EP0602384A1 - Gasturbinenbrennkammer - Google Patents

Gasturbinenbrennkammer Download PDF

Info

Publication number
EP0602384A1
EP0602384A1 EP93118190A EP93118190A EP0602384A1 EP 0602384 A1 EP0602384 A1 EP 0602384A1 EP 93118190 A EP93118190 A EP 93118190A EP 93118190 A EP93118190 A EP 93118190A EP 0602384 A1 EP0602384 A1 EP 0602384A1
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
cooling
flow
wall
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP93118190A
Other languages
English (en)
French (fr)
Inventor
Rolf Dr. Althaus
Burkhard Dr. Schulte-Werning
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Asea Brown Boveri Ltd
ABB AB
Original Assignee
ABB Asea Brown Boveri Ltd
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Asea Brown Boveri Ltd, Asea Brown Boveri AB filed Critical ABB Asea Brown Boveri Ltd
Publication of EP0602384A1 publication Critical patent/EP0602384A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/54Reverse-flow combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/32Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor with roughened surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • F05B2260/221Improvement of heat transfer
    • F05B2260/222Improvement of heat transfer by creating turbulence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • F05B2260/221Improvement of heat transfer
    • F05B2260/224Improvement of heat transfer by increasing the heat transfer surface
    • F05B2260/2241Improvement of heat transfer by increasing the heat transfer surface using fins or ribs

Definitions

  • the invention relates to a gas turbine combustion chamber with environmentally friendly burners, which consist of at least two hollow conical partial bodies positioned one on top of the other in the direction of flow, the longitudinal axes of symmetry of which run radially offset from one another, the walls of the combustion chamber being protected from excessive material temperatures by cooling, and a method for operating the Combustion chamber.
  • Such gas turbine combustors are known.
  • a hood is arranged in front of the burners, through which the main mass flow flows directly to the burners and which generates the pressure drop necessary to maintain the required cooling mass flow.
  • this throttling worsens the efficiency, while at the same time the mass flow supplied to the combustion chamber via film cooling indirectly contributes to a deterioration in the NO x values.
  • the invention tries to avoid all these disadvantages. It is based on the object of designing the cooling duct in a gas turbine combustion chamber in such a way that pure convective cooling of the combustion chamber walls is made possible and that the efficiency of the gas turbine combustion chamber is increased by a method for operating the combustion chamber.
  • the gas turbine combustion chamber has a cooling channel which has a continuously decreasing height and / or increasing surface roughness in the flow direction of the cooling air, and in that the gas turbine combustion chamber is operated such that the entire mass flow coming from the compressor flows through the cooling channel for pure convective cooling of the combustion chamber walls is used and the entire mass flow then takes part in the combustion.
  • the height of the cooling duct decreases linearly in the direction of flow of the cooling air in order to adapt the cooling effect to a locally different heat load.
  • the height of the cooling channel in the flow direction can also decrease exponentially, for example.
  • the combustion chamber 1 shows an embodiment of the gas turbine combustor 1 according to the invention. It is an annular combustion chamber with a combustion chamber inner wall 2 and a combustion chamber outer wall 3. The two walls 2, 3 delimit the cooling channel 4 of the combustion chamber 1.
  • the combustion chamber 1 is equipped with environmentally friendly burners 5, of which only one burner 5 in FIG. 1 is shown. These burners 5 consist of at least two hollow conical ones positioned one on top of the other in the flow direction Partial bodies whose axes of longitudinal symmetry are radially offset from one another, resulting in flow-wise tangential air inlet slots for a combustion air flow, wherein at least one nozzle for injecting the fuel is placed in the conical cavity formed by the conical partial cone bodies.
  • a hood 6 is arranged in front of the environmentally friendly burners 5.
  • the essence of the invention is that the entire mass flow coming from the compressor 7 is used for pure convective cooling of the combustion chamber 1. This is done by adapting the cooling effect to the locally different thermal load, in that the cooling duct 4 has a continuously decreasing height in the flow direction of the cooling air. In the exemplary embodiment, the height of the cooling channel 4 decreases linearly. But this can, for. B. may also be exponentially decreasing. It is known that the use of longitudinal and transverse ribs 8 can improve the convective cooling effect, which is why 4 longitudinal and transverse ribs 8 can additionally be arranged in the cooling channel. In addition, the local surface roughness can optionally be varied.
  • the cooling air velocity u or the heat transfer coefficient ⁇ increases with decreasing height of the cooling channel 4 in the flow direction of the cooling air. This means that the highest cooling effect is achieved where the highest temperatures arise in the combustion chamber 1, i. H. it is cooled the most exactly where the greatest cooling effect is necessary.
  • the entire mass flow coming from the compressor 7 is passed through the cooling channel 4 and cools the combustion chamber inner wall 2 as a result of pure convective cooling. It is preheated by the cooling and then flows directly to the burners 5 within the hood 6. So the whole takes Mass flow inside the combustion chamber 1 participates in the combustion and has a positive influence on the NO x formation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Bei einer Gasturbinenbrennkammer (1) mit umweltfreundlichen Brennern (5), welche aus mindestens zwei in Strömungsrichtung aufeinander positionierten, hohlen kegelförmigen Teilkörpern bestehen, deren Längssymmetrieachsen zueinander radial versetzt verlaufen, wodurch strömungsmässig entgegengesetzte tangentiale Lufteintrittsschlitze für einen Verbrennungsluftstrom entstehen, wobei im vom kegelförmigen Teilkegelkörpern gebildeten Kegelhohlraum mindestens eine Düse zur Eindüsung des Brennstoffes plaziert ist, und mit einem durch die Brennkammerinnenwand (2) und die Brennkammeraussenwand (3) begrenzten Kühlkanal (4), in welchem die Kühlluft entlangströmt und in welchem Längs- und Querrippen (8) angeordnet sein können, weist der Kühlkanal (4) eine in Strömungrichtung der Kühlluft stetig abnehmende Höhe und/oder zunehmende Oberflächenrauhigkeit auf. Der gesamte vom Verdichter (7) kommende Massenstrom wird für eine reine Konvektivkühlung der Brennkammerinnenwand (2) eingesetzt und nimmt an der Verbrennung teil. <IMAGE>

