EP0645501B1 - Verfahren zur Herstellung von vorgefertigten Modulen für die Erstellung von Bauwerken und vorgefertiger Modul - Google Patents

Verfahren zur Herstellung von vorgefertigten Modulen für die Erstellung von Bauwerken und vorgefertiger Modul Download PDF

Info

Publication number
EP0645501B1
EP0645501B1 EP94114841A EP94114841A EP0645501B1 EP 0645501 B1 EP0645501 B1 EP 0645501B1 EP 94114841 A EP94114841 A EP 94114841A EP 94114841 A EP94114841 A EP 94114841A EP 0645501 B1 EP0645501 B1 EP 0645501B1
Authority
EP
European Patent Office
Prior art keywords
concrete
reinforcement
head
module
modules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94114841A
Other languages
English (en)
French (fr)
Other versions
EP0645501A1 (de
Inventor
Eberhard Schrade
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to SI9430041T priority Critical patent/SI0645501T1/xx
Publication of EP0645501A1 publication Critical patent/EP0645501A1/de
Application granted granted Critical
Publication of EP0645501B1 publication Critical patent/EP0645501B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/16Structures made from masses, e.g. of concrete, cast or similarly formed in situ with or without making use of additional elements, such as permanent forms, substructures to be coated with load-bearing material
    • E04B1/164Structures made from masses, e.g. of concrete, cast or similarly formed in situ with or without making use of additional elements, such as permanent forms, substructures to be coated with load-bearing material with vertical and horizontal slabs, only the horizontal slabs being partially cast in situ
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/348Structures composed of units comprising at least considerable parts of two sides of a room, e.g. box-like or cell-like units closed or in skeleton form
    • E04B1/34815Elements not integrated in a skeleton
    • E04B1/34823Elements not integrated in a skeleton the supporting structure consisting of concrete

