造方法
US20230102999A1 (en) 2020-01-10 2023-03-30 First Wave Bio, Inc. Deuterated niclosamide
US10980756B1 (en) 2020-03-16 2021-04-20 First Wave Bio, Inc. Methods of treatment
US20230190684A1 (en) 2020-03-16 2023-06-22 First Wave Bio, Inc. Methods of treating covid-19 with a niclosamide compound
CN112934513B (zh) * 2021-01-29 2022-08-05 重庆重交再生资源开发股份有限公司 一种可拆卸式喷涂设备及其方法
US20240207299A1 (en) 2021-03-29 2024-06-27 Chimerix, Inc. Pyrrolopyrimidine nucleosides for treating or preventing a sars-cov-2 infection

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2419365A (en) * 1944-06-08 1947-04-22 Nagel Theodore Method of atomizing liquids
US2984421A (en) * 1958-08-11 1961-05-16 Sarah A Hession Adjustable aerosol device
US2984420A (en) * 1959-11-20 1961-05-16 Jr John W Hession Aerosol devices
US3512719A (en) * 1968-04-05 1970-05-19 Morton E Phelps Siphon nozzle
US3578246A (en) * 1969-10-16 1971-05-11 Gulf Research Development Co Spraying process
US3717306A (en) * 1971-03-10 1973-02-20 Hushon R Nozzle for spraying foaming materials
US3770209A (en) * 1972-04-19 1973-11-06 Delavan Manufacturing Co Aspirating spray head
US4278418A (en) * 1975-12-15 1981-07-14 Strenkert Lynn A Process and apparatus for stoichiometric combustion of fuel oil
JPS5710011A (en) * 1980-06-23 1982-01-19 Shigetaka Tamai Combustion method and device therefore
DE3145390A1 (de) * 1981-11-16 1983-05-26 Beiersdorf Ag, 2000 Hamburg Spritzpistole zum gleichzeitigen verspruehen beider komponenten einer beschichtungsmasse
SU1547857A1 (ru) * 1988-03-24 1990-03-07 Всесоюзный Научно-Исследовательский Институт Химических Реактивов И Особо Чистых Химических Веществ Распылитель
ATE82171T1 (de) * 1988-05-19 1992-11-15 Alusuisse Lonza Services Ag Verfahren und vorrichtung zum kuehlen eines gegenstandes.
DE9111596U1 (de) * 1991-09-18 1991-11-28 Otto, Roland, 8752 Kleinostheim Spritzdüse

Also Published As

Publication number Publication date
DK0663241T3 (da) 1999-04-19
DE59308788D1 (de) 1998-08-20
CA2138234A1 (en) 1995-06-18
EP0663241A1 (de) 1995-07-19
US5740966A (en) 1998-04-21
ES2120471T3 (es) 1998-11-01
ATE168289T1 (de) 1998-08-15

Similar Documents

Publication Publication Date Title
EP0663241B1 (de) Zerstäuberdüse
EP1243343B1 (de) Zweistoffsprühdüse
DE10304386B4 (de) Doppelfluid-Verwirbelungsdüse mit selbstreinigendem Zapfen
EP0775023B1 (de) Spritzdüse für die regulierung der durchflussmenge pro zeiteinheit
DE2121066C3 (de) Zerstäubungsdüse für einen Zerstäubungstrockner
DE3100001C2 (de)
EP0570446B1 (de) Verfahren zum Auftragen einer Flüssigkeit auf ein Substrat
EP2100659B1 (de) Vorrichtung zum Erzeugen und Versprühen eines Aerosols
DE3609350C2 (de)
DE2650807A1 (de) Brennvorrichtung
EP1814671B1 (de) Koaxiales zuführsystem
WO2016055116A1 (de) Zweistoffdüse
DE1475160B2 (de) Druckgaszerstäuber zum Versprühen von Flüssigkeiten
DE10319582B4 (de) Zweistoffsprühdüse
DE2903148A1 (de) Vorrichtung fuer die beschichtung von gegenstaenden mit elektrostatisch aufgeladenem staub
EP0471323B1 (de) Flüssigkeitsvernebler für Medikamente
EP1201316B1 (de) Hochrotationszerstäuber zur Aufbringung von Pulverlack
EP0453801A2 (de) Vorrichtung zum Versprühen von dispersen Systemen
DE3871805T2 (de) Pulverspritzpistole.
EP0282873A2 (de) Pneumatische Fördereinrichtung
DE2531815A1 (de) Vorrichtung zur verwirbelung und verteilung eines in einem traegergas schwebenden pulvers
WO2011116892A1 (de) Zweistoff-innenmischdüsenanordnung und verfahren zur zerstäubung einer flüssigkeit
DE2604264A1 (de) Spruehduese
EP0914870A1 (de) Mehrstoffzerstäubungsdüse mit konzentrischen Sprühöffnungen
WO2011116893A1 (de) Zweistoff-innenmischdüsenanordnung und verfahren zur zerstäubung einer flüssigkeit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI NL PT SE

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI NL PT SE

17P Request for examination filed

Effective date: 19950810

17Q First examination report despatched

Effective date: 19960604

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PARI GMBH SPEZIALISTEN FUER EFFEKTIVE INHALATION

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980715

REF Corresponds to:

Ref document number: 168289

Country of ref document: AT

Date of ref document: 19980815

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980716

REF Corresponds to:

Ref document number: 59308788

Country of ref document: DE

Date of ref document: 19980820

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BUECHEL & PARTNER AG PATENTBUERO

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2120471

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981217

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981217

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981218

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19981229

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19981231

Year of fee payment: 6

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 19981014

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: PARI G.M.B.H. SPEZIALISTEN FUR EFFEKTIVE INHALATI

Effective date: 19981231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990701

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19990701

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19991217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000831

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20000630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020619

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030701

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20000114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981217