Description

    Technisches Gebiet
  • Die Erfindung betrifft eine Gasturbinenbrennkammer mit umweltfreundlichen Brennern, welche aus mindestens zwei in Strömungsrichtung aufeinander positionierten, hohlen kegelförmigen Teilkörpern bestehen, deren Längssymmetrieachsen Zueinander radial versetzt verlaufen, wobei die Wände der Brennkammer durch Kühlung vor zu hohen Materialtemperaturen geschützt werden, und ein Verfahren zum Betrieb der Brennkammer.
  • Stand der Technik
  • Derartige Gasturbinenbrennkammern sind bekannt. So werden z. B. Ringbrennkammerwände von Gasturbinen, die mit umweltfreundlichen Brennern ausgerüstet sind, welche aus mindestens zwei in Strömungsrichtung aufeinander positionierten, hohlen kegelförmigen Teilkörpern bestehen, deren Längssymmetrieachsen zueinander radial versetzt verlaufen, wodurch strömungsmässig entgegengesetzte tangentiale Lufteintrittsschlitze für einen Verbrennungsluftstrom entstehen, wobei im von den kegelförmigen Teilkegelkörpern gebildeten Kegelhohlraum mindestens eine Düse zur Eindüsung des Brennstoffes plaziert ist, durch eine Kombination von Konvektions- und Filmkühlung mit Hilfe eines Kühlmassenstromes vor zu hohen Materialtemperaturen geschützt.
  • Konstruktiv wird vor den Brennern eine Haube angeordnet, über die der Hauptmassenstrom direkt den Brennern zuströmt und die das zur Aufrechterhaltung des erforderlichen Kühlmassenstromes notwendige Druckgefälle erzeugt. Diese Drosselung verschlechtert aber den Wirkungsgrad, während gleichzeitig der über die Filmkühlung der Brennkammer zugeführte Massenstrom indirekt zu einer Verschlechterung der NOX-Werte beiträgt.
  • Darstellung der Erfindung
  • Die Erfindung versucht, all diese Nachteile zu vermeiden. Ihr liegt die Aufgabe zugrunde, bei einer Gasturbinenbrennkammer gemäss Oberbegriff des Anspruches 1 den Kühlkanal so zu gestalten, dass eine reine Konvektivkühlung der Brennkammerwände ermöglicht wird, und dass durch ein Verfahren zum Betrieb der Brennkammer der Wirkungsgrad der Gasturbinenbrennkammer erhöht wird.
  • Erfindungsgemäss wird dies dadurch erreicht, dass die Gasturbinenbrennkammer einen Kühlkanal besitzt, der eine in Strömungrichtung der Kühlluft stetig abnehmende Höhe und/oder zunehmende Oberflächenrauigkeit aufweist, und dass die Gasturbinenbrennkammer so betrieben wird, dass der gesamte vom Verdichter kommende Massenstrom durch den Kühlkanal fliesst, für eine reine Konvektivkühlung der Brennkammerwände eingesetzt wird und anschliessend der gesamte Massenstrom an der Verbrennung teilnimmt.
  • Die Vorteile der Erfindung sind unter anderem darin zu sehen, dass durch eine Verringerung der Drosselverluste der Wirkungsgrad der Gasturbinenbrennkammer erhöht wird und dass gleichzeitig die NOX-Emissionen minimiert werden.
  • Es ist besonders zweckmässig, wenn die Höhe des Kühlkanals in Strömungsrichtung der Kühlluft linear abnehmend ist, um eine Anpassung der Kühlwirkung an eine lokal unterschiedliche Wärmebelastung zu erreichen. Die Höhe des Kühlkanals in Strömungsrichtung kann aber auch beispielsweise exponentiell abnehmend sein.
  • Kurze Beschreibung der Zeichnung
  • In der Zeichnung ist ein Ausführungsbeispiel der Erfindung dargestellt.
    Es zeigen:
  • Fig. 1
    einen Teillängsschnitt der Gasturbinenbrennkammer;
    Fig. 2