Definitions

  • the invention is based on a method for producing prefabricated floor-free modules, which are used for the construction of buildings, according to the preamble of claim 1 and a prefabricated module according to the preamble of claim 8.
  • a method using prefabricated modules for the production of structures can be carried out in such a way that the individual modules are placed side by side and one above the other and connected to one another, it having proven to be particularly advantageous for horizontal and vertical bracing of a building consisting of such modules to be continuous Applying in-situ concrete layers to the concrete ceilings of modules arranged next to each other for one floor, resulting in a very dimensionally accurate, solidified structure of the building.
  • This additional in-situ concrete layer which is applied to the prefabricated ceilings of the modules or to intermediate spaces bridging intermediate modules, which are referred to below as so-called filigree slabs, makes an additional separate floor of each module unnecessary, since the prefabricated concrete ceiling and the existing floor slab of the in-situ concrete is a double layer anyway.
  • floor-free modules DE-A-41 21 253
  • stiffening or stabilizing agents for the support feet for a sufficiently rigid, in particular transportable structure of each module, which assumes a stool-like shape with ground clearance. similar to one all-round frame on a table, so as to compensate and absorb moments that act laterally on the feet and can act in addition to horizontal forces.
  • modules with a good stool-like design i.e. at least one concrete ceiling and usually four supporting feet, are suitable, the concrete ceiling of which is thinner in the middle than a circumferential edge, so that the module ceilings, seen from above, have a trough-like, fluted shape.
  • Such a basic form can, however, turn out to be disruptive in certain construction projects because the application of a continuous in-situ concrete ceiling, i.e. it extends across all modules, also makes it necessary to stabilize it with continuous reinforcement bars or bars or the laying on of mats, which can also be done in each case adjacent modules must extend so that the in-situ concrete structure is solidified and stabilized throughout.
  • the present invention has for its object to solve the problem that arises here, which on the one hand requires a reinforced edge for the stabilization of the support feet of the modules before final assembly and which on the other hand allows reinforcing or reinforcing iron or materials without greater effort can be laid across all adjacent modules in order to then apply the desired stabilizing in-situ concrete layer to the entire resulting surface.
  • the invention solves this problem with the features of claim 1 and claim 8 and has the decisive advantage that the stiffening of the feet of the individual modules after their manufacture is exemplary, possibly even more satisfactory than with a circumferential concrete edge of each module, since one Metallic stiffening frame can react flexibly to moments acting on the feet, but on the other hand the frame, which is open at the side in many places, enables the easy insertion or pushing of reinforcing bars, so that both the reinforcement and Reinforcing irons and their connection with each other as well as through the in-situ concrete ceiling that is then applied over the entire available area next to modules placed in place, results in a highly stable, intimate fusion of the individual modules to form a monolithic compact structure, so that it is possible despite reduced use of material (elimination of the module floors, elimination) a circumferential edge and the like) buildings extending over many floors in height can be created in such a proven module technology.
  • the at least partially circumferential reinforcement frame includes the head regions of the support feet extending over the prefabricated concrete ceiling of the module and their inner reinforcement and is concreted into the head regions, with the further advantageous embodiment that the reinforcement frame then runs along the outer edge edges from basically any reinforcement systems and arrangements has an additional connection with the reinforcement or reinforcement of the prefabricated concrete ceiling itself, either because it is part of the reinforcement mats or rods and iron of the prefabricated concrete ceiling in the original construction or in any case with lower sections of the frame in the concrete ceiling is concreted.
  • the reinforcement frame preferably consists of iron bars and these reinforcement connecting them, which can extend in zigzags to below the concrete ceiling, there are a large number of sufficiently large lateral openings, because in practical construction such a circumferential reinforcement frame consists only of a large number of longitudinal, transverse - And zigzagging, interconnected, also welded iron bars, which act like a lattice frame and practically allow you to push through other reinforcing and reinforcing bars at any point.
  • the preferred final shape or structure of the reinforcement frame or the surrounding reinforcement, including the head parts of the support feet, is in principle arbitrary; In addition to or instead of rods, pipes, profile pieces made of metal, iron or steel, you can also use prefabricated, steel-reinforced concrete pieces yourself, all of these different reinforcement shapes or structures in the form of the surrounding reinforcement frame in any case with the usual ones in order to connect the size of the in-situ concrete to be applied over the height of the prefabricated concrete ceiling head parts of the support feet, usually welded to their reinforcements and reinforcements and cast in concrete.
  • the support feet themselves also contain appropriate reinforcement baskets, which are useful because the head parts of the support feet, which continue upwards, each end in a head plate, which, with the centering opening or corresponding centering pin, allows the next level to be fitted precisely from itself upwards subsequent modules is used, in which case a lower footplate of each support foot has a corresponding centering opening or a centering pin.
  • These head plates and, as is understood, also the foot plates are connected to the reinforcement cages within the support feet and their head parts, usually welded, and in the same way the circumferential reinforcement frame is connected to the head part reinforcing bars, usually welded.
  • the design of the respective prefabricated concrete slab of a particular module is particularly advantageous in such a way that reinforcing bars protrude from the top, which are still connected to the transversely inserted reinforcing or reinforcing bars of adjacent modules before application of the in-situ concrete, so that the in-situ concrete and the in-situ concrete provides secure anchoring and a uniform monolithic structure of the whole.
  • the present invention provides for the head parts which are pulled out upwards over the prefabricated concrete ceiling of the module by means of a peripheral, laterally to support and stabilize open reinforcement frames.
  • FIG. 1 shows the simplest basic form of a module 10, consisting only of a concrete ceiling 12 and four corner supports or support feet 14a, 14b, 14c, 14d, a side wall 13 can additionally be provided if this is an external module or a wall is provided at this point in the building.
  • the modules 10 generally have no bottom and therefore correspond in their shape to a box which is open at the bottom and in which more and more side parts can be omitted until finally, for example in the case of a central module, there are no longer any side parts and the module has this stool-like shape.
  • the four support feet 14a, 14b, 14c, 14d determine the storey height by their height, ie more precisely by the distance of their respective head plate 15 of each support foot from the corresponding lower foot plate 16, the concrete ceiling 12 of each individual module 10 having a predetermined distance upwards between the support feet is set so that each support foot comprises a corner support main part 17 reaching from the bottom to the concrete ceiling 12 and an upper head part 18, which projects beyond the concrete ceiling 12 by a certain distance which can be predetermined as desired, thereby also determining the thickness H1 of the in-situ concrete ceiling that can be applied.
  • the concrete ceiling 12 of each individual module 10 can have a recess or fold 21 which is arranged in the peripheral edge of the concrete ceiling 12.
  • This recess serves for the problem-free approach of filigree plates 20 which engage with hook-like projections 23 of their reinforcing bars in the recess 21, so that there is a secure anchoring of the filigree plate 20, which is preferably attached to the module with the same module width.
  • the filigree panel then strikes the continuous column areas.
  • modules form outer wall modules, it is understood that formwork is attached so that the grouting concrete layer does not flow off.
  • each support leg is connected to one another by at least partially encircling reinforcement or reinforcing bars or elements or structures, so that in this way, roughly according to the basic physical principle a table frame for which the support feet have a decisive stabilizing effect, particularly against moments acting from the side, since the intimate anchoring through the common concrete ceiling means that the support feet are secured against horizontal forces, while through the fixed connection and thereby secured distance maintenance by means of a reinforcement frame 24, hereinafter referred to as " Frame belt ", the head parts protruding beyond the precast concrete ceiling of the module are firmly and rigidly connected to one another, so that the lower main support parts 17 of the support feet 14a, 14b ... can also withstand moments.
  • the reinforcement frame 24 consists of longitudinal bars 25, which can be circumferential or which each extend from the head part 18 to the head part 18, where they are welded or otherwise connected to the reinforcement bars or reinforcement cages of the head parts and from the concrete of the head part are secured, or it is also possible to actually form the longitudinal bars of basically any shape and design as a closed frame and to bend them in the head part area and to connect them with the corresponding reinforcement cages and reinforcing bars present there and to pour them into the concrete of the head parts.
  • FIG. 2 shows a middle cross-section, for example along the line II-II of FIG. 1 in a side view, of the concrete ceiling 12 with its own reinforcements 19 and an adjacent filigree plate 20, supplemented by the surrounding reinforcement frame 24, consisting of any one Number of longitudinal reinforcement elements 25, which in turn are supplemented, reinforced and connected to one another by intermediate elements 26, connections in particular also being possible with the reinforcement parts 19 protruding from the concrete ceiling. It is then easily possible to push transverse reinforcing bars 26 through remaining open positions in the reinforcement frame 24, which are then connected to the reinforcements 22 of the filigree slab or an adjacent module and to the reinforcements 19 of the module, with the entire surface then being dashed indicated height 27 the in-situ concrete layer is filled.
  • the dashed head plate 15 is also indicated by a dashed line
  • the head part 18 of each support leg remains free, so that at this point the foot plate of the module which adjoins the top can be placed on top and, if desired, also connected to the head plate by welding all the way round.
  • reinforcement baskets or reinforcement baskets are also provided in the solid concrete support feet in the exemplary embodiments discussed here, the irons of which are firmly connected, for example welded, to the respective head or foot plate, so that this results in precise height distances allow the individual modules to be specified, but also the head and foot plates are, so to speak, one-piece components of the respective floor, so that the floors and floors also form a monolithic basic structure by welding the respective head and foot plates.
  • Fig. 3 shows the measures described in the area of a footrest head part 18 with indicated at 17 'corner support main part of the following module with head plate 16 and centering pin 16', which is received by the centering opening 15 'of the head plate 15 in the head part 18 of the lower module.
  • Another preferred embodiment of the following invention is that, while maintaining the basic structures explained above, the head and foot plate areas experience a change, as shown in FIGS. 4 and 5 in detail.
  • the head plate area can also be designed such that only a threaded guide bush 30 is used in the prefabricated concrete in the head plate area, which is open at the top with its thread and into which a head plate 32 carried by a threaded foot 31, which is shown in FIG. 4 without a centering opening is used. Since the head plate foot 31 also has a corresponding (heavy) external thread, it is possible to specify the height of the head plate precisely by further screwing in or out in the thread area, so that it is also ensured that the following modules are highly accurate in the vertical direction can be positioned.
  • centering structures in the head plate / footrest part which are then expediently arranged off-center, for example as a concentric ring recess in the head plate, which appears upwards as a groove, into which then from the footplate of the the corresponding module, which is arranged at the same concentric spacing and possibly interrupted ring projections, engage.
  • head and foot plates evenly, as a result of which a highly precise adjustment can also be achieved by lateral displacement.
  • the height-adjustable plate forming the head plate is expediently adjusted in height before the in-situ concrete is applied, so that the in-situ concrete then surrounds the head plate flush with the upper surface and is thus also fixed, and the adjustable head plate area is insured against any kind of stress , in particular the pressure of subsequent modules from the threaded area of the guide bush and the threaded base.
  • the height-adjustable head plate appears as an integrated, one-piece part of the ceiling of the respective lower module, with a multitude of structural advantages being achieved by this height adjustment.
  • the footrest of an adjoining module is designated 17 '' - the footplate 34 seated on the plate of the head plate 32 can be secured by means of a bracket 35 in the prefabricated concrete of the footrest - the bracket 35 in turn part of the inner reinforcement cage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Joining Of Building Structures In Genera (AREA)
  • Road Paving Structures (AREA)
  • General Factory Administration (AREA)
  • Roof Covering Using Slabs Or Stiff Sheets (AREA)
  • Conveying And Assembling Of Building Elements In Situ (AREA)