    die Abhängigkeit der Kühlluftgeschwindigkeit und der Wärmeübergangszahl von der Höhe des Kühlluftkanals über die Brennkammerlänge gesehen.
  • Es sind nur die für das Verständnis der Erfindung wesentlichen Elemente gezeigt. Die Strömungsrichtung der Arbeitsmittel ist mit Pfeilen bezeichnet.
  • Weg zur Ausführung der Erfindung
  • In Fig. 1 ist ein Ausführungsbeispiel der erfindungsgemässen Gasturbinenbrennkammer 1 dargestellt. Es ist eine Ringbrennkammer mit einer Brennkammerinnenwand 2 und einer Brennkammeraussenwand 3. Die beiden Wände 2,3 begrenzen den Kühlkanal 4 der Brennkammer 1. Die Brennkammer 1 ist mit umweltfreundlichen Brennern 5 ausgerüstet, von denen zwecks Vereinfachung der Darstellung nur ein Brenner 5 in Fig. 1 abgebildet ist. Diese Brenner 5 bestehen aus mindestens zwei in Strömungsrichtung aufeinander positionierten, hohlen kegelförmigen Teilkörpern, deren Längssymmetrieachsen zueinander radial versetzt verlaufen, wodurch strömungsmässig entgegengesetzte tangentiale Lufteintrittsschlitze für einen Verbrennungsluftstrom entstehen, wobei im von den kegelförmigen Teilkegelkörpern gebildeten Kegelhohlraum mindestens eine Düse zur Eindüsung des Brennstoffes plaziert ist. Vor den umweltfreundlichen Brennern 5 ist eine Haube 6 angeordnet.
  • Das Wesentliche der Erfindung besteht nun darin, dass der gesamte vom Verdichter 7 kommende Massenstrom für eine reine Konvektivkühlung der Brennkammer 1 eingesetzt wird. Das geschieht durch eine Anpassung der Kühlwirkung an die lokal unterschiedliche thermische Belastung, indem der Kühlkanal 4 eine in Strömungsrichtung der Kühlluft stetig abnehmende Höhe aufweist. Im Ausführungsbeispiel ist die Höhe des Kühlkanals 4 linear abnehmend. Diese kann aber z. B. auch exponentiell abnehmend sein. Bekannt ist, dass durch den Einsatz von Längs- und Querrippen 8 die Konvektivkühlwirkung verbessert werden kann, deshalb können zusätzlich im Kühlkanal 4 Längs- und Querrrippen 8 angeordnet sein. Desweitern kann auch wahlweise die örtliche Oberflächenrauhigkeit variiert werden.
  • Wie aus Fig. 2 hervorgeht, erhöhen sich die Kühlluftgeschwindigkeit u bzw. die wärmeübergangszahl α mit abnehmender Höhe des Kühlkanals 4 in Strömungsrichtung der Kühlluft. Das bedeutet, dass die höchste Kühlwirkung dort erzielt wird, wo in der Brennkammer 1 die höchsten Temperaturen entstehen, d. h. es wird genau dort am meisten gekühlt, wo die grösste Kühlwirkung notwendig ist.
  • Der gesamte vom Verdichter 7 kommende Massenstrom wird durch den Kühlkanal 4 geleitet und kühlt infolge reiner Konvektivkühlung die Brennkammerinnenwand 2. Er wird dabei durch die Kühlung vorgewärmt und strömt anschliessend innerhalb der Haube 6 direkt den Brennern 5 zu. Somit nimmt der gesamte Massenstrom im Inneren der Brennkammer 1 an der Verbrennung teil und beeinflusst positiv die NOX-Bildung.
  • In Abhängigkeit von der Brennkammerauslegung verringern sich die Drosselverluste und es kommt zu einer Verbesserung des Wirkungsgrades gegenüber dem bekannten Stand der Technik.
  • Bezugszeichenliste
  • 1
    Brennkammer
    2
    Brennkammerinnenwand
    3
    Brennkammeraussenwand
    4
    Kühlkanal
    5
    Brenner
    6
    Haube
    7
    Verdichter
    8
    Rippen
    u
    Kühlluftgeschwindigkeit
    α
    Wärmeübergangszahl
    L
    Länge des zylindrischen Teils der Brennkammer

Claims (4)

  1. Gasturbinenbrennkammer (1) mit umweltfreundlichen Brennern (5), welche aus mindestens zwei in Strömungsrichtung aufeinander positionierten, hohlen kegelförmigen Teilkörpern bestehen, deren Längssymmetrieachsen zueinander radial versetzt verlaufen, wodurch strömungsmässig entgegengesetzte tangentiale Lufteintrittsschlitze für einen Verbrennungsluftstrom entstehen, wobei im von den kegelförmigen Teilkegelkörpern gebildeten Kegelhohlraum mindestens eine Düse zur Eindüsung des Brennstoffes plaziert ist, und mit einem durch die Brennkammerinnenwand (2) und die Brennkammeraussenwand (3) begrenzten Kühlkanal (4), in welchem die Kühlluft entlangströmt und in welchem Längs- und Querrippen (8) angeordnet sein können, dadurch gekennzeichnet, dass in Strömungrichtung der Kühlluft die Höhe des Kühlkanals (4) stetig abnehmend ist und/oder die Oberflächenrauhigkeit der Innenwände des Kühlkanals zunehmend ist.
  2. Gasturbinenbrennkammer nach Anspruch 1, dadurch gekennzeichnet, dass die Höhe des Kühlkanals (4) in Strömungsrichtung der Kühlluft linear abnehmend ist.
  3. Gasturbinenbrennkammer nach Anspruch 1, dadurch gekennzeichnet, dass die Höhe des Kühlkanals (4) in Strömungsrichtung der Kühlluft exponentiell abnehmend ist.
  4. Verfahren zum Betrieb der Gasturbinenbrennkammer nach einem der Ansprüch 1 bis 3, dadurch gekennzeichnet, dass der gesamte vom Verdichter (7) kommende Massenstrom durch den Kühlkanal (4) fliesst und für eine reine Konvektivkühlung der Brennkammerinnenwand (2) eingesetzt wird und der gesamte Massenstrom an der Verbrennung teilnimmt.
EP93118190A 1992-12-17 1993-11-10 Gasturbinenbrennkammer Withdrawn EP0602384A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4242721A DE4242721A1 (de) 1992-12-17 1992-12-17 Gasturbinenbrennkammer
DE4242721 1992-12-17