Description

  • Die Erfindung geht aus von einem Verfahren zur Herstellung von vorgefertigten bodenfreien Modulen, die der Erstellung von Bauwerken dienen, nach dem Oberbegriff des Anspruchs 1 sowie von einem vorgefertigten Modul nach dem Oberbegriff des Anspruchs 8.
  • Die Herstellung von Gebäuden und Bauwerken beliebiger Art mit Hilfe von vorgefertigten Einzelmodulen, die jeweils mindestens über eine Betondecke und üblicherweise vier von der Betondecke nach unten weisende Stützfüße verfügen, ist in vielfältiger Form bekannt, wobei insbesondere auf die in Form von Offenlegungsschriften vorveröffentlichten Druckschriften DE-A-41 15 643, DE-A-41 21 253, DE-A-41 31 125 sowie das Gebrauchsmuster DE-U-92 15 776.9 des gleichen Anmelders auch dieser Erfindung verwiesen werden kann.
  • Demnach kann ein vorgefertigte Module zur Herstellung von Bauwerken benutzendes Verfahren so durchgeführt werden, daß die einzelnen Module neben- und übereinandergestellt und miteinander verbunden werden, wobei es sich als besonders vorteilhaft erwiesen hat, zur horizontalen und vertikalen Aussteifung eines aus solchen Modulen bestehenden Gebäudes jeweils durchlaufende Ortbetonschichten auf die Betondecken von jeweils für ein Stockwerk nebeneinander angeordneten Modulen aufzubringen, wodurch sich eine sehr maßgenaue monolithisch verfestigte Struktur des Gebäudes ergibt.
  • Diese zusätzliche Ortbetonschicht, die auf die vorgefertigten Decken der Module bzw. auf Zwischenräume zwischen aufeinandergestellten Modulen überbrückende Zwischendecken, die im folgenden als sogenannte Filigranplatten bezeichnet werden, aufgebracht wird, macht ersichtlich einen insofern dann zusätzlichen eigenen Boden jedes Moduls entbehrlich, da die aus vorgefertigter Betondecke und dem Ortbeton bestehende jeweilige Geschoßdecke ohnehin eine Doppelschicht ist. Man gelangt auf diese Weise zu bodenfreien Modulen (DE-A-41 21 253), benötigt dann aber für einen hinreichend steifen, insbesondere transportfähigen Aufbau jedes Moduls, der bei Bodenfreiheit in etwa eine schemelartige Form annimmt, Versteifungs- oder Stabilisierungsmittel für die Stützfüße, ähnlich einer umlaufenden Zarge bei einem Tisch, um so seitlich auf die Füße einwirkende Momente, die zusätzlich zu Horizontalkräften angreifen können, auszugleichen und aufzufangen.
  • Hierzu eignen sich gut schemelartig ausgebildete, also mindestens eine Betondecke und üblicherweise vier Stützfüße aufweisende Module, deren Betondecke in der Mitte in der Höhe dünner ist als eine umlaufende Randkante, so daß die Moduldecken, von oben gesehen eine wannenartige, ausgekehlte Muldenform aufweisen.
  • Eine solche Grundform kann sich jedoch bei bestimmten Bauvorhaben als deshalb störend erweisen, weil das Aufbringen einer durchlaufenden, also sich über sämtliche Module erstreckenden Ortbetondecke sinnvollerweise auch deren Stabilisierung mit durchgehenden Bewehrungseisen oder -stäben oder das Auflegen von Matten erforderlich macht, die sich auch jeweils über angrenzende Module erstrecken müssen, damit die Ortbetonstruktur monolithisch durchgehend verfestigt und stabilisiert ist. Bei aneinander grenzenden Randkanten der Betondecken der einzelnen Module lassen sich, weil die zur Verfügung stehende Höhe für den Ortbeton durch die Randkante praktisch verbraucht ist, aber keine zusätzlichen, auf angrenzende Module hinüberreichende Bewehrungseisen oder -stäbe auflegen, so daß dort, wo solche Armierungseinlagen gewünscht sind, noch vor dem Betonieren der Ortbetondecke Randkantenbereiche unter Umständen wieder weggebrochen oder durchgebohrt werden müssen - die stabilisierende Aufgabe der Randkante für den Transport ist zu diesem Zeitpunkt ohnehin abgeschlossen -, so daß dann durch solche aufgebrochenen Zwischenräume die Armierungseisen angrenzender Module verlegt werden können.
  • Demnach liegt der vorliegenden Erfindung die Aufgabe zugrunde, das sich hier ergebende Problem zu lösen, welches einerseits eine verstärkte Randkante für die Stabilisierung der Stützfüße der Module vor der endgültigen Montage erforderlich macht und die es andererseits erlaubt, daß Bewehrungs- oder Armierungseisen oder -materialien ohne größeren Aufwand quer über sämtliche angrenzenden Module verlegt werden können, um dann auf die gesamte sich ergebende Fläche die gewünschte stabilisierende Ortbetonschicht aufzubringen.
  • Die Erfindung löst diese Aufgabe mit den Merkmalen des Anspruchs 1 bzw. des Anspruchs 8 und hat den entscheidenden Vorteil, daß die Versteifung der Füße der einzelnen Module nach deren Herstellung beispielhaft, gegebenenfalls sogar zufriedenstellender als bei einer umlaufenden betonierten Randkante jedes Moduls ist, da ein metallischer Versteifungsrahmen bei auf die Füße einwirkende Momente elastisch nachgiebig reagieren kann, andererseits aber der seitlich an vielen Stellen offene Rahmen das problemlose Durchstecken oder Durchschieben von Armierungsstäben ermöglicht, so daß sich sowohl durch die Bewehrungs- und Armierungseisen und deren Verbindung miteinander als auch durch die dann über die gesamte sich bietende Fläche neben einandergestellter Module aufgebrachte Ortbetondecke eine hochstabile innige Verschmelzung der einzelnen Module zu einem monolithischen Kompaktaufbau ergibt, so daß es möglich ist, trotz gegebenenfalls reduziertem Materialeinsatz (Wegfall der Modulböden, Wegfall einer umlaufenden Randkante u. dgl.) sich über viele Stockwerke in der Höhe erstreckende Gebäude in einer solchen bewährten Modultechnik erstellt werden können.
  • Dabei ist ferner vorteilhaft, daß der mindestens teilweise umlaufende Bewehrungsrahmen die sich über die vorgefertigte Betondecke des Moduls erstreckenden Kopfbereiche der Stützfüße und deren innere Bewehrung umfaßt und in die Kopfbereiche einbetoniert ist, mit der weiteren vorteilhaften Ausgestaltung, daß der dann längs der äußeren Randkanten verlaufende Bewehrungsrahmen aus grundsätzlich beliebigen Armierungssystemen und Anordnungen zusätzlich Verbindung mit der Bewehrung bzw. Armierung der vorgefertigten Betondecke selbst hat, entweder weil er beim ursprünglichen Aufbau Teil der Armierungsmatten bzw. -stäbe und -eisen der vorgefertigten Betondecke ist oder jedenfalls mit unteren Teilbereichen des Rahmens in die Betondecke einbetoniert ist. Es ergibt sich hierdurch erkennbar eine vorzugsweise durchgehend voll umlaufende hochfeste Verstärkung, Stabilisierung und Sicherung der Stützfüße jedes Moduls dadurch, daß diese auf Höhe der Betondecke von dieser einstückig umgossen und umfaßt sind und sich in Form eines Kopfteils über diese hinauserstrecken, wobei der Kopfteil dann im umlaufenden seitlich durchlässigen Armierungsrahmen eingebettet und von diesem aufgenommen ist bzw. umgekehrt den Armierungsrahmen aufnimmt, der selbst wieder längs der seitlichen Randkanten von der Betondecke aufgenommen ist.