Publications (1)

Publication Number Publication Date
EP0602384A1 true EP0602384A1 (de) 1994-06-22

Family

ID=6475612

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93118190A Withdrawn EP0602384A1 (de) 1992-12-17 1993-11-10 Gasturbinenbrennkammer

Country Status (4)

Country Link
US (1) US5426943A (de)
EP (1) EP0602384A1 (de)
JP (1) JP3523309B2 (de)
DE (1) DE4242721A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5983624A (en) 1997-04-21 1999-11-16 Anderson; J. Hilbert Power plant having a U-shaped combustion chamber with first and second reflecting surfaces
GB2328011A (en) * 1997-08-05 1999-02-10 Europ Gas Turbines Ltd Combustor for gas or liquid fuelled turbine
SE9801822L (sv) * 1998-05-25 1999-11-26 Abb Ab Förbränningsanordning
DE19856458B4 (de) * 1998-12-03 2017-08-10 General Electric Technology Gmbh Kühlvorrichtung zur gezielten Beaufschlagung einer zu kühlenden Oberfläche mit einem gasförmigen Kühlmedium sowie Verfahren hierzu
DE10239534A1 (de) * 2002-08-23 2004-04-22 Man Turbomaschinen Ag Heißgas führendes Gassammelrohr
CH699309A1 (de) * 2008-08-14 2010-02-15 Alstom Technology Ltd Thermische maschine mit luftgekühlter, ringförmiger brennkammer.
EP2372245A1 (de) * 2010-03-26 2011-10-05 Siemens Aktiengesellschaft Brenner zur Stabilisierung der Verbrennung einer Gasturbine sowie Verfahren
US9319433B2 (en) 2010-06-29 2016-04-19 At&T Intellectual Property I, L.P. Prioritization of protocol messages at a server
JP6066065B2 (ja) 2013-02-20 2017-01-25 三菱日立パワーシステムズ株式会社 伝熱装置を備えたガスタービン燃焼器
JP6202976B2 (ja) 2013-10-10 2017-09-27 三菱日立パワーシステムズ株式会社 ガスタービン燃焼器
JP6267085B2 (ja) 2014-09-05 2018-01-24 三菱日立パワーシステムズ株式会社 ガスタービン燃焼器
JP6910036B2 (ja) * 2017-10-31 2021-07-28 国立研究開発法人産業技術総合研究所 燃焼器および燃焼方法
CN109973223B (zh) * 2019-04-01 2020-06-02 中国航发湖南动力机械研究所 粒子分离器的加工方法、粒子分离器及航空涡轴发动机
CN115371081A (zh) * 2021-05-18 2022-11-22 中国航发商用航空发动机有限责任公司 燃烧室后测量段及其冷却方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR957604A (de) * 1950-02-23
US3169369A (en) * 1963-06-19 1965-02-16 Gen Electric Combustion system
EP0128541A1 (de) * 1983-06-08 1984-12-19 Hitachi, Ltd. Gasturbinenbrennkammer