  • Da der Armierungsrahmen bevorzugt aus Eisenstäben und diese miteinander verbindenden Bewehrungen besteht, die in Zickzack bis unter die Betondecke reichen können, ergeben sich eine Vielzahl hinreichend großer seitlicher Durchstecköffnungen, denn im praktischen Aufbau besteht ein solcher umlaufender Bewehrungsrahmen lediglich aus einer Vielzahl von längs-, quer- und im Zickzack verlaufender, miteinander verbundener, auch verschweißter Eisenstäbe, die wie ein Gitterrahmen wirken und praktisch an jeder beliebigen Stelle das Querdurchstecken sonstiger Armierungs- und Bewehrungseisen ermöglichen. Hierdurch ergibt sich nicht nur eine äußerst feste Verbindung angrenzender Module, sondern die Armierungseisen selbst, bestehend aus den jeweiligen umlaufenden Rahmen, aus den quergesteckten Armierungsstäben und sonstigen Bewehrungen sowie aus ohnehin von den vorgefertigten Betondecken mindestens teilweise nach oben außen ragenden Armierungsspitzen bilden für jede Geschoßdecke ein miteinander verwobenes Geflecht von Bewehrungen und Armierungsstäben, welches durch den sich über die gesamte Fläche erstreckenden frisch aufgebrachten Ortbeton, der nunmehr auch durch die sonst vorhandenen hochgezogenen Randkanten der Module nicht mehr mindestens jedenfalls teilweise unterbrochen wird, eine hochstabilisierende und monolithische Struktur verliehen bekommt so daß es gelingt, mit geringem Aufwand Gebäude aus vorgefertigten Bestandteilen zu erstellen, die in Stabilität, den durch die Module gebotenen Variationsmöglichkeiten und der Anzahl der Stockwerke konventionell erstellten Bauwerken mindestens gleichwertig, hinsichtlich der Kosten entscheidend überlegen sind.
  • Dabei ist die jeweils bevorzugte endgültige Form oder Struktur des Bewehrungsrahmens oder der umlaufenden Armierung unter Einschluß der Kopfteile der Stützfüße grundsätzlich beliebig; es können neben oder anstelle von Stangen, Rohren, Profilstücken aus Metall, Eisen oder Stahl auch für sich gesehen, selbst wieder vorgefertigte, stahlarmierte Betonstücke verwendet werden, wobei alle diese verschiedenen Armierungsformen oder Strukturen in Form des umlaufenden Bewehrungsrahmens auf jeden Fall mit den sich üblicherweise um das Maß des aufzubringenden Ortbetons über die Höhe der vorgefertigten Betondecke erstreckenden Kopfteile der Stützfüße verbunden sind, üblicherweise mit deren Armierungen und Bewehrungen verschweißt und vom Beton umgossen. Es versteht sich also, daß die Stützfüße selbst ebenfalls entsprechende Armierungskörbe enthalten, die schon deshalb sinnvoll sind, weil die nach oben weitergeführten Kopfteile der Stützfüße jeweils in einer Kopfplatte enden, die mit Zentrieröffnung oder entsprechenden Zentrierzapfen dem paßgenauen Aufsetzen der nächsten Ebene von sich nach oben anschließenden Modulen dient, wobei dann jeweils eine untere Fußplatte jedes Stützfußes eine entsprechende Zentrieröffnung bzw. einen Zentrierzapfen aufweist. Diese Kopfplatten und, wie es sich versteht, auch die Fußplatten sind mit den Bewehrungskörben innerhalb der Stützfüße und deren Kopfteile verbunden, üblicherweise verschweißt,und in gleicher Weise ist der umlaufende Bewehrungsrahmen mit den Kopfteil-Bewehrungseisen verbunden, üblicherweise verschweißt. Es ergibt sich so für jeden einzelnen Modul in schemelartiger Form, wobei natürlich auch Seitenteile dort vorgesehen sein können, wo beispielsweise Außenwände geplant sind, ebenfalls eine feste "innere" monolithische Stabilität und Struktur, die sich dann durch das Aufbringen des Ortbetons bei sich zusätzlich über mindestens jeweils angrenzende Module erstreckende weitere Armierungen, die durch den Bewehrungsrahmen geschoben werden, auf das ganze Gebäude überträgt und in synergistischer Weise vervielfacht.
  • Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der Erfindung möglich. Besonders vorteilhaft ist die Ausbildung der jeweiligen Fertigbetondecke eines jeweiligen Moduls so, daß aus dieser nach oben Bewehrungseisen herausragen, die mit den quer durchgeschobenen Armierungs- oder Bewehrungseisen angrenzender Module vor Aufbringen des Ortbetons noch verbunden werden, so daß sich für den Ortbeton und durch den Ortbeton eine sichere Verankerung und eine einheitliche monolithische Struktur des Ganzen ergibt.
  • Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden in der nachfolgenden Beschreibung näher erläutert. Es zeigen:
  • Fig. 1
    in perspektivischer vereinfachter Darstellung eine bevorzugte Grundform eines Einzelmoduls mit sich seitlich an die Betondecke des Einzelmoduls und von dieser getragenen Filigranplatte,
    Fig. 2
    einen mittleren Teilausschnitt durch eine Fertigbetondecke eines nur schematisch teilweise dargestellten Moduls, so daß der umlaufende Rahmen im Schnitt und Seitenansicht mit der von ihm gebotenen Möglichkeit des seitlichen Durchsteckens erkennbar ist, wobei sich an die Fertigbetondecke noch eine Filigranplatte seitlich anschließt, und
    Fig. 3
    schematisiert ebenfalls im Ausschnitt eine nach oben offene Aufnahmeöffnung in der Kopfplatte eines Fußstützen-Kopfteils mit schematisierter Darstellung der den Kopfteil durchsetzenden Armierungselemente des Bewehrungsrahmens, der sich seitlich fortsetzt,.
    Fig. 4 und 5
    zeigen eine weitere Variante der Erfindung mit Kopfplattenverstellung.
    Beschreibung der Ausführungsbeispiele
  • Die vorliegende Erfindung sieht vor bei einem bodenfreien Modul mit Eckfußstützen die über die Fertigbetondecke des Moduls nach oben herausgezogenen Kopfteile mittels eines umlaufenden, seitlich offenen Bewehrungsrahmens zu stützen und zu stabilisieren.
  • In Fig. 1 ist die einfachste Grundform eines Moduls 10, bestehend lediglich aus einer Betondecke 12 und vier Eckstützen oder Stützfüßen 14a, 14b, 14c, 14d dargestellt, wobei ergänzend noch eine Seitenwand 13 vorgesehen sein kann, falls es sich hier um einen Außenmodul handelt oder an dieser Stelle im Gebäude eine Wand vorgesehen ist.
  • Die Module 10 weisen grundsätzlich keinen Boden auf und entsprechen ihrer Form daher einer nach unten offenen Schachtel, bei der zunehmend weitere Seitenteile wegfallen können, bis schließlich, beispielsweise bei einem Mittenmodul, gar keine Seitenteile mehr vorhanden sind und der Modul diese schemelartige Form aufweist.
  • Die vier Stützfüße 14a, 14b, 14c, 14d bestimmen durch ihre Höhe, d.h. genauer gesagt durch den Abstand ihrer jeweiligen Kopfplatte 15 jedes Stützfußes zur entsprechenden unteren Fußplatte 16 die Geschoßhöhe, wobei die Betondecke 12 jedes Einzelmoduls 10 mit vorgegebenem Abstand nach oben zwischen den Stützfüßen angesetzt ist, so daß jeder Stützfuß einen bis zur Betondecke 12 von unten reichenden Eckstützenhauptteil 17 und einen oberen Kopfteil 18 umfaßt, der die Betondecke 12 um einen bestimmten, an sich beliebig vorgebbaren Abstand überragt, wodurch sich auch die Dicke H1 der aufbringbaren Ortbetondecke bestimmt.
  • Mindestens dort, wo zu erwarten ist, daß seitlich horizontal an die Betondecke Zwischenplatten, also sogenannte Filigranplatten 20 anzusetzen sind, kann die Betondecke 12 jedes Einzelmoduls 10 eine Aussparung oder Falz 21 aufweisen, die in der umlaufenden Randkante der Betondecke 12 angeordnet ist. Diese Aussparung dient dem seitlichen problemlosen Ansatz von Filigranplatten 20, die mit hakenartigen Vorsprüngen 23 ihrer Bewehrungseisen in die Aussparung 21 eingreifen, so daß sich eine sichere Verankerung der an dem Modul vorzugsweise mit gleicher Modulbreite angesetzten seitlichen Filigranplatte 20 ergibt. An die durchlaufenden Stützenbereiche schlägt die Filigranplatte dann bündig an.
  • Man erkennt, daß es auf diese Weise möglich ist, bei der Montage auf eine in dieser Weise in beliebiger Form und Variabilität zusammengestellten unteren Geschoßdecke durchlaufend vor Ort eine Vergußbetonschicht aufzubringen, die so hochgezogen ist, daß sie mindestens bis an den unteren Rand, falls gewünscht auch oben bündig abschließend, die oberen Kopfteile umgibt, so daß dann lediglich noch die Kopfplatten mit ihren Zentrieröffnungen 15' aus der Vergußbetonschicht (Ortbeton) herausragen.
  • Dort, wo Module Außenwandmodule bilden, ist, wie es sich versteht, eine Schalung angebracht, damit die Vergußbetonschicht nicht abfließt.
  • Es versteht sich ferner, daß die fertige Betondecke 12 jedes Einzelmoduls sowie die sich anschließenden Filigranplatten 20 durchlaufend noch Armierungen, beispielsweise in Form von Matten aufgelegt sind, die auch durch schon vorhandene, nach oben wegstehende Armierungen 19 der Betondecke 12 bzw. Armierung 22 der Filigranplatte 20 hindurchgeflochten sein können.
  • Aus der Darstellung der Fig. 1 läßt sich am besten erkennen, daß die Kopfteile 18 jedes Stützfußes durch mindestens teilweise umlaufende Bewehrungs- oder Armierungseisen oder -elemente oder -strukturen miteinander verbunden sind, so daß sich auf diese Weise, in etwa nach dem physikalischen Grundprinzip eine Tischzarge, für die Stützfüße ein entscheidender Stabilisierungseffekt insbesondere gegen seitlich einwirkende Momente ergibt, da durch die innige Verankerung durch die gemeinsame Betondecke die Stützfüße gegen Horizontalkräfte gesichert sind, während durch die feste Verbindung und hierdurch gesicherte Abstandswahrung mittels eines im folgenden als Bewehrungsrahmen 24 bezeichneten "Zargengürtels" die über die Fertigbetondecke des Moduls hinausragenden Kopfteile fest und starr miteinander verbunden sind, so daß die unteren Hauptstützenteile 17 der Stützfüße 14a, 14b ... auch Momenten standhalten können.
  • In vorteilhafter Ausgestaltung besteht der Bewehrungsrahmen 24 aus Längsstäben 25, die umlaufend ausgebildet sein können oder die sich jeweils von Kopfteil 18 zu Kopfteil 18 erstrecken, wo sie mit den Bewehrungseisen bzw. Armierungskörben der Kopfteile verschweißt oder sonstwie verbunden und vom Beton des Kopfteils gesichert sind, oder es ist auch möglich, die Längsstäbe von grundsätzlich beliebiger Form und Ausbildung tatsächlich als geschlossenen Rahmen auszubilden und im Kopfteilbereich jeweils umzubiegen und mit den entsprechenden, dort vorhandenen Bewehrungskörben und Armierungseisen zu verbinden und in den Beton der Kopfteile einzugießen.
  • Darüber hinaus ist es eine vorteilhafte Ausgestaltung, diese Längsstäbe 25 noch durch eine Vielzahl zusätzlicher Armierungseisen oder Armierungselemente oder sonstiger Bewehrungsstrukturen 26 miteinander und vor allem mit dem Beton H2 bzw. den in diesen eingelegten Armierungsstrukturen der Betondecke 12 zu verbinden, wobei lediglich erforderlich ist, daß seitlich eine gewisse Durchgängigkeit durch den Bewehrungsrahmen 24 noch verbleibt, die es erlaubt, vor der Aufbringung des Ortbetons über eine entsprechende Anzahl von sich aus der Form des Gebäudes ergebenden nebeneinandergestellten Einzelmodulen weitere Bewehrungselemente oder Armierungsstäbe hindurchzustecken, die in Fig.1 sehr schematisiert dargestellt und mit 27 bezeichnet sind und die mit den vorhandenen, von den Betondecken 12 der Module oder der Filigranplatten 20 abstehenden Armierungen noch verbunden werden können und dann als durchgehende Armierung zusätzlich verstärkend und stabilisierend zu den vorhandenen Armierungen 19 und 22 von Betondecke bzw. Filigranplatte für die Ortbetonschicht dienen. Man erkennt, daß sich auf diese Weise zwei wesentliche Gesichtspunkte von an sich widersprüchlicher Natur erfüllen, nämlich einmal die sichere, transportfähige Form der Einzelmodule auch dann, wenn diese lediglich Schemelform aufweisen, und die Gewinnung einer einwandfreien monolithischen Struktur des späteren Gebäudes durch die durchgehende Ortbetonschicht in Verbindung mit der ebenfalls durchgehenden zusätzlichen Armierung 27 in vollkommen beliebiger Form, Struktur und Ausbildung, ohne daß sich die Notwendigkeit von Nacharbeiten vor Ort ergeben, beispielsweise indem man umlaufende Randkanten im Beton wieder ausbrechen muß, damit man Armierungsstäbe hindurchlegen kann.