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US872806A (en) * 1904-06-09 1907-12-03 Sebastian Ziani De Ferranti Elastic-fluid turbine-engine.
US3589128A (en) * 1970-02-02 1971-06-29 Avco Corp Cooling arrangement for a reverse flow gas turbine combustor
CA980584A (en) * 1972-11-10 1975-12-30 Edward E. Ekstedt Double walled impingement cooled combustor
FR2232966A5 (en) * 1973-06-05 1975-01-03 Hartmann Pere & Fils Combustion air cooled gas burner - coaxial casing, inner wall and partition ensure smooth flow
CH633347A5 (de) * 1978-08-03 1982-11-30 Bbc Brown Boveri & Cie Gasturbine.
SE413431B (sv) * 1978-08-30 1980-05-27 Volvo Flygmotor Ab Aggregat for forbrenning av icke explosiva processgaser
US4361010A (en) * 1980-04-02 1982-11-30 United Technologies Corporation Combustor liner construction
GB2078364B (en) * 1980-06-17 1984-02-15 Bs & B Eng Co Fuel inlet assemblies for fuel reactors
CH678757A5 (de) * 1989-03-15 1991-10-31 Asea Brown Boveri
CH680467A5 (de) * 1989-12-22 1992-08-31 Asea Brown Boveri

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR957604A (de) * 1950-02-23
US3169369A (en) * 1963-06-19 1965-02-16 Gen Electric Combustion system
EP0128541A1 (de) * 1983-06-08 1984-12-19 Hitachi, Ltd. Gasturbinenbrennkammer

Also Published As

Publication number Publication date
US5426943A (en) 1995-06-27
JP3523309B2 (ja) 2004-04-26
DE4242721A1 (de) 1994-06-23
JPH06221562A (ja) 1994-08-09

Similar Documents

Publication Publication Date Title
EP0599055B1 (de) Gasturbinenbrennkammer
DE102005038395B4 (de) Brennkammerkühlung mit geneigten segmentierten Flächen
EP0602384A1 (de) Gasturbinenbrennkammer
DE102007004864B4 (de) Brennkammer einer Gasturbine und Verbrennungssteuerverfahren für eine Gasturbine
DE69818376T2 (de) Gasturbinenbrennkammer
DE69917655T2 (de) System zur dämpfung akustischer schwingungen in einer brennkammer
EP1801504B1 (de) Magervormischbrenner mit einer Zerstäuberlippe
CH697920A2 (de) Turbinentriebwerk mit einer Brennkammerauskleidung mit wirbelluftgekühltem hinterem Ende und Kühlverfahren.
DE4443864A1 (de) Gek}hltes Wandteil
DE102010060286A1 (de) Brennkammereinrichtung für eine Gasturbine, mit verbesserter Kühlung
DE19520291A1 (de) Brennkammer
DE3924473A1 (de) Brennkammer fuer ein gasturbinentriebwerk
WO1996004510A1 (de) Hitzeschild für eine gasturbinen-brennkammer
EP2423599A2 (de) Verfahren zum Betrieb einer Brenneranordnung sowie Brenneranordnung der Durchführung des Verfahrens
DE19538746A1 (de) Segmentierter Mittelkörper für eine Doppelring-Brennkammer
EP0718561A2 (de) Brennkammer
DE60018706T2 (de) Kühlverfahren für eine verbrennungsturbine
DE3328682A1 (de) Brennerauskleidung fuer ein gasturbinentriebwerk
DE19901422C2 (de) Brennkammer-Kühlstruktur für ein Raketentriebwerk
DE102015113146A1 (de) Systeme und Vorrichtungen im Zusammenhang mit Gasturbinenbrennkammern
EP2462379B1 (de) Stabilisierung der flamme eines brenners
DE3239195A1 (de) Gas-brennstoffinjektor fuer ein gasturbinentriebwerk
DE3741021A1 (de) Verbrennungseinrichtung fuer ein gasturbinentriebwerk
EP0611879A1 (de) Verfahren zur Kühlung einer Gasturbinenanlage
EP0730121A2 (de) Vormischbrenner

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19941125

17Q First examination report despatched

Effective date: 19960307

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19980324