  • Die Darstellung der Fig. 2 zeigt als mittleren Querschnitt, beispielsweise längs der Linie II-II der Fig. 1 in Seitenansicht die Betondecke 12 mit den ihr eigenen Armierungen 19 sowie eine angrenzende Filigranplatte 20, ergänzt durch den umlaufenden Bewehrungsrahmen 24, bestehend aus einer beliebigen Anzahl von Armierungslängselementen 25, die ihrerseits wieder durch Zwischenelemente 26 ergänzt, verstärkt und miteinander verbunden sind, wobei insbesondere auch Verbindungen mit den aus der Betondecke herausragenden Armierungsteilen 19 möglich sind. Es ist dann problemlos möglich, querverlaufende Armierungsstäbe 26 noch durch verbleibende offene Stellen im Bewehrungsrahmen 24 hindurchzuschieben, die dann mit den Armierungen 22 der Filigranplatte oder eines angrenzenden Moduls und mit den Armierungen 19 des Moduls verbunden sind, wobei auf die gesamte Fläche dann bis zur gestrichelt angedeuteten Höhe 27 die Ortbetonschicht aufgefüllt wird. Man erkennt, daß bei einer solchen Höhe der Ortbetonschicht die gestrichelt angedeutete Kopfplatte 15 eines ebenfalls nur gestrichelt angedeuteten Kopfteils 18 jedes Stützfußes freibleibt, so daß an dieser Stelle die Fußplatte des sich jeweils nach oben anschließenden Moduls aufgesetzt und, falls gewünscht, auch umlaufend mit der Kopfplatte durch Verschweißen verbunden werden kann. Hierdurch ergibt sich eine sichere Vertikalversteifung des gesamten Gebäudes auch gegen seitlich angreifende Kräfte, beispielsweise Windkräfte oder ein hohes Widerstandsmoment des Gebäudes in erdbebengefährdeten Gebieten, so daß eine monolithische Grundstruktur des gesamten Gebäudes sowohl in horizontaler als auch in vertikaler Richtung gewährleistet ist.
  • In diesem Zusammenhang sei daran erinnert, daß auch bei den hier besprochenen Ausführungsbeispielen in den Vollbeton-Stützfüßen Armierungskörbe oder Bewehrungskörbe vorgesehen sind, deren Eisen fest mit der jeweiligen Kopf- bzw. Fußplatte verbunden, beispielsweise verschweißt sind, so daß sich hierdurch einmal präzise Höhenabstände für die einzelnen Module vorgeben lassen, ferner aber auch Kopf- und Fußplatte sozusagen einstückige Bestandteile des jeweiligen Geschosses sind, so daß durch das Verschweißen jeweiliger Kopf- und Fußplatten die Geschosse nach oben und unten ebenfalls eine monolithische Grundstruktur bilden.
  • Dadurch, daß die jeweilige Vergußbetonschicht (bis zur Kopfplattenebene) noch vor Aufsetzen der jeweils zum nachfolgenden, nach oben weiterführenden Stockwerk gehörenden Einzelmodule aufgebracht wird, ist auch die problemlose Verbindung dieser nachfolgenden Einzelmodule, genauer gesagt deren Fußplatten mit den unteren Kopfplatten möglich, weil die durch die Vorortbetonschicht verfestigte Geschoßebene auch bei sehr rauhem Vorgehen, eventuellem seitlichen Anschlagen von über Kräne herangebrachten, sich nach oben anschließenden Modulen oder sehr hartem Aufsetzen nicht mehr verschieben oder sonstwie arbeiten kann, vor allem können sich die seitlich angesetzten Filigranplatten nicht mehr aus der anfangs nur durch die in die Aussparungen 21 eingreifenden Lagerhaken vorgegebene Positionierung lasen, so daß auch jede sonstige Gefährdung im Montagebereich ausgeschlossen ist.
  • Fig. 3 zeigt die geschilderten Maßnahmen im Bereich eines Fußstützenkopfteils 18 mit bei 17' angedeutetem Eckstützenhauptteil des nach oben folgenden weiteren Moduls mit Kopfplatte 16 und Zentrierzapfen 16', der von der Zentrieröffnung 15' der Kopfplatte 15 im Kopfteil 18 des unteren Moduls aufgenommen ist. Man erkennt bei 28 den Bewehrungskorb im Stützfuß, der sich bis zum Kopfteil 18 fortsetzt, dort mit den Längsstäben 25 des umlaufenden Bewehrungsrahmens 24 verbunden ist, die dann wiederum mit den Bewehrungselementen 19 der Betondecke 12 verbunden sind.
  • Eine weitere bevorzugte Ausgestaltung folgender Erfindung besteht darin, daß, unter Beibehaltung der weiter vorn erläuterten Grundstrukturen, die Kopf- und Fußplattenbereiche eine Änderung erfahren, wie in den Fig. 4 und 5 im einzelnen gezeigt.
  • Anstelle fest vorgegebener, auch in der Höhe durch das Einbetonieren vorbestimmter Kopfplattenanordnungen kann der Kopfplattenbereich auch so ausgebildet sein, daß in dem vorgefertigten Beton im Kopfplattenbereich lediglich eine Gewindeführungsbüchse 30 eingesetzt ist, die nach oben mit ihrem Gewinde offen ist und in welche eine von einem Gewindefuß 31 getragene Kopfplatte 32, die in Fig. 4 ohne Zentrieröffnung dargestellt ist, eingesetzt ist. Da auch der Kopfplattenfuß 31 ein entsprechendes (schweres) Außengewinde aufweist, ist es möglich, die Höhe der Kopfplatte hochpräzise durch ein entsprechendes weiteres Ein- oder Herausdrehen im Gewindebereich exakt vorzugeben, so daß auch sichergestellt ist, daß nach oben folgende Module in der Senkrechten hochgenau positioniert werden können. Es ist daher auch nicht notwendig, eventuell mit Unterlegteilen eine horizontale Nivellierung anzustreben, da durch diese feinfühlige Gewindeverbindung zwischen der Kopfplatte und dem Modul im Kopfplattenbereich eine praktische, vereinfachte und im übrigen auch hochgenaue horizontale Orientierung für den nach oben sich jeweils anschließenden Modul möglich wird. Daher sind auch nach dessen Aufsetzen keine eventuell sonst erforderlichen Justierarbeiten notwendig.
  • Die restlichen Elemente können so verbleiben wie weiter vorn erläutert, wobei es auch möglich ist, im Kopfplatten-/Fußstützenteil Zentrierstrukturen vorzusehen, die dann sinnvollerweise außermittig angeordnet sind, beispielsweise als konzentrische Ringausnehmung in der Kopfplatte, die nach oben als Nut erscheint, in welche dann von der Fußplatte des sich nach oben anschließenden Moduls entsprechende, im gleichen konzentrischen Abstand angeordnete, gegebenenfalls unterbrochene Ringvorsprünge eingreifen.
  • Es ist aber auch möglich, Kopf- und Fußplatten eben auszubilden, wodurch eine hochgenaue Einjustierung auch durch seitliche Verschiebung erreicht werden kann.
  • Der in der Höhe justierbare, die Kopfplatte bildende Teller wird zweckmäßigerweise vor Aufbringen des Ortbetons in der Höhe genau eingestellt, so daß der Ortbeton anschließend die Kopfplatte bis zur oberen Fläche bündig umschließt und insofern auch fixiert und den verstellbaren Kopfplattenbereich insofern gegen jede Art von Belastung absichert, insbesondere den Druck nachfolgender Module vom Gewindebereich der Führungsbuchse sowie des Gewindefußes wegnimmt. Nach dem Aufbringen des Ortbetons erscheint daher die höhenverstellbare Kopfplatte als integrierter, einstückiger Teil der Decke des jeweils unteren Moduls, wobei gleichzeitig durch diese Höhenverstellung eine Vielzahl bautechnischer Vorzüge erreicht werden.
  • In Fig. 5 ist die Fußstütze eines sich nach oben anschließenden Moduls mit 17'' bezeichnet - die auf den Teller der Kopfplatte 32 aufsitzende Fußplatte 34 kann mittels eines Bügels 35 im vorgefertigten Beton der Fußstütze gesichert sein - wobei der Bügel 35 seinerseits wieder Teil des inneren Armierungskorbs sein kann.

Claims (14)

  1. Verfahren zur Herstellung von vorgefertigten, mindestens aus Stützfüßen (14a, 14b, 14c, 14d) und einer Betondekke (12) bestehenden bodenfreien Modulen für die Erstellung von Bauwerken und Gebäuden, insbesondere Hotels, Krankenhäuser, Geschäfts- oder Bürohäuser, Wohnhäuser, Altenheime u. dgl., wobei die von Modulen gebildeten Raumzellen neben- und übereinander angeordnet und durch Aufbringen einer jeweils obere angrenzende Moduldecken und gegebenenfalls zwischen den einzelnen Modulen angeordnete, als Brücken zwischen den Betondecken dienende Verbindungsdecken überdeckende Ortbetonschicht (H1) miteinander verbunden werden, dadurch gekennzeichnet, daß auf die von erhabenen Randkanten freie Betondecke (12) jedes Einzelmoduls randkantenseitig ein mindestens teilweise umlaufender, seitlich zum Durchstecken von angrenzende Module übergreifenden Bewehrungseisen für die Ortbetonschicht offener Bewehrungsrahmen (24) aufgelegt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß jede Fußstütze eine kopfplatte (15) aufweist, in deren Bereich in der Höhe verstellbare und dadurch einstellbare Teller oder Auflagen angeordnet werden, deren Oberkante gleichzeitig die Abziehebene für die aufzubringende Ortbetonschicht definiert und die der Auflage sich nach oben anschließender weiterer Module mit ihren Fußstützen dienen.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß in jedem Kopfplattenbereich Gewindeführungsbüchsen (30) vorgesehen sind, in welche eine von einem Gewindefuß (31) getragene Kopfplatte (32) eingeschraubt und in ihrer Höhe eingestellt wird.
  4. Verfahren nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, daß zur Verankerung einer später aufzubringenden Ortbetonschicht die Betondecke (12) jedes Einzelmoduls mit nach oben ragenden Bewehrungseisenelementen (19) versehen wird und daß der aufgelegte Bewehrungsrahmen (24) mindestens in den die Betondecke überragenden Kopfbereichen der Fußstützen (14a, 14b, 14c, 14d) befestigt wird, die auch die höhenverstellbaren Kopfplatten lagert.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Armierungselemente des Bewehrungsrahmens (24) mit den Bewehrungskörben der Kopfteile (18) der Stützfüße verbunden, vorzugsweise verschweißt, werden und/oder im Beton der Kopfteile (18) eingebettet werden.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Armierungselemente des Bewehrungsrahmens (24) außerhalb der Kopfteile (18) der Stützfüße auch mit der Betondeckenschicht des Moduls verbunden werden.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß zusätzlich zu Druck- und Zugeinwirkung auffangenden Längsstäben (25) des Bewehrungsrahmens (24) Zwischenverbindungs-Armierungselemente (26) vorgesehen sind, die mindestens teilweise in der Betondecke (12) jedes Moduls und mit den dortigen Armierungselementen (19) verbunden werden.
  8. Vorgefertigter Modul zur Herstellung von Bauwerken und Gebäuden, insbesondere Hotels, Krankenhäuser, Geschäfts- oder Bürohäuser, Wohnhäuser und Altenheimen u. dgl., der mindestens aus Stützfüßen (14a, 14b, 14c, 14d) und einer Betondecke (12) besteht und der mit seitlich als auch nach oben und unten angeordneten weiteren Modulen bzw. Zwischenplatten (20) verbindbar ist, gekennzeichnet durch einen mindestens teilweise umlaufenden und Kopfteile (18) von Stützfüßen (14a, 14b, 14c, 14d), die über die Betondecke (12) hinausragen, miteinander verbindenden Bewehrungsrahmen (24), der seitlich durchgängige Öffnungen aufweist.
  9. Vorgefertigter Modul nach Anspruch 8, dadurch gekennzeichnet, daß der Bewehrungsrahmen (24) randkantenseitig in geschlossener Form in Höhe der Kopfteile (18) angeordnet ist und mit den Kopfteilen (18) sowie zwischen diesen mit der Betondecke (12) verbunden ist.
  10. Vorgefertigter Modul nach Anspruch 8 oder 9, dadurch gekennzeichnet, daß der umlaufende Bewehrungsrahmen (24) aus gegenüber Druck- und Zugeinwirkung wirksamen Längsstäben (25) besteht, die untereinander über in beliebiger Richtung verlaufende zusätzliche Armierungselemente (26) verbunden sind, wobei die Armierungselemente des Bewehrungsrahmens (24) mit den Armierungselementen von Bewehrungskörben in den Kopfteilen (18) als auch mit den Armierungselementen (19) der Betondecke (12) verbunden, vorzugsweise verschweißt, und im Beton der Kopfteile (18) vollständig und im Beton der Betondecke (12) teilweise mit freier seitlicher Durchgängigkeit verankert sind.
  11. Vorgefertigter Modul nach einem oder mehreren der Ansprüche 8 bis 10, dadurch gekennzeichnet, daß der Bewehrungsrahmen (24) vorgefertigte Betonteile mit inneren Armierungseinlagen umfaßt, bei seitlichen Durchtrittsmöglichkeiten für angrenzende Module überdeckenden Armierungen (27).
  12. Vorgefertigter Modul nach einem oder mehreren der Ansprüche 8 bis 11, dadurch gekennzeichnet, daß im Kopfplattenbereich oder Fußplattenbereich jedes Moduls in der Höhe verstellbare Anker vorgesehen sind.
  13. Vorgefertigter Modul nach Anspruch 12, dadurch gekennzeichnet, daß zur Höhenverstellbarkeit im Kopfplattenbereich in den Fußstützen Gewindeführungsbüchsen (30) angeordnet sind, die über ein Gewinde in der Höhe verstellbare Kopfplatten (32) tragende Gewindefüße (31) aufnehmen.
  14. Vorgefertiger Modul nach Anspruch 12 oder 13, dadurch gekennzeichnet, daß der Ortbeton bis zur Höhe Oberkante der in der Höhe voreingestellten Kopfplatten aufgebracht ist.
EP94114841A 1993-09-27 1994-09-21 Verfahren zur Herstellung von vorgefertigten Modulen für die Erstellung von Bauwerken und vorgefertiger Modul Expired - Lifetime EP0645501B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI9430041T SI0645501T1 (en) 1993-09-27 1994-09-21 Method for the production of prefabricated moduls for the construction of buildings and prefabricated modul

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4332793 1993-09-27
DE4332793A DE4332793C1 (de) 1993-09-27 1993-09-27 Verfahren zur Herstellung von Bauwerken und vorgefertigter Modul

Publications (2)

Publication Number Publication Date
EP0645501A1 EP0645501A1 (de) 1995-03-29
EP0645501B1 true EP0645501B1 (de) 1997-01-08

Family

ID=6498701

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94114841A Expired - Lifetime EP0645501B1 (de) 1993-09-27 1994-09-21 Verfahren zur Herstellung von vorgefertigten Modulen für die Erstellung von Bauwerken und vorgefertiger Modul

Country Status (8)

Country Link
EP (1) EP0645501B1 (de)
AT (1) ATE147456T1 (de)
CZ (1) CZ235294A3 (de)
DE (2) DE4332793C1 (de)
DK (1) DK0645501T3 (de)
ES (1) ES2098090T3 (de)
SI (1) SI0645501T1 (de)
TR (1) TR27658A (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL181551B1 (pl) * 1995-06-30 2001-08-31 Ralf Sebald Sposób wznoszenia wysokich budynków i urzadzenie regulacyjne do wznoszenia wysokich budynków PL
GR1005653B (el) * 1999-12-24 2007-09-19 Συστημα προκατασκευης πολυοροφων ολοσωμων κτιριωναπο ορθοτροπα τοιχια και πλακες οπλισμενου σκυροδεματος
ES2333636B1 (es) 2008-10-10 2011-03-11 Angel Moreno Cano Modulo semirresistente prefabricado para construccion y procedimientode montaje en obra del mismo.

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4443985A (en) * 1981-08-31 1984-04-24 Jaime Moreno Composite building construction comprising a combination of precast and poured-in-place concrete
DE4115643A1 (de) * 1991-05-14 1992-11-19 Eberhard Schrade Verfahren und vorgefertigter modul zur herstellung von bauwerken und gebaeuden
DE4131125C2 (de) * 1991-05-14 1996-07-18 Eberhard Schrade Verfahren zur Herstellung von Bauwerken und Gebäuden und vorgefertigter Modul zur Durchführung des Verfahrens
DE4121253C2 (de) * 1991-06-27 1996-11-28 Eberhard Schrade Verfahren und vorgefertigter Modul zur Herstellung von Bauwerken und Gebäuden
DE9215776U1 (de) * 1992-11-20 1993-01-07 Schrade, Eberhard, 7036 Schönaich Vorgefertigter Modul zur Herstellung von Bauwerken und Gebäuden

Also Published As

Publication number Publication date
TR27658A (tr) 1995-06-16
DE4332793C1 (de) 1995-01-12
ES2098090T3 (es) 1997-04-16
DE59401522D1 (de) 1997-02-20
CZ235294A3 (en) 1995-04-12
DK0645501T3 (da) 1997-07-07
ATE147456T1 (de) 1997-01-15
EP0645501A1 (de) 1995-03-29
SI0645501T1 (en) 1997-10-31

Similar Documents

Publication Publication Date Title
DE2354316C2 (de) Gebäude aus Fertigbauteilen
DE1807716A1 (de) Vorgefertigtes,transportables Raumelement zur Herstellung von Bauwerken
WO2014067884A1 (de) Verfahren zur herstellung eines turmbauwerks aus stahlbeton
EP1589156B1 (de) Verbindungselement zur Verbindung von Betonfertigteilen
DE4023465A1 (de) Turmbauwerk
DE69108246T2 (de) Verfahren zur errichtung einer gründungsstruktur für eine gebäude-unterkonstruktion.
EP1669505A1 (de) Stahlverbundträger mit brandgeschütztem Auflager für Deckenelemente
EP0645501B1 (de) Verfahren zur Herstellung von vorgefertigten Modulen für die Erstellung von Bauwerken und vorgefertiger Modul
DE4407000C2 (de) Rundstütze zum Aufbau von Gebäuden
DE9314567U1 (de) Vorgefertigter Modul
EP0520084B1 (de) Verfahren und vorgefertigter Modul zur Herstellung von Bauwerken und Gebäuden
DE1559585A1 (de) Schalungselement zur Herstellung von Mantelbetonwaenden und Verfahren zur Errichtung von Gebaeuden unter Verwendung solcher Schalungselemente
DE19941603C2 (de) Stahlbetonteil zur Herstellung von Fundamenten für Bauwerke
EP0515724B1 (de) Verfahren und vorgefertigtes Modul zur Herstellung von Bauwerken und Gebäuden
DE2153495A1 (de) Fertigteildeckenplatte fuer den montagebau
WO2006045491A1 (de) Wandkonstruktion zur errichtung von gebäuden
DE9409626U1 (de) Balkonkonstruktion
DE69116333T2 (de) Mehrgeschossiger autoparkplatz mit böden aus vorgefertigen platten
DE4239057C2 (de) Verfahren und vorgefertigter Modul zur Herstellung von Bauwerken und Gebäuden
AT372734B (de) Baukonstruktion
DE19741509A1 (de) Stützenkopfverbreiterung als Durchstanzbewehrung in Stahlbetonplatten
EP0880624B1 (de) Bausatz für gebäude
DE9215776U1 (de) Vorgefertigter Modul zur Herstellung von Bauwerken und Gebäuden
DE2720368A1 (de) Fertigbauteil, verfahren zum herstellen eines gebaeudes aus diesen fertigbauteilen und daraus hergestelltes gebaeude
DE3513624A1 (de) Transportables bauwerk

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL PT SE

RAX Requested extension states of the european patent have changed

Free format text: LT;SI PAYMENT 941012

17P Request for examination filed

Effective date: 19950524

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19960402

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL PT SE

AX Request for extension of the european patent

Free format text: LT;SI PAYMENT 941012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19970108

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19970108

REF Corresponds to:

Ref document number: 147456

Country of ref document: AT

Date of ref document: 19970115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59401522

Country of ref document: DE

Date of ref document: 19970220

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

ITF It: translation for a ep patent filed

Owner name: 0403;01MIFBARZANO' E ZANARDO MILANO S.P.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2098090

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970411

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 19970226

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970921

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970921

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970921

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970922

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970930

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: SCHRADE EBERHARD

Effective date: 19970930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980603

EUG Se: european patent has lapsed

Ref document number: 94114841.3

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 19980331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980921

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19990401

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19981013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050921